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Abstract
For x, y > 0 with x �= y, let L = L(x, y), I = I(x, y), A = A(x, y), G = G(x, y), Ar = A1/r(xr , yr)
denote the logarithmic mean, identric mean, arithmetic mean, geometric mean and
r-order power mean, respectively. We find the best constant p,q > 0 such that the
inequalities

A1/(3p)p G1–1/(3p) < L < A1/(3q)q G1–1/(3q),

A2/(3p)p G1–2/(3p) < I < A2/(3q)q G1–2/(3q)

hold, respectively. From them some new inequalities for means are derived. Lastly, our
new lower bound for the logarithmic mean is compared with several known ones,
which shows that our results are superior to others.
MSC: Primary 26D07; 26E60; secondary 05A15; 15A18
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1 Introduction
The logarithmic and identric means of two positive real numbers x and y with x �= y are
defined by

L = L(x, y) =
x – y

lnx – ln y
and I = I(x, y) = e–

(
xx

yy

)/(x–y)

,

respectively. The power mean of order r of the positive real numbers x and y is defined
by

Ar = Ar(x, y) =
(
xr + yr



)/r

if r �=  and A = A(x, y) =
√
xy.

The main properties of these means are given in []. In particular, the function r �→
Ar(x, y) (x �= y) is continuous and strictly increasing on R. As special cases, the arithmetic
mean and geometric mean are A = A(x, y) = A(x, y) and G = G(x, y) = A(x, y), respec-
tively.
In the recent past, the logarithmic mean and the identric mean have been the subject of

intensive research. Ostle and Terwilliger [] and Karamata [] first proved that

G < L < A. (.)
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This result, or a part of it, has been rediscovered and reproved many times (see, e.g.,
[–]).
In  Lin [] obtained an important refinement of the above inequalities:

G < L < A/, (.)

and proved that the number / cannot be replaced by a smaller one. A sharpness of the
second inequality in (.) has been shown by Neuman []. The following inequality is due
to Carlson []:

L >
√
A/G. (.)

In [], the authors present a very nice double inequality, that is,

A/G/ < L <


A +



G. (.)

Using a new method, Wang and Wang [] proved that

L > A–p
p Gp (.)

holds for p = , /, /. Chen andWang [] pointed out this inequality is true for all real
numbers p. Only when p ∈ (, ), however, the inequality A–p

p Gp > G would be true. In
, another better lower bound for L was given by Zhu [], that is,

L >
(




A +



G
)/

G/ > A/
/G

/ >
(


A +



G

)/

G/ > A/G/. (.)

The following lower bound for L in terms of I and G is due to Alzer []:

L >
√
IG. (.)

Very recently, Yang [] showed that

L > A/
/G

/ >
√
IG > A/G/. (.)

For the identric mean I , Stolarsky [, ] and Pittenger [] presented lower and upper
bounds for I as follows:

G < L < I < A, (.)

A/ < I < Aln, (.)

and the constants / and ln are the best possible. Inequalities (.) were also rediscov-
ered by Yang []. The following result is due to Sándor []:

I >
A +G


> A/G/. (.)
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Other inequalities for L and I and their applications can be found in the literature [–
].
The aim of this paper is to find the best p,q ∈R such that the inequalities

A/(p)
p G–/(p) < L < A/(q)

q G–/(q), (.)

A/(p)
p G–/(p) < I < A/(q)

q G–/(q) (.)

hold.
It is easy to check that both the functions

p �→ A/(p)
p G–/(p), (.)

p �→ A/(p)
p G–/(p) (.)

are even on (–∞,∞), and therefore we assume that p,q >  in what follows.
Our main results are stated as follows.

Theorem  Let p,q > . Then inequalities (.) hold for all x, y >  with x �= y if and only
if p ≥ p = /

√
 and  < q ≤ /, and the function p �→ A/(p)

p G–/(p) is decreasing on
(,∞).

Theorem  Let p,q > . Then inequalities (.) hold for all x, y >  with x �= y if and only
if p ≥ / and  < q ≤ q =

√
/ = ., and the function p �→ A/(p)

p G–/(p) is de-
creasing on (,∞).

