
Cai and Zeng Journal of Inequalities and Applications 2013, 2013:105
http://www.journalofinequalitiesandapplications.com/content/2013/1/105

RESEARCH Open Access

On the convergence of a kind of q-gamma
operators
Qing-Bo Cai1,2 and Xiao-Ming Zeng2*

*Correspondence:
xmzeng@xmu.edu.cn
2Department of Mathematics,
Xiamen University, Xiamen, 361005,
P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we introduce a kind of q-gamma operators based on the concept of a
q-integral. We estimate moments of these operators and establish direct and local
approximation theorems of the operators. The estimates on the rate of convergence
and weighted approximation of the operators are obtained, a Voronovskaya
asymptotic formula is also presented.
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1 Introduction
In recent years, the applications of q-calculus in the approximation theory is one of the
main areas of research. After q-Bernstein polynomials were introduced by Phillips [] in
, many researchers have performed studies in this field; we mention some of them
[–].
In , Karsli [] introduced and estimated the rate of convergence for functions with

derivatives of bounded variation on [,∞) of new gamma type operators as follows:

Ln(f ;x) =
(n + )!xn+

n!(n + )!

∫ ∞



tn

(x + t)n+
f (t)dt, x > . ()

In , Karsli, Gupta and Izgi [] gave an estimate of the rate of pointwise convergence
of these operators () on a Lebesgue point of bounded variation function f defined on the
interval (,∞). In , Karsli and Özarslan [] obtained some direct local and global
approximation results and gave a Voronoskaya-type theorem for the operators (). As the
application of q-calculus in approximation theory is an active field, it seems there are no
papers mentioning the q analogue of these operators defined in (). Inspired by Aral and
Gupta [], they defined a generalization of q-Baskakov type operators using q-Beta integral
and obtained some important approximation properties, which motivates us to introduce
the q analogue of this kind of gamma operators.
Before introducing the operators, we mention certain definitions based on q-integers;

details can be found in [, ]. For any fixed real number  < q ≤  and each nonnegative
integer k, we denote q-integers by [k]q, where

[k]q =

{
–qk
–q , q �= ,
k, q = .
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Also, q-factorial and q-binomial coefficients are defined as follows:

[k]q! =

{
[k]q[k – ]q · · · []q, k = , , . . . ,
, k = ,[

n
k

]
q

=
[n]q!

[k]q![n – k]q!
(n≥ k ≥ ).

The q-improper integrals are defined as (see [])

∫ ∞/A


f (x)dqx = ( – q)

∞∑
–∞

f
(
qn

A

)
qn

A
, A > ,

provided the sums converge absolutely.
The q-beta integral is defined by

Bq(t; s) = K(A; t)
∫ ∞/A



xt–

( + x)t+sq
dqx, ()

where K(x; t) = 
x+x

t( + 
x )

t
q( + x)–tq and (a + b)τq =

∏τ–
j= (a + qjb), τ > .

In particular for any positive integer m, n,

K(x,n) = q
n(n–)

 , K(x, ) =  and Bq(m;n) =
�q(m)�q(n)
�q(m + n)

, ()

where �q(t) is the q-gamma function satisfying the following functional equations:

�q(t + ) = [t]q�q(t), �q() = 

(see []).
For f ∈ C[,∞), q ∈ (, ) and n ∈N, we introduce a kind of q-gammaoperatorsGn,q(f ;x)

as follows:

Gn,q(f ;x) =
[n + ]q!(qn+


 x)

n+
q

n(n+)


[n]q![n + ]q!

∫ ∞/A



tn

(qn+ 
 x + t)n+q

f (t)dqt. ()

Note that for q → –, Gn,– (f ;x) become the gamma operators defined in ().

2 Some preliminary results
In order to obtain the approximation properties of the operatorsGn,q, we need the follow-
ing lemmas.

Lemma  For any k ∈N, k ≤ n +  and q ∈ (, ), we have

Gn,q
(
tk ;x

)
=
[n + k]q![n – k + ]q!

[n]q![n + ]q!
q

k–k
 xk . ()
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Proof Using the properties of q-beta integral, we have

Gn,q
(
tk ;x

)
=
[n + ]q!(qn+


 x)

n+
q

n(n+)


[n]q![n + ]q!

∫ ∞/A



tn+k

(qn+ 
 x + t)n+q

dqt

=
xk[n + ]q!q

n(n+)
 qk(n+ 

 )

[n]q![n + ]q!

