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Abstract
We first introduce (λ,μ)-fuzzy ideals and (λ,μ)-fuzzy interior ideals of an ordered
Γ -semigroup. Then we prove that in regular and in intra-regular ordered semigroups
the (λ,μ)-fuzzy ideals and the (λ,μ)-fuzzy interior ideals coincide. Lastly, we
introduce (λ,μ)-fuzzy simple ordered Γ -semigroup and characterize the simple
ordered Γ -semigroups in terms of (λ,μ)-fuzzy interior ideals.
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1 Introduction and preliminaries
The formal study of semigroups began in the early twentieth century. Semigroups are im-
portant inmany areas ofmathematics, for example, coding and language theory, automata
theory, combinatorics and mathematical analysis.

Γ -semigroups were first defined by Sen and Saha [] as a generalization of semigroups
and studied by many researchers [–].
The concept of fuzzy sets was first introduced by Zadeh [] in , and then the fuzzy

sets have been used in the reconsideration of classical mathematics. Recently, Yuan []
introduced the concept of a fuzzy subfield with thresholds. A fuzzy subfield with thresh-
olds λ and μ is also called a (λ,μ)-fuzzy subfield. Yao continued to research (λ,μ)-fuzzy
normal subfields, (λ,μ)-fuzzy quotient subfields, (λ,μ)-fuzzy subrings and (λ,μ)-fuzzy
ideals in [–].
In this paper, we study (λ,μ)-fuzzy ideals in ordered Γ -semigroups. This can be seen as

an application of [] and as a generalization of [, ].
Let S = {x, y, z, . . .} andΓ = {α,β ,γ , . . .} be twonon-empty sets. An orderedΓ -semigroup

SΓ = (S,Γ ,≤) is a poset (S,≤), and there is amapping S×Γ ×S → S (images to be denoted
by aαb) such that, for all x, y, z ∈ S, α,β ,γ ∈ Γ , we have
() (xβy)γ z = xβ(yγ z);
() x ≤ y⇒

{
xαz ≤ yαz,
zαx ≤ zαy.

If (S,Γ ,≤) is an ordered Γ -semigroup andA is a subset of S, we denote by (A] the subset
of S defined as follows:

(A] = {t ∈ S|t ≤ a for some a ∈ A}.
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Given an ordered Γ -semigroup S, a fuzzy subset of S (or a fuzzy set in S) is an arbitrary
mapping f : S → [, ], where [, ] is the usual closed interval of real numbers. For any
t ∈ [, ], ft is defined by ft = {x ∈ S|f (x) ≥ t}.
For each subset A of S, the characteristic function fA is a fuzzy subset of S defined by

fA(x) =

⎧⎨
⎩
 if x ∈ A,

 if x /∈ A.

In the following, we will use S, SΓ or (S,Γ ,≤) to denote an ordered Γ -semigroup. In the
rest of this paper, we will always assume that ≤ λ < μ ≤ .

2 Intuitionistic (λ,μ)-fuzzy Γ -ideals
In what follows, we will use S to denote a Γ -semigroup unless otherwise specified.

Definition  For an IFS A = (fA, gA) in S, consider the following axioms:

(Γ S) fA(xγ y)∨ λ ≥ fA(x)∧ fA(y)∧ μ,
(Γ S) gA(xγ y)∧ μ ≤ fA(x)∨ fA(y)∨ λ

for all x, y ∈ S and γ ∈ Γ . Then A = (fA, gA) is called a first (resp. second) intuitionistic
(λ,μ)-fuzzy Γ -subsemigroup (briefly (λ,μ)-IFΓ S (resp. (λ,μ)-IFΓ S)) of S if it satisfies
(Γ S) (resp. Γ S).
A = (fA, gA) is called an intuitionistic (λ,μ)-fuzzy Γ -subsemigroup (briefly (λ,μ)-IFΓ S)

of S if it is both a first and a second intuitionistic fuzzy Γ -subsemigroup.