We will prove two theorems above by hyperbolic function theory. For this end, we need
the following lemma, which tells us an inequality for bivariate homogeneous means can
be equivalently changed into the form of hyperbolic functions.

Lemma  Let M(x, y) be a homogeneous mean of positive arguments x and y. Then

M(x, y) =
√
xyM

(
et , e–t

)
,

where t = 
 ln(x/y).

By symmetry, we assume that x > y > . Then we have

L
(
et , e–t

)
=
sinh t
t

, I
(
et , e–t

)
= e

t cosh t
sinh t –,

Ap
(
et , e–t

)
= cosh/p pt, G

(
et , e–t

)
= ,

where t = 
 ln(x/y) > . And then, due to Lemma , Theorem  and Theorem  can be

restated as equivalent ones, respectively.

Theorem ′ Let p, t > . Then the inequality

sinh t
t

> (coshpt)/(p
) (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/116
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holds for all t >  if and only if p ≥ p = /
√
 and the function p �→ (coshpt)/(p) is de-

creasing on (,∞). Inequality (.) is reversed if and only if  < p≤ /.

Theorem ′ Let p, t > . Then the inequality

e
t cosh t
sinh t – > (coshpt)/(p

) (.)

holds for all t >  if and only if p ≥ / and the function p �→ (coshpt)/(p) is decreasing
on (,∞). Inequality (.) is reversed if and only if  < p ≤ q =

√
/.

Therefore, we will prove Theorem ′ and Theorem ′ instead of Theorem  and Theo-
rem  in the sequel.

2 Proof of Theorem 1′

In order to prove Theorem ′, we first give the following lemmas.

Lemma  For t > , let the function U : (,∞) �→ (,∞) be defined by

U(p) = p– ln coshpt. (.)

Then U is decreasing on (,∞) with

lim
p→+

U(p) =


t, lim

p→∞U(p) = .

Proof Differentiation yields

pU ′(p) = – ln(coshpt) + pt
sinhpt
coshpt

:= V (p),

V ′(p) = –



t
cosh pt

(sinhpt – pt) < ,

which implies that V is decreasing on (,∞), and so V (p) < limp→V (p) = . Therefore,
U ′(p) < , that is to say, U is decreasing on (,∞). And, by L’Hospital’s rule, we have

lim
p→

U(p) = lim
p→


p

t sinpt
(coshpt)

=


t, lim

p→∞U(p) = lim
p→∞


p

t sinpt
(coshpt)

= ,

which proves the lemma. �

Remark  From Lemmas  and  it follows that the function p �→ (Ap/G)/p is decreasing
on (,∞), and

lim
p→

(Ap/G)/p =G exp

(


ln(x/y)

)
, lim

p→∞(Ap/G)/p = .

Since

A/(p)
p G–/(p) =

(
(Ap/G)/p

)/G, A/(p)
p G–/(p) =

(
(Ap/G)/p

)/G,

http://www.journalofinequalitiesandapplications.com/content/2013/1/116
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so are the functions defined by (.) and (.), and

lim
p→

A/(p)
p G–/(p) =Ge(ln(x/y))

/, lim
p→∞A/(p)

p G–/(p) =G, (.)

lim
p→

A/(p)
p G–/(p) =Ge(ln(x/y))

/, lim
p→∞A/(p)

p G–/(p) =G. (.)

Lemma  Let p >  and let f : (,∞) �→ (–∞,∞) be the function defined by

f (t) = ln
sinh t
t

–


p
ln coshpt. (.)

Then we have

lim
t→+

f (t)
t

=



(
p –




)
, (.)

lim
t→∞

f (t)
t

=

p

(
p –




)
. (.)

Proof Using L’Hospital’s rule gives (.). To obtain (.), we write f (t) as

f (t) = t
(
 –


p

–
ln t
t

)
+ ln

 – e–t


–


p

ln
 + e–pt


,

from which (.) easily follows.
This lemma is proved. �

Lemma  For p > , let f be defined by (.). Then f is increasing if p≥ /
√
 and decreas-

ing if  < p ≤ /.

