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Abstract
The Radon transform plays an important role in applied mathematics. It is a
fundamental problem to reconstruct images from noisy observations of Radon data.
Compared with traditional methods, Colona, Easley and etc. apply shearlets to deal
with the inverse problem of the Radon transform and receive more effective
reconstruction. This paper extends their work to a class of linear operators, which
contains Radon, Bessel and Riesz fractional integration transforms as special examples.
MSC: 42C15; 42C40

Keywords: inverse problems; shearlets; approximation; Radon transform; noise

1 Introduction and preliminary
The Radon transform is an important tool in medical imaging. Although f ∈ L(R) can
be recovered analytically from the Radon data Rf (θ , t), the solution is unstable and those
data are corrupted by some noise in practice []. In order to recover the object f stably
and control the amplification of noise in the reconstruction, many methods of regulariza-
tion were introduced including the Fouriermethod, singular value decomposition, etc. [].
However, those methods produced a blurred version of the original one.
Curvelets and shearlets were then proposed, which proved to be efficient in dealing with

edges [–]. In , Candés and Donoho applied curvelets [] to the inverse problem

Y = Rf + εW , (.)

where the recovered function f is compactly supported and twice continuously differen-
tiable away from a smooth edge; W denotes a Wiener sheet; ε is a noisy level. Because
curvelets have complicated structure, Colonna, Easley, etc. used shearlets to deal with the
problem (.) in  and received an effective reconstructive algorithm [].
Note that the Bessel transform and the Riesz fractional integration transform arise in

many scientific areas ranging from physical chemistry to extragalactic astronomy. Then
this paper considers a more general problem,

Y = Kf + εW , (.)
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where K stands for a linear operator mapping the Hilbert space L(R) to another Hilbert
space Y and satisfies

(
K *Kf

)∧(ξ ) =
(
b + |ξ |)–α f̂ (ξ ) (.)

with b > , α >  (K * is the conjugate operator of K ). Here and in what follows, f̂ denotes
the Fourier transform of f . The next section shows that Radon, Bessel and Riesz fractional
integration transforms satisfy the condition (.).
The current paper is organized as follows. Section  presents three examples for (.)

and several lemmas. An approximation result is proved in the last section, which contains
Theorem . of [] as a special case.
At the end of this section, we introduce some basic knowledge of shearlets, which will be

used in our discussions. The Fourier transform of a function f ∈ L(R)∩L(R) is defined
by

f̂ (ξ ) =
∫
R

f (x)e–π ix·ξ dx.

The classical method extends that definition to L(R) functions.
There exist many different constructions for discrete shearlets. We introduce the con-

struction [] by taking two functions ψ,ψ of one variable such that ψ̂, ψ̂ ∈ C∞(R) with
their supports supp ψ̂ ⊂ [– 

 , –

 ]∪ [ 

 ,

 ], supp ψ̂ ⊂ [–, ] and

∑
j≥

∣∣ψ̂
(
–jω

)∣∣ = 
(

|ω| ≥ 


)
,

j–∑
l=–j

∣∣ψ̂
(
jω – l

)∣∣ = 
(|ω| ≤ 

)
.

Here, C∞(Rn) stands for infinitely many times differentiable functions on the Euclidean
space Rn. Then two shearlet functions ψ (), ψ () are defined by

ψ̂ ()(ξ ) := ψ̂(ξ)ψ̂

(
ξ

ξ

)
and ψ̂ ()(ξ ) := ψ̂(ξ)ψ̂

(
ξ

ξ

)

respectively.
To introduce discrete shearlets, we need two shear matrices

B =

(
 
 

)
, B =

(
 
 

)

and two dilation matrices

A =

(
 
 

)
, A =

(
 
 

)
.