∫ ∞/A



( t

qn+

 x
)n+k

( + t

qn+

 x
)n+q

dq
(

t
qn+ 

 x

)

=
xk[n + ]q!q

n(n+)
 qk(n+ 

 )

[n]q![n + ]q!
Bq(n + k + ;n – k + )

K(A;n + k + )

=
[n + k]q![n – k + ]q!

[n]q![n + ]q!
q

k–k
 xk .

Lemma  is proved. �

Lemma  The following equalities hold:

Gn,q(;x) = , Gn,q(t;x) =
√q[n + ]q
[n + ]q

x, Gn,q
(
t;x

)
= x, ()

Gn,q
(
t;x

)
=
[n + ]q
q/[n]q

x, Gn,q
(
t;x

)
=
[n + ]q[n + ]q
q[n]q[n – ]q

x, ()

Gn,q
(
(t – x);x

)
= x

(
 –

√q[n + ]q
[n + ]q

)
, ()

Gn,q
(
(t – x);x

)
=

(
 +

[n + ]q[n + ]q
q[n]q[n – ]q

–
[n + ]q
q/[n]q

–
√q[n + ]q
[n + ]q

)
x. ()

Proof From Lemma , taking k = , , , , , we get () and (). Since Gn,q((t – x);x) =
Gn,q(t;x)–xGn,q(t;x)+x andGn,q((t–x);x) =Gn,q(t;x)–xGn,q(t;x)+xGn,q(t;x)–
xGn,q(t;x) + x, using (), (), we obtain () and () easily. �

Remark  Note that for q → –, from Lemma , we have

Gn,– (;x) = , Gn,– (t;x) =
n + 
n + 

x, Gn,–
(
t;x

)
= x,

Gn,–
(
(t – x);x

)
=


n + 

x,

which is the moments and central moments of the operators defined in ().

3 Local approximation
In this section we establish direct and local approximation theorems in connection with
the operators Gn,q(f ,x).
We denote the space of all real-valued continuous bounded functions f defined on

the interval [,∞) by CB[,∞). The norm ‖ · ‖ on the space CB[,∞) is given by ‖f ‖ =
sup{|f (x)| : x ∈ [,∞)}.
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Further, let us consider Peetre’s K-functional

K(f , δ) = inf
g∈W

{‖f – g‖ + δ
∥∥g ′′∥∥}

,

where δ >  andW  = {g ∈ CB[,∞) : g ′, g ′′ ∈ CB[,∞)}.
For f ∈ CB[,∞), the modulus of continuity of second order is defined by

ω(f , δ) = sup
<h≤δ

sup
x∈[,∞)

∣∣f (x + h) – f (x + h) + f (x)
∣∣.

By [, p.] there exists an absolute constant C >  such that

K(f , δ)≤ Cω(f ,
√

δ), δ > . ()

Our first result is a direct local approximation theorem for the operators Gn,q(f ,x).

Theorem  For q ∈ (, ), x ∈ [,∞) and f ∈ CB[,∞), we have

∣∣Gn,q(f ;x) – f (x)
∣∣ ≤ Cω

(
f ;

√
αn,q(x)

)
+ω

(
f ;βn,q(x)

)
, ()

where C is a positive constant,

αn,q(x) =
(


–
√q[n + ]q
[n + ]q

)
x, βn,q(x) =

(
 –

√q[n + ]q
[n + ]q

)
x. ()

Proof Let us define the auxiliary operators

G̃n,q(f ;x) =Gn,q(f ;x) – f
(√q[n + ]q

[n + ]q
x
)
+ f (x), ()

x ∈ [,∞). The operators G̃n,q(f ;x) are linear and preserve the linear functions

G̃n,q(t – x;x) =  ()

(see ()).
Let g ∈ C

B. By Taylor’s expansion

g(t) = g(x) + g ′(x)(t – x) +
∫ t

x
(t – u)g ′′(u)du, t ∈ [,∞),

and (), we get

G̃n,q(g;x) = g(x) + G̃n,q

(∫ t

x
(t – u)g ′′(u)du;x

)
.