Proof Differentiation yields

f ′(t) =
t

sinh t

(

t
cosh t –


t

sinh t
)
–


p coshpt

sinhpt

=
–p coshpt sinh t – t sinhpt sinh t + pt coshpt cosh t

pt coshpt sinh t

:=
f(t)

pt coshpt sinh t
, (.)

where

f(t) = –p coshpt sinh t – t sinhpt sinh t + pt coshpt cosh t.

Using ‘product into sum’ formula for hyperbolic functions gives

f(t) =
(


+


p
)
t cosh t(p – ) +



p sinh t(p – )

+
(


p –




)
t cosh t(p + ) –



p sinh t(p + ),

http://www.journalofinequalitiesandapplications.com/content/2013/1/116
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and expanding f(t) in power series gives

f(t) =
(


+


p
) ∞∑



(p – )n–tn–

(n – )!
+


p

∞∑


(p – )n–tn–

(n – )!

+
(


p –




) ∞∑


(p + )n–tn–

(n – )!
–


p

∞∑


tn–(p + )n–

(n – )!

:=
∞∑


u(p,n)an
(n – )!

(p + )n–tn–, (.)

where

an =
(
p – 
p + 

)n–

–
u(–p,n)
u(p,n)

,

u(p,n) = (p + )n +
(
p – p – 

)
.

It is easy to check that

u(p,n) = (p + )
(
n –  +

p + 
p + 

)
>  (.)

and

an+ =
(
p – 
p + 

)

an + v(n,p), (.)

where

v(n,p) =
(
p – 
p + 

) u(–p,n)
u(p,n)

–
u(–p,n + )
u(p,n + )

:=
p(n – )

(p + )u(p,n)u(p,n + )
w(n,p), (.)

here

w(n,p) = (n – )p – (n + ). (.)

Now we are ready to prove desired results.
(i)Wefirst prove that f is increasing if p≥ /

√
. To this end, by (.) in combinationwith

(.) and (.), it suffices to show that an ≥  for n ∈ N. We easily check that a = a = 
and

a =
p(p – )

(p + )(p + p + )
≥ . (.)

Assume that an >  for n≥ . From (.) it is easy to see that

w(n,p) ≥ w
(
n,

√


)
=


(n – ) > ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/116
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which together with (.) yields v(n,p) > , and from (.) it is derived that an+ > . By
mathematical induction, we conclude that an ≥  for n ∈N, which proves part one of this
lemma.
(ii) Next we show that f is decreasing if p ≤ /. Likewise, it needs to be shown that

an ≤  for n ∈N. As mentioned previously, a = a =  but

a =
p(p – )

(p + )(p + p + )
< .

Suppose that an <  for n≥ . We have

w(n,p) ≤ w
(
n,




)
= –



< ,

which leads to v(n,p) < , and from (.) we have an+ <  for n ≥ . By mathematical
induction, it is obtained that an ≤  for n ∈ N.
This completes the proof. �

Now we prove Theorem ′.

Proof of Theorem ′ It is clear that (.) (or its reverse inequality) is equivalent to f (t) > 
(or < ), where f (t) is defined by (.).
(i) We first show that f (t) >  for all t >  if and only if p ≥ /

√
. If f (t) >  for all t > ,

then by (.) and (.) we have

⎧⎨
⎩
limt→+

f (t)
t = 

 (p
 – 

 ) ≥ ,

limt→∞ f (t)
t = 

p (p –

 ) ≥ ,

which yields p ≥ /
√
.

Conversely, if p≥ /
√
, then by Lemma  f is increasing on (,∞), hence

f (t) > lim
t→+

f (t) = 

for all t > .
(ii) Next we prove that f (t) <  for all t >  if and only if p ≤ /. If f (t) <  for all t > ,

then by (.) and (.) we have

⎧⎨
⎩
limt→+

f (t)
t = 

 (p
 – 

 ) ≤ ,

limt→∞ f (t)
t = 

p (p –

 ) ≤ ,

which leads to  < p ≤ /.
Conversely, if  < p ≤ /, then from the monotonicity of f by Lemma  we conclude

that

f (t) < lim
t→+

f (t) = 

for all t > .

http://www.journalofinequalitiesandapplications.com/content/2013/1/116
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(iii) Lastly, from Lemma  we easily conclude that the function p �→ (coshpt)/(p) is
decreasing on (,∞).
Thus the proof is accomplished. �

3 Proof of Theorem 2′

The following lemmas are useful.