Define discrete shearlets ψ
(d)
j,l,k(x) :=  

 jψ (d)(Bl
dA

j
dx – k) for j ≥ , –j ≤ l ≤ j – , k ∈ Z



and d = , . Then there exists ϕ̂ ∈ C∞
 (R) such that

{
ϕj,k(x),ψ

(d)
j,l,k(x), j ≥ j ≥ ,–j ≤ l ≤ j – ,k ∈ Z

,d = , 
}
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forms a Parseval frame of L(R), where ϕj,k(x) := jϕ(jx – k). More precisely, for f ∈
L(R),

f (x) =
∑
k∈Z

〈f ,ϕj,k〉ϕj,k(x) +
∑

d=

∑
j≥j

j–∑
l=–j

∑
k∈Z

〈
f ,ψ (d)

j,l,k
〉
ψ

(d)
j,l,k(x)

holds in L(R). It should be pointed out that ψ
(d)
j,l,k(x) are modified for l = –j and j – , as

seen in [].

2 Examples and lemmas
In this section, we provide three important examples of a linear operator K satisfying
(K *Kf )∧(ξ ) = (b + |ξ |)–α f̂ (ξ ) and present some lemmas which will be used in the next
section. To introduce the first one, define a subspace of L(R),

D
(
R

) := {
f ∈ L

(
R

), f is bounded} ⊆
{
f ∈ L

(
R

),∫
R

|ξ |–∣∣f̂ (ξ )∣∣ dξ < +∞
}

and a Hilbert space

L
(
[,π )×R

)
:=

{
f (θ , t),

∫ π



∫
R

∣∣f (θ , t)∣∣ dt dθ < +∞
}

with the inner product 〈f , g〉 := ∫ π


∫
R
f (θ , t)g(θ , t)dt dθ .

Example . Let Lθ ,t := {(x, y),x cos θ + y sin θ = t} ⊆R
 and ds(x, y) be the Euclideanmea-

sure on the line Lθ ,t . Then the classical Radon transform R:D(R)→ L([,π )×R) defined
by

Rf (θ , t) =
∫
Lθ ,t

f (x, y)ds(x, y)

satisfies (R*Rf )∧(ξ ) = |ξ |– f̂ (ξ ).

Proof By the definition of D(R),
∫
R |ξ |– f̂ (ξ )ĝ(ξ )dξ < +∞ for f , g ∈ D(R). It is easy to

see that
∫ π
 dθ

∫ +∞
 f̂ (ω cos θ ,ω sin θ )ĝ(ω cos θ ,ω sin θ )dω =

∫ π

 dθ
∫
R
f̂ (ω cos θ ,ω sin θ ) ×

ĝ(ω cos θ ,ω sin θ )dω. This with the Fourier slice theorem ([, ]) and the Plancherel for-
mula leads to

∫
R

|ξ |– f̂ (ξ )ĝ(ξ )dξ =
∫ π


dθ

∫ +∞


f̂ (ω cos θ ,ω sin θ )ĝ(ω cos θ ,ω sin θ )dω

=
∫ π


dθ

∫
R

(Rθ f )∧(ω)(Rθg)∧(ω)dω

=
∫ π


dθ

∫
R

Rf (θ , t)Rg(θ , t)dt = 〈Rf ,Rg〉,

where Rθ f (t) := Rf (θ , t). Moreover, 〈(R*Rf )∧, ĝ〉 = 〈R*Rf , g〉 = 〈Rf ,Rg〉 = 〈|ξ |– f̂ (ξ ), ĝ(ξ )〉 for
each g ∈D(R).
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Because D(R) is dense in L(R), one receives the desired conclusion (R*Rf )∧(ξ ) =
|ξ |– f̂ (ξ ). Here, R*Rf ∈ L(R) for f ∈ D(R). In fact, R*Rf = πIf by [], where I is the
Riesz fractional integration transform defined by

I(f )(x) := Cα

∫
R

f (x – y)
|y| dy

with some normalizing constant Cα []. We rewrite I(f )(x) =
∫
|y|≤r

f (x–y)
|y| dy +∫

|y|>r
f (x–y)

|y| dy =: J + J. Let h(y) = 
|y|B(,)(y), hr(y) =


r h(

y
r ), whereB(, ) stands for the unit

ball of R and A represents an indicator function on the set A. Then J =
∫
|y|≤r

f (x–y)
|y| dy =

r
∫
|y|≤r hr(y)f (x – y)dy ≤ rMf (x) by Theorem  of reference [, p.], where Mf is the