Theorem  If U is a Γ -subsemigroup of S, then Ũ = (χU , χ̃U ) is a (λ,μ)-IFΓ S of S.

Proof Let x, y ∈ S and γ ∈ Γ .
() If x, y ∈U , then xγ y ∈ U from the hypothesis. Thus

χU (xγ y)∨ λ = ∨ λ =  ≥ χU (x)∧ χU (y)∧ μ

and

χ̃U (xγ y)∧ μ =
(
 – χU (xγ y)

) ∧ μ = ( – )∧ μ =  ≤ χ̃U (x)∨ χ̃U (y)∨ λ.

() If x /∈U or y /∈U , then χU (x) =  or χU (y) = . Thus

χU (xγ y)∨ λ ≥  = χU (x)∧ χU (y)∧ μ

and

χ̃U (xγ y)∧ μ ≤  = χ̃U (x)∨ χ̃U (y)∨ λ.

And we complete the proof. �

Theorem  Let U be a non-empty subset of S. If Ũ = (χU , χ̃U ) is a (λ,μ)-IFΓ S or (λ,μ)-
IFΓ S of S, then U is a Γ -subsemigroup of S.
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Proof () Suppose that Ũ = (χU , χ̃U ) is a (λ,μ)-IFΓ S of S. For any u, v ∈U and γ ∈ Γ , we
need to show that uγ v ∈U . From (Γ S), we know that

χU (uγ v)∨ λ ≥ χU (u)∧ χU (v)∧ μ = ∧ ∧ μ = μ.

Notice that λ < μ, thus χU (uγ v)≥ μ > .
And also because U is a crisp set of S, then we conclude that χU (uγ v) = ; that is,

uγ v ∈U . Thus U is a Γ -subsemigroup of S.
() Now assume that Ũ = (χU , χ̃U ) is a (λ,μ)-IFΓ S of S. For any u, v ∈U and γ ∈ Γ , we

also need to show that uγ v ∈U . It follows from (Γ S) that

χ̃U (xγ y)∧ μ ≤ χ̃U (x)∨ χ̃U (y)∨ λ = ∨ ∨ λ = λ.

Notice that λ < μ, thus χ̃U (xγ y)≤ λ.
And also because U is a crisp set of S, then we conclude that χ̃U (xγ y) = , i.e.,

χU (uγ v) = . That is, uγ v ∈U . Thus U is a Γ -subsemigroup of S. �

Definition  For an IFS A = (fA, gA) in S, consider the following axioms:

(LΓ I) fA(xγ y)∨ λ ≥ fA(y)∧ μ,
(LΓ I) gA(xγ y)∧ μ ≤ gA(y)∨ λ

for all x, y ∈ S and γ ∈ Γ . Then A = (fA, gA) is called a first (resp. second) intuitionis-
tic (λ,μ)-fuzzy left Γ -ideal (briefly (λ,μ)-IFLΓ I (resp. (λ,μ)-IFLΓ I)) of S if it satisfies
(LΓ I) (resp. (LΓ I)).
A = (fA, gA) is called an intuitionistic (λ,μ)-fuzzy left Γ -ideal (briefly (λ,μ)-IFLΓ I) of S

if it is both a first and a second intuitionistic (λ,μ)-fuzzy left Γ -ideal.

Definition  For an IFS A = (fA, gA) in S, consider the following axioms:

(RΓ I) fA(xγ y)∨ λ ≥ fA(x)∧ μ,
(RΓ I) gA(xγ y)∧ μ ≤ gA(x)∨ λ

for all x, y ∈ S and γ ∈ Γ . Then A = (fA, gA) is called a first (resp. second) intuitionistic
(λ,μ)-fuzzy right Γ -ideal (briefly (λ,μ)-IFRΓ I (resp. (λ,μ)-IFRΓ I)) of S if it satisfies
(RΓ I) (resp. (RΓ I)).
A = (fA, gA) is called an intuitionistic (λ,μ)-fuzzy right Γ -ideal (briefly (λ,μ)-IFRΓ I) of

S if it is both a first and a second intuitionistic (λ,μ)-fuzzy right Γ -ideal.