Lemma  Let p >  and let g : (,∞) �→ (–∞,∞) be the function defined by

g(t) =
(
t cosh t
sinh t

– 
)
–


p

ln(coshpt). (.)

Then we have

lim
t→+

g(t)
t

=



(
p –




)
, (.)

lim
t→∞

g(t)
t

=

p

(
p –




)
. (.)

Proof Since g(t) →  as t → +, using L’Hospital’s rule yields (.). To obtain (.), we
have to change g(t) as follows:

g(t) =
(
 –


p

)
t +

(
t

et – 
– 

)
–


p

ln
 + e–pt


, (.)

from which (.) follows.
Thus the lemma is proved. �

Lemma  For p > , let the function g be defined by (.). Then g is increasing if p ≥ /
and decreasing if  < p ≤ √

/.

Proof Differentiation yields

g ′(t) = –
g(t)

p coshpt sinh t
, (.)

where

g(t) =  sinhpt sinh t – p coshpt cosh t sinh t

+ pt coshpt cosh t – pt coshpt sinh t.

Using ‘product into sum’ formula for hyperbolic functions and expanding in power series
give

g(t) =
(


+


p
)
sinh t(p – ) +

(


–


p
)
sinh t(p + ) – sinhpt + pt coshpt

=
(


+


p
) ∞∑



tn–(p – )n–

(n – )!
–

(


p –




) ∞∑


tn–(p + )n–

(n – )!

http://www.journalofinequalitiesandapplications.com/content/2013/1/116
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–
∞∑


tn–pn–

(n – )!
+ p

∞∑


tn–pn–

(n – )!

:=
∞∑


bn
(n – )!

pn–tn–, (.)

where

bn =
(


+


p
)(

 –

p

)n–

–
(


p –




)(
 +


p

)n–

+ (n – ). (.)

We find that

bn+ =
(
 –


p

)

bn + h(n,p), (.)

where

h(n,p) = –
(p – )

p

(
 +


p

)n–

+
(p – )n + (p – p + )

p
.

We claim that

h(n,p) <  if p≥ /, (.)

h(n,p) >  if  < p ≤ √
/. (.)

Indeed, applying the binomial expansion gives

(
 +


p

)n–

≥  + (n – )

p
+
(n – )(n – )

!

(

p

)

.

Hence, if p ≥ /, then we get

h(n,p) < –
(p – )

p

(
 + (n – )


p
+
(n – )(n – )

!

(

p

))

+
(p – )n + (p – p + )

p

=

p

(n – )
(
(n – )

(


– p

)
–



)
< ,

that is, (.) holds. If  < p≤ √
/, then

h(n,p) > –
(p – )

p

(
 + (n – )


p
+
(n – )(n – )

!

(

p

))

+
(p – )n + (p – p + )

p

=

p

(n – )
(
(n – )

(


– p

)
–



)

http://www.journalofinequalitiesandapplications.com/content/2013/1/116
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≥ 
(

√


)

(n – )
(
(n – )

(


–

√



)
–



)

= (
√
 – )(n – )

(
n –

 +
√




)
> 

for n≥ , which in combination with

h(,p) = –

p

(p – )(p + ) > ,

h(,p) = –

p

(p – )
(
p + p + 

)
> ,

h(,p) = –

p

(p – )
(
p + p + 

)
> 

leads to (.).
Now we are in a position to prove our results.
(i) We first prove that g is increasing if p ≥ /. For this end, it is enough to show that

bn ≤  by (.) and (.). Indeed, we have b = b =  and b = –p–(p –) < . Suppose
that bn ≤  for n≥ . From (.) and (.) we have bn+ < , which proves part one of this
lemma by mathematical induction.
(ii) Next we prove that g is decreasing if  < p ≤ √

/. It suffices to prove that bn ≥ .
We have seen that b = b = , but b = –p–(p – ) ≥ . Using (.) and (.), we
conclude that bn+ ≥  if bn ≥  for n ≥ . By mathematical induction, part two of this
lemma is proved.
Thus the proof ends. �

Based on the above lemmas, Theorem ′ can be easily proved.