Hardy-Littlewood maximal function of f .
On the other hand, the Holder inequality implies

J ≤ ‖f ‖ p
p–

(∫
|y|>r


|y|p dy

) 
p

≤ r–p‖f ‖ p
p–

with p > . Take r = [Mf (x)]–


p– , one gets I(f )(x) ≤ [Mf (x)]
p–
p– ( + ‖f ‖ p

p–
) and ‖I(f )‖ ≤

( + ‖f ‖ p
p–

)‖Mf ‖
p–
p–
(p–)
p–

� ( + ‖f ‖ p
p–

)‖f ‖
p–
p–
(p–)
p–

< +∞, since f ∈ L
p

p– (R)∩L
(p–)
p– (R) due to

the assumption f ∈D(R) and (p–)
p– > , p

p– > .
In order to introduce the next example, we use f ∗ g to denote the convolution of f

and g . �

Example . The Bessel operator Bα : L(R) → L(R) defined by Bαf = bα ∗ f with
b̂α(ξ ) = ( + |ξ |)– α

 and α >  satisfies

(
B*

αBαf
)∧(ξ ) =

(
 + |ξ |)–α f̂ (ξ ).

Proof It is known that bα(x) ∈ L(R) for α >  []. Hence, (Bαf )∧(ξ ) = b̂α(ξ )f̂ (ξ ) = ( +
|ξ |)– α

 f̂ (ξ ). For f , g ∈ L(R), 〈(B*
αBαf )∧, ĝ〉 = 〈B*

αBαf , g〉 = 〈Bαf ,Bαg〉 = 〈(Bαf )∧, (Bαg)∧〉 =
〈( + |ξ |)–α f̂ (ξ ), ĝ(ξ )〉. Thus,

(
B*

αBαf
)∧(ξ ) =

(
 + |ξ |)–α f̂ (ξ ). �

To introduce the Riesz fractional integration transform, we define

D =
{
f ∈ L

(
R

), f has compact support
} ⊆ L

(
R

) ∩ L
(
R

).
Then D ⊆ Ls(R) ( ≤ s ≤ ). For f ∈ D and  < α < , the Riesz fractional integration
transform is defined by

Iα(f )(x) := Cα

∫
R

f (y)
|x – y|–α

dy ∈ L
(
R

), (.)

where Cα is the normalizing constant []. In order to show (I*αIαf )∧(ξ ) = |ξ |–α f̂ (ξ ) for
f ∈D and  < α < /, we need a lemma ([], Lemma .).

http://www.journalofinequalitiesandapplications.com/content/2013/1/11
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Lemma . Let S(R) be the Schwartz space and 
 = {ψ ∈ S(R), ∂β

∂xβ ψ() = ,β ∈ Z
+ ×

Z
+} with Z

+ being the non-negative integer set. Define  := {ϕ = ψ̂ ,ψ ∈ 
}. Then with
α > ,

(Iαf )∧(ξ ) = |ξ |–α f̂ (ξ )

holds for each f ∈ .

Example . The transform Iα defined by (.) satisfies (I*αIαf )∧(ξ ) = |ξ |–α f̂ (ξ ) for f ∈ D
and  < α < 

 .

Proof As proved in Examples ., ., it is sufficient to show that for f ∈D,

(Iαf )∧(ξ ) = |ξ |–α f̂ (ξ ). (.)

One proves (.) firstly for f ∈ C∞
 (R). Take μ(r) ∈ C∞([,∞)) with  ≤ μ(r) ≤  and

μ(r) =

⎧⎨
⎩, r ≥ ;

,  ≤ r ≤ .