Hence, by () and (), we have

∣∣G̃n,q(g;x) – g(x)
∣∣

≤
∣∣∣∣Gn,q

(∫ t

x
(t – u)g ′′(u)du;x

)∣∣∣∣ + ∣∣∣∣∫ x
√q[n+]q
[n+]q x

(
u –

√q[n + ]q
[n + ]q

x
)
g ′′(u)du

∣∣∣∣
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≤ Gn,q

(∣∣∣∣∫ t

x
(t – u)

∣∣g ′′(u)
∣∣du∣∣∣∣;x) +

∫ x

√q[n+]q
[n+]q x

∣∣∣∣u –
√q[n + ]q
[n + ]q

x
∣∣∣∣∣∣g ′′(u)

∣∣du
≤

[
Gn,q

(
(t – x);x

)
+

(
 –

√q[n + ]q
[n + ]q

)

x
]∥∥g ′′∥∥

=
(
 –

√q[n + ]q
[n + ]q

)(
 –

√q[n + ]q
[n + ]q

)
x

∥∥g ′′∥∥
≤ 

(
 –

√q[n + ]q
[n + ]q

)
x

∥∥g ′′∥∥.
On the other hand, by (), () and (), we have

∣∣G̃n,q(f ;x)
∣∣ ≤ ∣∣Gn,q(f ;x)

∣∣ + ‖f ‖ ≤ ‖f ‖Gn,q(;x) + ‖f ‖ ≤ ‖f ‖. ()

Now () and () imply

∣∣Gn,q(f ;x) – f (x)
∣∣

≤ ∣∣G̃n,q(f – g;x) – (f – g)(x)
∣∣ + ∣∣G̃n,q(g;x) – g(x)

∣∣ + ∣∣∣∣f(√q[n + ]q
[n + ]q

x
)
– f (x)

∣∣∣∣
≤ ‖f – g‖ + 

(
 –

√q[n + ]q
[n + ]q

)
x

∥∥g ′′∥∥ +ω

[
f ;

(
 –

√q[n + ]q
[n + ]q

)
x
]
.

Hence taking infimum on the right-hand side over all g ∈W , we get

∣∣Gn,q(f ;x) – f (x)
∣∣ ≤ K

[
f ;

(


–
√q[n + ]q
[n + ]q

)
x

]
+ω

[
f ;

(
 –

√q[n + ]q
[n + ]q

)
x
]
.

By (), for every q ∈ (, ), we have

∣∣Gn,q(f ;x) – f (x)
∣∣ ≤ Cω

(
f ;

√
αn,q(x)

)
+ω

(
f ;βn,q(x)

)
,

where αn,q(x) and βn,q(x) are defined in (). This completes the proof of Theorem . �

Remark  Let q = {qn} be a sequence satisfying  < qn <  and limn qn = , we have
limn αn,qn =  and limn βn,qn (x) = , these give us the pointwise rate of convergence of the
operators Gn,qn (f ;x) to f (x).

4 Rate of convergence
Let Bx [,∞) be the set of all functions f defined on [,∞) satisfying the condition
|f (x)| ≤ Mf ( + x), where Mf is a constant depending only on f . We denote the subspace
of all continuous functions belonging to Bx [,∞) by Cx [,∞). Also, let C*

x [,∞) be
the subspace of all functions f ∈ Cx [,∞), for which limx→∞ f (x)

+x is finite. The norm on
C*
x [,∞) is ‖f ‖x = supx∈[,∞)

|f (x)|
+x . We denote the usual modulus of continuity of f on the

closed interval [,a] (a > ) by

ωa(f , δ) = sup
|t–x|≤δ

sup
x,t∈[,a]

∣∣f (t) – f (x)
∣∣.

Obviously, for function f ∈ Cx [,∞), the modulus of continuity ωa(f , δ) tends to zero.

http://www.journalofinequalitiesandapplications.com/content/2013/1/105
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Theorem  Let f ∈ Cx [,∞), q ∈ (, ) and ωa+(f , δ) be the modulus of continuity on the
finite interval [,a + ] ⊂ [,∞), where a > . Then we have

∥∥Gn,q(f ) – f
∥∥
C[,a]

≤ Mf a
(
 + a

)(
 –

√q[n + ]q
[n + ]q

)
+ ωa+

(
f ,

√
a

√
 –

√q[n + ]q
[n + ]q

)
. ()

Proof For x ∈ [,a] and t > a + , we have

∣∣f (t) – f (x)
∣∣ ≤ Mf

(
 + x + t

) ≤ Mf
[
 + x + (t – x)

]
,

hence we obtain

∣∣f (t) – f (x)
∣∣ ≤ Mf

(
 + a

)
(t – x). ()

For x ∈ [,a] and t ≤ a + , we have

∣∣f (t) – f (x)
∣∣ ≤ ωa+

(
f , |t – x|) ≤

(
 +

|t – x|
δ

)
ωa+(f , δ), δ > . ()

From () and (), we get

∣∣f (t) – f (x)
∣∣ ≤ Mf

(
 + a

)
(t – x) +

(
 +

|t – x|
δ

)
ωa+(f , δ). ()

For x ∈ [,a] and t ≥ , by Schwarz’s inequality and Lemma , we have

∣∣Gn,q(f ,x) – f (x)
∣∣

≤ Gn,q
(∣∣f (t) – f (x)

∣∣,x)
≤ Mf

(
 + a

)
Gn,q

(
(t – x),x

)
+ωa+(f , δ)

(
 +


δ

√
Gn,q

(
(t – x),x

))

≤ Mf a
(
 + a

)(
 –

√q[n + ]q
[n + ]q

)
+ωa+(f , δ)

(
 +

√
a
δ

√
 –

√q[n + ]q
[n + ]q

)
.