Proof of Theorem ′ It is clear that (.) (or its reverse inequality) is equivalent to g(t) > 
(or < ), where g(t) is defined by (.).
(i) We first prove that g(t) >  for all t >  if and only if p ≥ /. If g(t) >  for all t > ,

then by (.) and (.) we have
⎧⎨
⎩
limt→+

g(t)
t = 

 (p
 – 

 ) ≥ ,

limt→∞ g(t)
t = 

p (p –

 )≥ ,

which leads to p≥ /.
Conversely, if p≥ /, then by Lemma  we get

g(t) > lim
t→+

g(t) = 

for all t > .
(ii) Next we show that g(t) <  for all t >  if and only if  < p ≤ √

/. If g(t) <  for all
t > , then by (.) and (.) we obtain

⎧⎨
⎩
limt→+

g(t)
t = 

 (p
 – 

 ) ≤ ,

limt→∞ g(t)
t = 

p (p –

 )≤ .

Solving the inequalities yields  < p ≤ √
/.

http://www.journalofinequalitiesandapplications.com/content/2013/1/116
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Conversely, if  < p ≤ √
/, then by the monotonicity of g we have

g(t) < lim
t→+

g(t) = 

for all t > .
(iii) Lastly, due to Lemma , the function p �→ (coshpt)/(p) is clearly decreasing on

(,∞).
This proves the proof. �

4 Corollaries
Using Theorem  and (.), the following corollaries are immediate.

Corollary  We have

G < · · · < A/G/ < A/
/G

/ < A/
/G

/ < A/(p)
p G–/(p) < L < A/

< · · · <G exp

(



ln(x/y)
)

(.)

holds for x, y >  with x �= y, where the constants p = /
√
 and / are the best constants.

By Theorem  and (.), we obtain the following.

Corollary  We have

G < · · · < A/G/ < A/ < I < A/(q)
q G–/(q) < A/

/G
–/

< · · · <G exp

(



ln(x/y)
)

(.)

holds for x, y >  with x �= y, where / and q =
√
/ are the best constants.

Remark  Neuman [] has derived some bounds for certain differences of bivariate
means, one of which is as follows:

min(x, y)


ln(x/y) < L –G <
max(x, y)


ln(x/y). (.)

While (.) and (.) contain some new bounds for certain ratios of bivariate means, for
example,

 <
L
G

< exp

(



ln(x/y)
)
, (.)

 <
I
G

< exp

(



ln(x/y)
)
, (.)

where x, y >  with x �= y.
Making use of identity for means

ln
I
G

=
A
L
– 

http://www.journalofinequalitiesandapplications.com/content/2013/1/116
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given in [, ], inequality (.) can be changed as follows:

 <
A
L
<  +




ln(x/y). (.)

Employing Theorem , Theorem  and (.), we can prove an interesting chain of in-
equalities involving the logarithmic mean, identric mean, power mean and geometric
mean.

Corollary  Let p≥ /, /
√
≤ q ≤ √

/,  < r ≤ √
/. Then the inequalities

G < · · · < A/(p)
p G–/(p) <

√
IG < A/(q)

q G–/(q) < L < A/ < I/ < A/(r)
r G–/(r)

< · · · <G exp

(



ln(x/y)
)

(.)

hold for x, y >  with x �= y, where I/ = I(
√
x,√y).

Proof By Remark , we see that the function p �→ A/(p)
p G–/(p) is decreasing on (,∞),

and by (.) it is deduced that

G < · · · < A/(p)
p G–/(p), A/(r)

r G–/(r) < · · · <G exp

(



ln(x/y)
)

if p ≥ / and  < r ≤ √
/.