Define ψN (ξ ) := μ(N |ξ |)f̂ (ξ ). Then ψN (ξ ) ∈ 
 and fN (x) := ψ̌N (x) = ψ̂N (–x) ∈ . By
Lemma .,

(IαfN )∧(ξ ) = |ξ |–α f̂N (ξ ). (.)

Let k(x) be the inverse Fourier transform of the function  –μ(|x|) and kN (x) := 
N k( x

N ).
Then

∫
R k(x)dx =  and fN (x) = f (x) – kN ∗ f (x). Moreover, the classical approximation

theorem [] tells

lim
N→∞‖fN – f ‖p = 

for p > .On the other hand, ‖IαfN –Iαf ‖ = ‖Iα(fN – f )‖ ≤ C‖fN – f ‖ 
+α

due toTheorem
[, p.]. Hence, limN→∞ ‖(IαfN )∧(ξ ) – (Iαf )∧(ξ )‖ = limN→∞ ‖IαfN – Iαf ‖ = . That is,

lim
N→∞(IαfN )∧(ξ ) = (Iαf )∧(ξ ) (.)

in L(R) sense. Note that ‖|ξ |–α f̂N (ξ ) – |ξ |–α f̂ (ξ )‖ =
∫
R |ξ |–α|f̂ (ξ )|[ – μ(N |ξ |)] dξ ;

|ξ |–α|f̂ (ξ )| ∈ L(R) with  < α < 
 and limN→∞[ –μ(N |ξ |)] = . Then

lim
N→∞

∥∥|ξ |–α f̂N (ξ ) – |ξ |–α f̂ (ξ )
∥∥
 =  (.)

thanks to the Lebesgue dominated convergence theorem, which means limN→∞ |ξ |–α ×
f̂N (ξ ) = |ξ |–α f̂ (ξ ) in L(R) sense. This with (.), (.) shows (.) for f ∈ C∞

 (R).
In order to show (.) for f ∈ D, one can find g ∈ C∞

 (R) such that
∫
R g(x)dx =  and

limN→∞ ‖f ∗ gN – f ‖p =  (p ≥ ) by Theorem .. in [], where gN (·) = Ng(N ·). Since

http://www.journalofinequalitiesandapplications.com/content/2013/1/11
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f ∗ gN ∈ C∞
 (R), the above proved fact says

(
Iα(f ∗ gN )

)∧(ξ ) = |ξ |–α(f ∗ gN )∧(ξ ). (.)

The same arguments as (.) and (.) show that limN→∞(Iα(f ∗ gN ))∧(ξ ) = (Iαf )∧(ξ ) and
limN→∞ |ξ |–α(f ∗ gN )∧(ξ ) = |ξ |–α f̂ (ξ ). Hence,

(Iαf )∧(ξ ) = |ξ |–α f̂ (ξ ).

This completes the proof of (.) for f ∈D. �

Next, we prove a lemma which will be used in the next section. For convenience, here
and in what follows, we define M =N ∪M with N = Z

, M := {μ = (j, l,k,d) : j ≥ j, –j ≤
l ≤ j – ,k ∈ Z

,d = , }. Then the shearlet system (introduced in Section ) can be rep-
resented as {sμ : μ ∈M}, where sμ = ψμ = ψ

(d)
j,l,k if μ ∈M, and sμ = ϕμ = ϕj,k if μ ∈N .

Lemma . Let K satisfy (K *Kf )∧(ξ ) = (b + |ξ |)–α f̂ (ξ ) and {sμ,μ ∈ M} be shearlets in-
troduced in the first section. Define σ̂μ(ξ ) = (b + |ξ |)α ŝμ(ξ ) and Uμ := –αjKσμ. Then
‖Uμ‖ ≤ C and for μ ∈M,

〈f , sμ〉 = αj〈Kf ,Uμ〉.