Definition  For an IFS A = (fA, gA) in S, it is called an intuitionistic (λ,μ)-fuzzy Γ -ideal
(briefly (λ,μ)-IFΓ I) of S if it is both an intuitionistic fuzzy left and an intuitionistic fuzzy
right Γ -ideal.

Theorem  If A = (fA, gA) is a (λ,μ)-IFLΓ I of S. U is a left-zero Γ -subsemigroup of S. For
any x, y ∈U , one of the following must hold:
() fA(x) = fA(y);
() fA(x) 	= fA(y) ⇒ (fA(x)∨ fA(y) ≤ λ, or fA(x)∧ fA(y) ≥ μ).

http://www.journalofinequalitiesandapplications.com/content/2013/1/107
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Proof Let x, y ∈U . Since U is left-zero, we have that xγ y = x and yγ x = y for all γ ∈ Γ .
From the hypothesis, we have that

fA(x)∨ λ = fA(xγ y)∨ λ ≥ fA(y)∧ μ

and

fA(y)∨ λ = fA(yγ x)∨ λ ≥ fA(x)∧ μ.

Obviously, if fA(x) = fA(y), then the previous two inequalities hold.
Suppose fA(x) < fA(y). If fA(x)∨ fA(y) > λ and fA(x)∧ fA(y) < μ, four cases are possible:
() If fA(x) > λ and fA(x) < μ, then fA(x)∨ λ = fA(x) < fA(y). Note that fA(x) < μ, we

obtain that fA(x) < fA(y)∧ μ; that is, fA(x)∨ λ < fA(y)∧ μ. This is a contradiction to
the previous proposition.

() If fA(x) > λ and fA(y) < μ, then fA(x)∨ λ = fA(x) < fA(y) = fA(y)∧ μ. This is a
contradiction to the previous proposition.

() If fA(y) > λ and fA(x) < μ, then from fA(x) < μ and fA(x) < fA(y), we obtain that
fA(x) < fA(y)∧ μ. From λ < fA(y) and λ < μ, we conclude that λ < fA(y)∧ μ. So,
fA(x)∨ λ < fA(y)∧ μ. This is a contradiction to the previous proposition.

() If fA(y) > λ and fA(y) < μ, then from FA(X) < fA(y) and λ < fA(y), we obtain
FA(X)∨ λ < fA(y) = fA(y)∧ μ. This is a contradiction to the previous proposition.

If fA(y) < fA(x), we can prove the results dually.
Thus if fA(y) 	= fA(x), then fA(x)∨ fA(y) ≤ λ or fA(x)∧ fA(y) ≥ μ. �

Similarly, we can prove the following three theorems.

Theorem  If A = (fA, gA) is a (λ,μ)-IFRΓ I of S. U is a right-zero Γ -subsemigroup of S.
For any x, y ∈U , one of the following must hold:
() fA(x) = fA(y);
() fA(x) 	= fA(y) ⇒ (fA(x)∨ fA(y) ≤ λ, or fA(x)∧ fA(y) ≥ μ).

Theorem  If A = (fA, gA) is a (λ,μ)-IFLΓ I of S. U is a left-zero Γ -subsemigroup of S. For
any x, y ∈U , one of the following must hold:
() gA(x) = gA(y);
() gA(x) 	= gA(y) ⇒ (gA(x)∨ gA(y) ≤ λ, or gA(x)∧ gA(y) ≥ μ).

Theorem  If A = (fA, gA) is a (λ,μ)-IFRΓ I of S. U is a right-zero Γ -subsemigroup of S.
For any x, y ∈U , one of the following must hold:
() gA(x) = gA(y);
() gA(x) 	= gA(y) ⇒ (gA(x)∨ gA(y) ≤ λ, or gA(x)∧ gA(y) ≥ μ).

Lemma  If U is a left Γ -ideal of S, then Ũ = (χU , χ̃U ) is a (λ,μ)-IFLΓ I of S.