The second and third inequalities are equivalent to (.), which hold if and only if p ≥
/ and q ≤ √

/ by Theorem , respectively.
If /

√
≤ q ≤ √

/, then by Theorem  the fourth and fifth inequalities hold.
With x→ x/, y→ y/, r → r, by Theorem , we have

A/( √x, √y
)
< I(

√
x,

√
y) (.)

and for  < r ≤ √
/, that is,  < r ≤ √

/,

I(
√
x,

√
y) <

(
A/(r)(x/r , y/r))/((r))G–/((r))(

√
x,

√
y)

=
(
A/(r)
r G–/(r))/. (.)

Squaring both sides of (.) and (.) yields the sixth and seventh inequality, respectively.
The proof is finished. �

From Lemma  with (.) another known interesting inequality can be reobtained. It
should be noted that the second inequality in (.) first appeared in [] andwas reproved
by Neuman and Sándor [].

Corollary  For x, y >  with x �= y, we have

A/ < I < 
√
e–A/, (.)

where 
√
e– is the best constant.
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Proof From (.) it is obtained that

lim
t→∞ g(t) =



ln – 

if p = /. And since the function t �→ g(t) is increasing on (,∞) by Lemma , we have

 = lim
t→∞ g(t) < g(t) < lim

t→∞ g(t) =


ln – ,

that is,

(
cosh



t
)/

< e
t cosh t
sinh t – < 

√
e–

(
cosh



t
)/

, (.)

which is equivalent to (.).
Thus the proof is completed. �

5 Comparison of some lower bounds for logarithmic mean
As mentioned in the first section of this paper, there are many lower bounds for the loga-
rithmic mean L such as

G,
√
A/G, A/G/, A–p

p Gp,
(
(A + G)/

)/G/,

A/
/G

/,
√
IG,

√
A +G


G,

and so on, some of which have been proved to be comparable and others remain to be
compared further. As applications of ourmain results, we will discuss them in this section.
To this end, we first give a lemma.

Lemma  ([, Conclusion ]) The function r �→ Ar is strictly log-concave on [,∞).

Now we compare A/(p)
p G–/(p) with ((A + G)/)/G/.

Lemma  Let p > . Then the inequalities

A/(p)
p G–/(p) >

(
A + G



)/

G/ > A/(p)
p G–/(p) (.)

hold for all x, y >  with x �= y, where p = /
√
 and p = / cannot be improved.

Proof By Lemma , to prove (.), it suffices to show that


p

ln(coshpt) >


ln

 cosh t + 


>


p
ln(coshpt). (.)

For t > , we define

D(t) :=


p
ln(coshpt) –



ln

 cosh t + 


.

http://www.journalofinequalitiesandapplications.com/content/2013/1/116
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Differentiation and expanding in power series lead to

D′
(t) =

( sinh tp +  sinh tp cosh t – p cosh tp sinh t)
p(cosh tp)( cosh t + )

=
( – p) sinh t(p + ) +  sinh tp – ( + p) sinh t( – p)

p(cosh tp)( cosh t + )

=


p(cosh tp)( cosh t + )

∞∑


pn–vn
(n – )!

tn–,

where

vn = ( – p)
(
 +


p

)n–

– ( + p)
(

p
– 

)n–

+ .

We easily establish a recursive relation for the sequence (vn):

vn+ = vn
(

p
– 

)

+wn, (.)

where

wn =

p
( – p)

(
 +


p

)n–

–

p
( – p).

Clearly, if we prove that for all n ∈ N, vn ≥  if p = p = /
√
 and vn ≤  if p = p = /,

then inequalities (.) are valid.
Now we show that for all n ∈ N, vn ≥  if p = p = /

√
. In fact, it is easy to verify that

v = v = , v =  >  and due to ( – p) > ,

wn ≥ w =

p

( – p)
(
 +


p

)