Proof By the Plancherel formula and the assumption σ̂μ(ξ ) = (b + |ξ |)α ŝμ(ξ ), one knows
that 〈f , sμ〉 = 〈f̂ , ŝμ〉 = 〈f̂ (ξ ), (b + |ξ |)–ασ̂μ(ξ )〉. Moreover,

〈f , sμ〉 = 〈
f̂ (ξ ),

(
K *Kσμ

)∧(ξ )
〉
=

〈
f ,K *Kσμ

〉
= 〈Kf ,Kσμ〉 = αj〈Kf ,Uμ〉

due to (K *Kf )∧(ξ ) = (b + |ξ |)–α f̂ (ξ ) and Uμ := –αjKσμ.
Next, one shows ‖Uμ‖ ≤ C. Note that ‖Kσμ‖ = 〈Kσμ,Kσμ〉 = 〈K *Kσμ,σμ〉 =

〈(K *Kσμ)∧, σ̂μ〉, (K *Kσμ)∧ = (b+ |ξ |)–ασ̂μ(ξ ) and σ̂μ(ξ ) = (b+ |ξ |)α ŝμ(ξ ). Then ‖Kσμ‖ =
〈ŝμ(ξ ), (b + |ξ |)α ŝμ(ξ )〉 and

‖Uμ‖ = –αj‖Kσμ‖ = –αj
∫
R

(
b + |ξ |)α∣∣ŝμ(ξ )∣∣ dξ .

Because supp ŝμ ⊆ Cj := [–j–, j–] \ [–j–, j–], one receives ‖Uμ‖ = –αj ∫
Cj
(b +

|ξ |)α|ŝμ(ξ )| dξ ≤ C. This completes the proof of Lemma .. �

At the end of this section, we introduce two theorems which are important for our dis-
cussions. As in [], we use STAR(A) to denote all sets B ⊆ [, ] with C boundary ∂B
given by

β(θ ) =

(
ρ(θ ) cos θ
ρ(θ ) sin θ

)

in a polar coordinate system. Here, ρ(θ ) ≤ ρ <  and |ρ ′′(θ )| ≤ A. Define ε(A) := {f =
f + fXB,B ∈ STAR(A)}, where f, f ∈ C

([, ]) are compactly supported on [, ]. Let

http://www.journalofinequalitiesandapplications.com/content/2013/1/11
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cμ := 〈f , sμ〉,Mj := {(j, l,k,d), |k| ≤ j+, –j ≤ l ≤ j – ,d = , } and

R(j, ε) =
{
μ ∈Mj : |cμ| > ε

}
.

Then with �R(j, ε) standing for the cardinality of R(j, ε), the following conclusion holds [].

Theorem . For f ∈ ε(A), �R(j, ε) ≤ Cε–

 and

∑
μ∈Mj

|cμ| ≤ C–j.

Theorem . [] Let X ∼N(u, ) and t =
√
 log(η–) with  < η ≤ 

 . Then

E
∣∣Ts(X, t) – u

∣∣ = [
 log

(
η–) + 

](
η +min

{
u, 

})
,

where N(u, ) denotes the normal distribution with mean u and variance ,while Ts(y, t) :=
sgn(y)(|y| – t)+ is the soft thresholding function.

3 Main theorem
In this section, we give an approximation result, which extends the result [, Theorem .]
from the Radon transform to a family of linear operators. To do that, we introduce a set
N (ε) of significant shearlet coefficients as follows. Let

s =



 + α

log
(
ε–

)
, s =



 + α

log
(
ε–

)
,

and j = �s�, j = �s�. DefineN (ε) :=M(ε)∪N(ε) ⊆M, where

N(ε) =
{
μ = k ∈ Z

 : |k| ≤ j+
}
;

M(ε) =
{
μ = (j, l,k,d) : j ≤ j ≤ j, –j ≤ l ≤ j – , |k| ≤ j+,d = , 

}
.