Proof Let x, y ∈ S and γ ∈ Γ .
() If y ∈U , then xγ y ∈ U since U is a left Γ -ideal of S. It follows that

χU (xγ y)∨ λ = ∨ λ =  ≥ χU (y)∧ μ

http://www.journalofinequalitiesandapplications.com/content/2013/1/107
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and

χ̃U (xγ y)∧ μ = ∧ μ = ≤ χ̃U (y)∨ λ.

() If y /∈U , then χU (y) = . It follows that

χU (xγ y)∨ λ ≥  = χU (y)∧ μ

and

χ̃U (xγ y)∧ μ ≤  = χ̃U (y)∨ λ.

Consequently, Ũ = (χU , χ̃U ) is a (λ,μ)-IFLΓ I of S. �

Theorem  Let S be regular. If ES is a left-zero Γ -subsemigroup of S, then, for all e, e′ ∈ ES ,
we have

χL[e]
(
e′) = χL[e](e)

or

χL[e]
(
e′) ∨ χL[e](e) ≤ λ,

or

χL[e]
(
e′) ∧ χL[e](e) ≥ μ.

Proof Since S is regular, ES is non-empty. Let e = eγ e, e′ = e′γ ′e′ ∈ ES , where γ ,γ ′ ∈ Γ .
Because S is regular, L[e] = SΓ e. From the fact that L[e] is a left Γ -ideal of S, we obtain
that L̃[e] = (χL[e], χ̃L[e]) is a (λ,μ)-IFLΓ I of S by the previous lemma.
Applying Theorem , we obtain the results. �

The following theorem can be proved in a similar way.

Theorem  Let S be regular. If ES is a left-zero Γ -subsemigroup of S, then, for all e, e′ ∈ ES ,
we have

χ̃L[e]
(
e′) = χ̃L[e](e)

or

χ̃L[e]
(
e′) ∨ χ̃L[e](e) ≤ λ,

or

χ̃L[e]
(
e′) ∧ χ̃L[e](e) ≥ μ.

http://www.journalofinequalitiesandapplications.com/content/2013/1/107
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Theorem  Let S be regular. If for all e, e′ ∈ ES we have

χL[e]
(
e′) = χL[e](e)

or

χL[e]
(
e′) ∨ χL[e](e) ≤ λ,

or

χL[e]
(
e′) ∧ χL[e](e) ≥ μ,

then ES is a left-zero Γ -subsemigroup of S.

Proof Since S is regular, ES is non-empty. Let e = eγ e, e′ = e′γ ′e′ ∈ ES , where γ ,γ ′ ∈ Γ .
Because S is regular, L[e] = SΓ e. From the fact that L[e] is a left Γ -ideal of S, we obtain
that L̃[e] = (χL[e], χ̃L[e]) is a (λ,μ)-IFLΓ I of S by the previous lemma.
() If χL[e](e′) = χL[e](e) = , then e′ ∈ L[e] = SΓ e. Thus

e′ = xβe = xβ(eγ e) = (xβe)γ e = e′γ e

for some x ∈ S and β ∈ Γ .
() χL[e](e′)∨ χL[e](e) ≤ λ will never happen since χL[e](e′)∨ χL[e](e) = .
() If χL[e](e′)∧ χL[e](e) ≥ μ, that is, χL[e](e′) ≥ μ, then χL[e](e′) = . And so

e′ ∈ L[e] = SΓ e. The following proof will be the same as in case ().
Consequently, ES is a left-zero Γ -subsemigroup of S. �

The following theorem can be proved similarly.

Theorem  Let S be regular. If for all e, e′ ∈ ES we have

χ̃L[e]
(
e′) = χ̃L[e](e)

or

χ̃L[e]
(
e′) ∨ χ̃L[e](e) ≤ λ,

or

χ̃L[e]
(
e′) ∧ χ̃L[e](e) ≥ μ,

then ES is a left-zero Γ -subsemigroup of S.