By taking δ =
√
a

√
 –

√q[n+]q
[n+]q , we get the assertion of Theorem . �

5 Weighted approximation and Voronovskaya-type asymptotic formula
Now we will discuss the weighted approximation theorem.

Theorem  Let the sequence q = {qn} satisfy  < qn <  and qn →  as n → ∞, for f ∈
C*
x [,∞), we have

lim
n→∞

∥∥Gn,qn (f ) – f
∥∥
x = . ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/105
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Proof By using the Korovkin theorem in [], we see that it is sufficient to verify the fol-
lowing three conditions.

lim
n→∞

∥∥Gn,qn
(
tv;x

)
– xv

∥∥
x , v = , , . ()

Since Gn,qn (;x) =  and Gn,qn (t;x) = x, () holds true for v =  and v = .
Finally, for v = , we have

∥∥Gn,qn (t;x) – x
∥∥
x = sup

x∈[,∞)

|Gn,qn (t;x) – x|
 + x

=
(
 –

√qn[n + ]qn
[n + ]qn

)
sup

x∈[,∞)

x
 + x

≤  –
√qn[n + ]qn
[n + ]qn

,

since limn→∞ qn = , we get limn→∞
√q[n+]q
[n+]q = , so the condition of () holds for v =  as

n→ ∞, then the proof of Theorem  is completed. �

Finally, we give a Voronovskaya-type asymptotic formula for Gn,q(f ;x) by means of the
second and fourth central moments.

Theorem  Let q := {qn} be a sequence satisfying  < qn < , limn qn =  and limn qnn = .
For f ∈ C

x [,∞), (f (x) is a twice differentiable function in [,∞)), the following equality
holds

lim
n→∞[n + ]q

(
Gn,q(f ;x) – f (x)

)
= –f ′(x)x + f ′′(x)x ()

for every x ∈ [,A], A > .

Proof Let x ∈ [,∞) be fixed. By the Taylor formula, we may write

f (t) = f (x) + f ′(x)(t – x) +


f ′′(x)(t – x) + r(t;x)(t – x), ()

where r(t;x) is the Peano form of the remainder, r(t;x) ∈ Cx [,∞) and using L’Hopital’s
rule, we have

lim
t→x

r(t;x) = lim
t→x

f (t) – f (x) – f ′(x)(t – x) – 
 f

′′(x)(t – x)

(t – x)

= lim
t→x

f ′(t) – f ′(x) – f ′′(x)(t – x)
(t – x)

= lim
t→x

f ′′(t) – f ′′(x)


= .

Applying Gn,q(f ;x) to (), we obtain

[n + ]q
(
Gn,q(f ;x) – f (x)

)
= f ′(x)[n + ]qGn,q(t – x;x) +

f ′′(x)


[n + ]qGn,q
(
(t – x);x

)
+ [n + ]qGn,q

(
r(t;x)(t – x);x

)
.
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By the Cauchy-Schwarz inequality, we have

Gn,q
(
r(t;x)(t – x);x

) ≤
√
Gn,q

(
r(t;x);x

)√
Gn,q

(
(t – x);x

)
. ()

Since r(x;x) = , then it follows from Theorem  that

lim
n→∞Gn,q

(
r(t;x);x

)
= r(x;x) = . ()

Now, from (), () and Lemma , we get immediately

lim
n→∞[n + ]qGn,q

(
r(t;x)(t – x);x

)
= , lim

n→∞[n + ]qGn,q(t – x;x) = –x,

and since qn+ = [n+]q – [n+ ]q ≤ [n+]q –
√q[n+ ]q ≤ [n+]q – q[n+ ]q = , we have

lim
n→∞[n + ]qGn,q

(
(t – x);x

)
= lim

n→∞[n + ]q
(
 –

√q[n + ]q
[n + ]q

)
x

= lim
n→∞

(
[n + ]q –

√
q[n + ]q

)
x = x.

Theorem  is proved. �
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