Consider the model Y = Kf + εW with (K *Kf )∧(ξ ) = (b + |ξ |)–α f̂ (ξ ). Lemma . tells
that yμ := αj〈Y ,Uμ〉 = 〈f , sμ〉 + εαjnμ, where nμ is Gaussian noise with zero mean and
bounded variance σ 

μ = ‖Uμ‖ ≤ C []. Let cμ = 〈f , sμ〉 and f̃ =
∑

μ∈N (ε) c̃μsμ with

c̃μ =

⎧⎨
⎩Ts(yμ, ε

√
 log(�N (ε))αjσμ), μ ∈N (ε);

, otherwise,

where Ts(y, t) is the soft thresholding function. Then the following result holds.

Theorem . Let f ∈ ε(A) be the solution to Y = Kf + εW with (K *Kf )∧(ξ ) = (b +
|ξ |)–α f̂ (ξ ) and f̃ be defined as above. Then

sup
f∈ε(A)

E‖f̃ – f ‖ ≤ C log
(
ε–

)
ε



 +α (ε → ).

Here and in what follows, E stands for the expectation operator.

http://www.journalofinequalitiesandapplications.com/content/2013/1/11
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Proof Since {sμ,μ ∈M} is a Parseval frame, f =
∑

μ∈M cμsμ and f̃ =
∑

μ∈N (ε) c̃μsμ, f̃ – f =∑
μ∈M(c̃μ – cμ)sμ. Moreover, ‖f̃ – f ‖ = ∑

μ∈M |c̃μ – cμ| and

E‖f̃ – f ‖ =
∑

μ∈N (ε)

E|c̃μ – cμ| +
∑

μ∈N (ε)C
|cμ|. (.)

In order to estimate
∑

μ∈N(ε)C |cμ|, one observes∑
μ∈Mj

|cμ| ≤ C–j due toTheorem..

Then
∑

j>j
∑

μ∈Mj
|cμ| ≤ C

∑
j>j 

–j ≤ C–j . By j � ε
– 


 +α ,

∑
j>j

∑
μ∈Mj

|cμ| � ε



 +α . (.)

(Here and in what follows, A� B denotes A≤ CB for some constant C > ).
Next, one considers cμ for j ≤ j ≤ j and |k| ≥ j+. Note that |ψ (d)(x)| ≤ Cm( + |x|)–m

(d = , ,m = , , . . .). Then |ψ (d)
j,l,k(x)| ≤ Cm


 j( + |Bl

dA
j
dx– k|)–m. Since f ∈ ε(A), supp f ⊂

Q := [, ] and

∣∣〈f ,ψ (d)
j,l,k

〉∣∣ ≤ Cm

 j‖f ‖∞

∫
Q

(
 +

∣∣Bl
dA

j
dx – k

∣∣)–m dx.

On the other hand, |Bl
dA

j
dx| ≤ ‖Bl

dA
j
d‖|x| ≤ j|x| ≤ √

j for x ∈ Q. Hence, (+ |Bl
dA

j
dx–

k|)–m ≤ ( + |k| – |Bl
dA

j
dx|)–m ≤ (|k| –√

j)–m for |k| ≥ j+. Moreover,
∑

|k|≥j+ |cμ| ≤
j

∑
|k|≥j+ (|k| –

√
j)–m = j

∑∞
n=

∑
j+n≤|k|≤j+n+ –mj(n –

√
)–m � j–mj ×∑∞

n= (j+n+)(n –
√
)–m � j–j(m–), since m can be chosen big enough. There-

fore,

j∑
j=j

j–∑
l=–j

∑
|k|≥j+

|cμ| ≤ Cm

∞∑
j=j

j–mj � –j ≤ –j � ε



 +α (.)

due to the choice of j. The similar (even simpler) arguments show
∑

|k|≥j+ |〈f ,ϕj,k〉| �
ε



 +α with ϕj,k(x) = jϕ(jx – k). This with (.) and (.) leads to

∑
μ∈N (ε)C

|cμ| � ε



 +α . (.)