3 Intuitionistic (λ,μ)-fuzzy interior Γ -ideals
Definition  For an IFS A = (fA, gA) in S, consider the following axioms:

(IΓ I) fA(xβsγ y)∨ λ ≥ fA(s)∧ μ,
(IΓ I) gA(xβsγ y)∧ μ ≤ gA(s)∨ λ

http://www.journalofinequalitiesandapplications.com/content/2013/1/107
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for all s,x, y ∈ S and β ,γ ∈ Γ . Then A = (fA, gA) is called a first (resp. second) intuitionistic
(λ,μ)-fuzzy interior Γ -ideal (briefly (λ,μ)-IFIΓ I (resp. (λ,μ)-IFIΓ I)) of S if it satisfies
(IΓ I) (resp. (IΓ I)).
A = (fA, gA) is called an intuitionistic (λ,μ)-fuzzy interior Γ -ideal (briefly (λ,μ)-IFIΓ I)

of S if it is both a first and a second intuitionistic (λ,μ)-fuzzy interior Γ -ideal.

Theorem  Every (λ,μ)-IFΓ I of S is a (λ,μ)-IFIΓ I of S.

Proof Let A = (fA, gA) be a (λ,μ)-IFΓ I of S. For all s,x, y ∈ S and β ,γ ∈ Γ , we have

fA(xβsγ y)∨ λ = fA(xβsγ y)∨ λ ∨ λ ≥ (
fA(xβs)∧ μ

) ∨ λ

=
(
fA(xβs)∨ λ

) ∧ (μ ∨ λ)≥ f (s)∧ μ.

Similarly, we have gA(xβsγ y)∧ μ ≤ gA(s)∨ λ.
So, A = (fA, gA) is a (λ,μ)-IFIΓ I of S. �

Theorem  If S is regular, then every (λ,μ)-IFIΓ I of S is a (λ,μ)-IFΓ I of S.

Proof Let A = (fA, gA) be a (λ,μ)-IFIΓ I of S and x, y ∈ S. Since S is regular, there exist
s, s′ ∈ S and β ,β ′,γ ,γ ′ ∈ Γ such that x = xβsγ x and y = yβ ′s′γ ′y. Thus

fA(xαy)∨ λ = fA
(
xα

(
yβ ′s′γ ′y

)) ∨ λ = fA
(
xαyβ ′(s′γ ′y

)) ∨ λ ≥ fA(y)∧ μ

and

gA(xαy)∧ μ = gA
(
xα

(
yβ ′s′γ ′y

)) ∧ μ = gA
(
xαyβ ′(s′γ ′y

)) ∧ μ ≤ gA(y)∨ λ

for all α ∈ Γ . It follows that A = (fA, gA) is a (λ,μ)-IFLΓ I of S. Similarly, we can prove that
A is a (λ,μ)-IFRΓ I of S. This completes the proof. �

Theorem  If U is an interior Γ -ideal of S, then Ũ = (χU , χ̃U ) is a (λ,μ)-IFIΓ I of S.

Proof Let s,x, y ∈ S and β ,γ ∈ Γ .
() If s ∈U , then xβsγ y ∈U since U is an interior Γ -ideal of S. So,

χU (xβsγ y)∨ λ = ∨ λ =  ≥ χU (s)∧ μ

and

χ̃U (xβsγ y)∧ μ = ∧ μ = ≤ χ̃U (s)∨ λ.

() If s /∈U , then χU (s) = . Thus

χU (xβsγ y)∨ λ ≥  = χU (s)∧ μ

and

χ̃U (xβsγ y)∧ μ ≤  = χ̃U (s)∨ λ.

Consequently, we obtain that Ũ is a (λ,μ)-IFIΓ I of S. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/107
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Theorem  Let S be regular and U be a non-empty subset of S. If Ũ = (χU , χ̃U ) is a (λ,μ)-
IFIΓ I or (λ,μ)-IFIΓ I of S, then U is an interior Γ -ideal of S.