–

p

( – p) =  > ,

which together with (.) yields vn+ > vn( 
p

– ) >  under the inductive assumption vn >
 for n≥ . By mathematical induction, it is acquired that vn ≥  for all n ∈N.
We next prove that for all n ∈N, vn ≤  if p = p = /. It is not difficult to get

vn =  – 
(



)n–

= 
(
 –

(



)n–)
≤ 

for all n ∈N.
Lastly, we prove p = /

√
 and p = / cannot be improved. Indeed, if D(t) >  for all

t > , then we have

lim
t→+

D(t)
t

= –



(
p – 

) ≥ ,

lim
t→+

D(t)
t

= –


p
(p – ) ≥ ,
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which yields  < p ≤ p = /
√
. On the other hand, by Lemma  the function p �→


p ln(coshpt) is decreasing on (,∞). Therefore, p = /

√
 is the largest constant such

that D(t) >  for all t > .
In the same way, we can prove p = / is the smallest constant such that D(t) <  for

all t > .
This completes the proof. �

Next let us compare
√

A+G
 G and A/

/A
–/
/ G/.

Lemma  For x, y >  with x �= y, we have

√
A +G


G > A/

/A
–/
/ G/. (.)

Proof Suppose that x > y >  and let x/y = t. Then inequality (.) can be equivalently
changed into

D(t) =
t + t + 


– t

(
t + 
t + 

)

> ,

where t > . Simplifying yields

D(t) =


(t + )
(t – )

(
t + t – t + t + 

)
> ,

which completes the proof. �

Using Lemmas -, we can easily prove the following.

Proposition  For x, y >  with x �= y and p =
√
/, p =

√
/ = ., we have

L > A/(p)
p G–/(p) >

(
A + G



)/

G/ > A/
/G

/

> A/
/G

/ > A/(p)
p G–/(p) >

√
IG >

√
A/G

>
√
A +G


G > A/

/A
–/
/ G/ > A/G/. (.)

Proof The first, second and third inequalities follow from Theorem  and Lemma . Since
/ < / < p =

√
/, by Theorem  the fourth and fifth ones follow. The sixth and

seventh ones are obtained from the second and third ones of (.).
By the known inequality A/ > (A+G)/ (see [, (.)]), we easily get the eighth one.
Lemma  shows that the ninth one holds.
The last one is equivalent to A/ > A/A/

/, which easily follows from Lemma .
This completes the proof. �

Lastly, we compare A/(p)
p G–/(p) with A–p

p Gp ( < p < ).

http://www.journalofinequalitiesandapplications.com/content/2013/1/116
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Proposition  Let p = /
√
 and  < p < . Then

A/(p)
p G–/(p) > A–p

p Gp (.)

holds for all x, y >  with x �= y if  – /(p) ≤ p < .While A/(p)
p G–/(p) and A–p

p Gp are
not comparable if  < p <  – /(p).

Proof (i) By a simple equivalent transformation, inequality (.) can be changed into

Ap > Ap(–p)
p Gpp–p+ := Aα

pA
β
 ,

where α = p( – p), β = pp – p + . If  – /(p) ≤ p < , then α ≥ , β >  with
α + β = . By Lemma , it is derived that

Aα
pA

β
 < Aαp = Ap(–p)p,

and using the basic inequality ( – p)p ≤ / for  < p <  and the monotonicity of the
function r �→ Ar , we get

Ap(–p)p ≤ Ap/ < Ap ,

which proves inequality (.).
(ii) We define

D(t) :=


p
ln(coshpt) –

 – p
p

ln coshpt.

By Lemma , to show that A/(p)
p G–/(p) and A–p

p Gp are not comparable if  < p <  –
/(p), we need to illustrate sgn(D(t)) is not a constant. In fact, utilizing L’Hospital’s rule,
we have

lim
t→+

D(t)
t

=


(p – /) +




> ,

lim
t→∞

D(t)
t

=


p
+ (p – ) < ,

which implies that there are numbers t > t >  such that D(t) >  when t ∈ (, t) and
D(t) <  when t ∈ (t,∞). Consequently, 

p
ln(coshpt) and –p

p ln coshpt are not com-
parable on (,∞) if  < p <  – /(p), which is the desired result.
Thus the proof is finished. �

Remark From the above two propositions, as far as the lower bounds for the logarithmic
mean are concerned, our new lower bound A/(p)

p G–/(p) seems to be superior to most
known ones.
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