Finally, one estimates
∑

μ∈N (ε) E|c̃μ – cμ|. By the definition of yμ, ε––αjσ –
μ yμ ∼

N(ε––αjσ –
μ cμ, ). Applying Theorem . with η– = �N (ε), one obtains that

E
∣∣Ts

[
ε––αjσ –

μ yμ,
√
 log

(
�N (ε)

)]
– ε––αjσ –

μ cμ
∣∣

=
[
 log

(
�N (ε)

)
+ 

][ 
�N (ε)

+min
{
ε––αjσ –

μ cμ, 
}]

.

http://www.journalofinequalitiesandapplications.com/content/2013/1/11
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Hence, E|Ts[yμ, εαjσμ

√
 log(�N (ε))] – cμ| � [ log(�N (ε)) + ][ε αjσ

μ

�N (ε) + min{cμ,
εαjσ 

μ}]. By c̃μ = Ts[yμ, εαjσμ

√
 log(�N (ε))] for μ ∈N (ε), one knows that

E
∑

μ∈N (ε)

|c̃μ – cμ| � [
 log

(
�N (ε)

)
+ 

]

×
[
ε

∑
μ∈N (ε)

αjσ 
μ

�N (ε)
+

∑
μ∈N (ε)

min
{
cμ, ε

αjσ 
μ

}]
. (.)

Note that N (ε) ∩ Mj ⊂ {(j, l,k,d) : |k| ≤ j+, |l| ≤ j}. Then �N (ε) ≤ C
∑

j≤j 
j �

j � ε
– 


 +α , and log(�N (ε))� 


 +α

log(ε–)� log(ε–). Since {σμ : μ ∈ M} is uniformly

bounded, [ log(�N (ε)) + ]ε
∑

μ∈N (ε)
αjσ

μ

�N (ε) � log(ε–)εαj . This with the choice of j

shows that

[
 log

(
�N (ε)

)
+ 

]
ε

∑
μ∈N (ε)

αjσ 
μ

�N (ε)
� log

(
ε–

)
ε



 +α � log

(
ε–

)
ε



 +α . (.)

It remains to estimate [ log(�N (ε)) + ]
∑

μ∈N (ε)min{cμ, εαjσ 
μ}. Clearly,

∑
μ∈N (ε)

min
{
cμ, ε

αj} = ∑
{μ∈N (ε):|cμ|≥αjε}

αjε +
∑

{μ∈N (ε):|cμ|<αjε}
|cμ|. (.)

By Theorem .,
∑

{μ∈Mj :|cμ|≥αjε} αjε � (αjε)– 
 αjε �  

 αjε

 . Hence,

∑
{μ∈N (ε):|cμ|≥αjε}

αjε =
j∑
j=j

∑
{μ∈Mj :|cμ|≥αjε}

αjε � 

 αjε


 . (.)

On the other hand,
∑

{μ∈N (ε):|cμ|<αjε} |cμ| = ∑j
j=j

∑∞
n=

∑
{αj–n–ε<|cμ|≤αj–nε} |cμ|. Ac-

cording to Theorem ., �R(j, αj–n–ε)� – 
 (αj–n–)ε–


 and

∑
{αj–n–ε<|cμ|≤αj–nε}

|cμ| � –

 (αj–n–)ε–


 (αj–n)ε � 


 αj–


 n


 ε


 .

Therefore,

∑
{μ∈N (ε):|cμ|<αjε}

|cμ| ≤
j∑
j=j

∞∑
n=



 αj–


 nε


 ≤ 


 αjε


 .

Combining this with (.) and (.), one knows that
∑

μ∈N (ε)min{cμ, εαj} �  
 αjε


 .

Furthermore,

∑
μ∈N (ε)

min
{
cμ, ε

αj}� ε


α+ 

 (.)
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thanks to j � ε
– 
α+ 

 . Now, it follows from (.), (.) and (.) that

∑
μ∈N (ε)

E|c̃μ – cμ| � log
(
ε–

)
ε


α+ 

 .

This with (.) and (.) leads to the desired conclusion supf∈ε(A) E‖f̃ – f ‖ ≤ C log(ε–)×
ε



 +α . The proof is completed. �
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