Proof It is obvious that U is a Γ -subsemigroup of S by Theorem .
Case . Suppose that Ũ = (χU , χ̃U ) is a (λ,μ)-IFIΓ I of S and x ∈ SΓUΓ S. Thus x =

sβuγ t for some s, t ∈ S, u ∈U and β ,γ ∈ Γ . It follows from (IΓ I) that

χU (x)∨ λ = χU (sβuγ t)∨ λ ≥ χU (u)∧ μ = ∧ μ = μ.

Notice that λ < μ, we obtain that χU (x) ≥ μ, that is, χU (x) = . So, x ∈ U . Thus U is an
interior Γ -ideal of S.
Case . Suppose that Ũ = (χU , χ̃U ) is a (λ,μ)-IFIΓ I of S and x ∈ SΓUΓ S. Then x =

sβuγ t for some s, t ∈ S, u ∈U and β ,γ ∈ Γ . Using (IΓ I), we conclude that

χ̃U (x)∧ μ = χ̃U (sβuγ t)∧ μ ≤ χ̃U (u)∨ λ = ∨ λ = λ.

Notice that λ < μ, we obtain that χ̃U (x) ≤ λ, that is, χ̃U (x) = . So, x ∈ U . Thus U is an
interior Γ -ideal of S. �

4 Intuitionistic (λ,μ)-fuzzy simple Γ -semigroups
Definition  S is called first (resp. second) intuitionistic (λ,μ)-fuzzy left simple if for any
(λ,μ)-IFLΓ I (resp. (λ,μ)-IFLΓ I) A = (fA, gA) of S, we have fA(a) ∨ λ ≥ fA(b) ∧ μ (resp.
gA(a)∨ λ ≥ gA(b)∧ μ) for all a,b ∈ S.
S is said to be intuitionistic (λ,μ)-fuzzy left simple if it is both first and second intuition-

istic (λ,μ)-fuzzy left simple.

Theorem  If S is left simple, then S is intuitionistic (λ,μ)-fuzzy left simple.

Proof Let A = (fA, gA) be a (λ,μ)-IFLΓ I of S and x,x′ ∈ S. Because S is left simple, there
exist s, s′ ∈ S and γ ,γ ′ ∈ Γ such that x = sγ x′ and x′ = s′γ ′x. Thus, sinceA is a (λ,μ)-IFLΓ I
of S, we have that

fA(x)∨ λ = fA
(
sγ x′) ∨ λ ≥ fA

(
x′) ∧ μ,

fA
(
x′) ∨ λ = fA

(
s′γ ′x

) ∨ λ ≥ fA(x)∧ μ

and

gA(x)∧ μ = gA
(
sγ x′) ∧ μ ≤ gA

(
x′) ∨ λ,

gA
(
x′) ∧ μ = gA

(
s′γ ′x

) ∧ μ ≤ gA(x)∨ λ.

Consequently, S is intuitionistic (λ,μ)-fuzzy left simple. �

Theorem If S is first or second intuitionistic (λ,μ)-fuzzy left simple, then S is left simple.

Proof Let U be a left Γ -ideal of S. Suppose that S is first (or second) intuitionistic (λ,μ)-
fuzzy left simple. Because Ũ = (χU , χ̃U ) is a (λ,μ)-IFLΓ I of S, Ũ = (χU , χ̃U ) is a (λ,μ)-
IFLΓ I (and (λ,μ)-IFLΓ I) of S. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/107
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5 Conclusion and further research
In this paper, we generalized the results of [, ]. We introduced (λ,μ)-fuzzy ideals and
(λ,μ)-fuzzy interior ideals of an orderedΓ -semigroup andwe got some interesting results.
When λ =  and μ = , we meet ordinary fuzzy ideals and fuzzy interior ideals. From this
point of view, (λ,μ)-fuzzy ideals and (λ,μ)-fuzzy interior ideals aremore general concepts
than fuzzy ones.
In [], Yao gave the definition of (λ,μ)-fuzzy bi-ideals in semigroups. One can study

(λ,μ)-fuzzy bi-ideals in ordered Γ -semigroups. We would like to explore this in next pa-
pers.
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