RESEARCH

Journal of Inequalities and Applications a SpringerOpen Journal

Open Access

Invariant mean and a Korovkin-type approximation theorem

Saleh Abdullah Al-Mezel^{*}

*Correspondence: salmezel@kau.edu.sa Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia

Abstract

In this paper we apply this form of convergence to prove some Korovkin-type approximation theorem by using the test functions 1, e^{-x} , e^{-2x} , which generalizes the results of Boyanov and Veselinov (Bull. Math. Soc. Sci. Math. Roum. 14(62):9-13, 1970). **MSC:** 41A65; 46A03; 47H10; 54H25

Keywords: invariant mean; σ -convergence; Korovkin-type approximation theorem

1 Introduction and preliminaries

Let c and ℓ_{∞} denote the spaces of all convergent and bounded sequences, respectively, and note that $c \subset \ell_{\infty}$. In the theory of sequence spaces, an application of the well-known Hahn-Banach extension theorem gave rise to the concept of the Banach limit. That is, the lim functional defined on c can be extended to the whole of ℓ_{∞} and this extended functional is known as the Banach limit. In 1948, Lorentz [1] used this notion of a generalized limit to define a new type of convergence, known as almost convergence. Later on, Raimi [2] gave a slight generalization of almost convergence and named it σ -convergence. Before proceeding further, we recall some notations and basic definitions used in this paper.

Let σ be a mapping of the set of positive integers into itself. A continuous linear functional φ defined on the space ℓ_{∞} of all bounded sequences is called an invariant mean (or a σ -mean; *cf.* [2]) if it is non-negative, normal and $\varphi(x) = \varphi((x_{\sigma(n)}))$.

A sequence $x = (x_k)$ is said to be σ -*convergent* to the number L if and only if all of its σ means coincide with L, *i.e.*, $\varphi(x) = L$ for all φ . A bounded sequence $x = (x_k)$ is σ -convergent (*cf.* [3]) to the number L if and only if $\lim_{p\to\infty} t_{pm} = L$ uniformly in m, where

$$t_{pm} = \frac{x_m + x_{\sigma(m)} + x_{\sigma^2(m)} + \dots + x_{\sigma^p(m)}}{p+1}$$

We denote the set of all σ -convergent sequences by V_{σ} and in this case we write $x_k \rightarrow L(V_{\sigma})$ and *L* is called the σ -limit of *x*. Note that a σ -mean extends the limit functional on *c* in the sense that $\varphi(x) = \lim x$ for all $x \in c$ if and only if σ has no finite orbits (*cf.* [4]) and $c \subset V_{\sigma} \subset \ell_{\infty}$.

If σ is a translation then the σ -mean is called a *Banach limit* and σ -convergence is reduced to the concept of almost convergence introduced by Lorentz [1].

In [5], the idea of statistical σ -convergence is defined which is further applied to prove some approximation theorems in [6] and [7].

© 2013 Al-Mezel; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

If m = 1, then we get (C, 1) convergence, and in this case we write $x_k \rightarrow \ell(C, 1)$, where $\ell = (C, 1)$ -lim x.

Remark 1.1 Note that

- (a) a convergent sequence is also σ -convergent;
- (b) a σ -convergent sequence implies (*C*, 1) convergence.

Example 1.1 Let $\sigma(n) = n + 1$. Define the sequence $z = (z_n)$ by

$$z_n = \begin{cases} 1 & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even} \end{cases}$$

Then *x* is σ -convergent to 1/2 but not convergent.

Let C[a, b] be the space of all functions f continuous on [a, b]. We know that C[a, b]is a Banach space with the norm $||f||_{\infty} := \sup_{a \le x \le b} |f(x)|, f \in C[a, b]$. Suppose that $T_n : C[a, b] \to C[a, b]$. We write $T_n(f, x)$ for $T_n(f(t), x)$ and we say that T is a positive operator if $T(f, x) \ge 0$ for all $f(x) \ge 0$.

The classical Korovkin approximation theorem states the following [7]: Let (T_n) be a sequence of positive linear operators from C[a, b] into C[a, b]. Then $\lim_n ||T_n(f, x) - f(x)||_{\infty} = 0$, for all $f \in C[a, b]$ if and only if $\lim_n ||T_n(f_i, x) - f_i(x)||_{\infty} = 0$, for i = 0, 1, 2, where $f_0(x) = 1$, $f_1(x) = x$ and $f_2(x) = x^2$.

Quite recently, such type of approximation theorem has been studied in [8, 9] and [10] by using λ -statistical convergence, while in [11] lacunary statistical convergence has been used. Boyanov and Veselinov [12] have proved the Korovkin theorem on $C[0, \infty)$ by using the test functions 1, e^{-x} , e^{-2x} . In this paper, we generalize the result of Boyanov and Veselinov by using the notion of σ -convergence. Our results also generalize the results of Mohiuddine [13], in which the author has used almost convergence and the test functions 1, x, x^2 .

2 Korovkin-type approximation theorem

We prove the following σ -version of the classical Korovkin approximation theorem.

Theorem 2.1 Let (T_k) be a sequence of positive linear operators from C(I) into C(I). Then, for all $f \in C(I)$,

$$\sigma - \lim_{k \to \infty} \left\| T_k(f; x) - f(x) \right\|_{\infty} = 0$$
(2.1)

if and only if

$$\sigma \lim_{k \to \infty} \left\| T_k(1;x) - 1 \right\|_{\infty} = 0, \tag{2.2}$$

$$\sigma_{-\lim_{k \to \infty}} \| T_k(e^{-s}; x) - e^{-x} \|_{\infty} = 0,$$
(2.3)

$$\sigma - \lim_{k \to \infty} \left\| T_k \left(e^{-2s}; x \right) - e^{-2x} \right\|_{\infty} = 0.$$
(2.4)

Proof Since each 1, e^{-x} , e^{-2x} belongs to C(I), conditions (2.2)-(2.4) follow immediately from (2.1). Let $f \in C(I)$. Then there exists a constant M > 0 such that $|f(x)| \le M$ for $x \in I$. Therefore,

$$\left|f(s) - f(x)\right| \le 2M, \quad -\infty < s, x < \infty.$$

$$(2.5)$$

It is easy to prove that for a given $\varepsilon > 0$ there is a $\delta > 0$ such that

$$\left|f(s) - f(x)\right| < \varepsilon,\tag{2.6}$$

whenever $|e^{-s} - e^{-x}| < \delta$ for all $x \in I$.

Using (2.5), (2.6), putting $\psi_1 = \psi_1(s, x) = (e^{-s} - e^{-x})^2$, we get

$$\left|f(s)-f(x)\right|<\varepsilon+\frac{2M}{\delta^2}(\psi_1),\quad \forall |s-x|<\delta.$$

This is,

$$-\varepsilon - \frac{2M}{\delta^2}(\psi_1) < f(s) - f(x) < \varepsilon + \frac{2M}{\delta^2}(\psi_1).$$

Now, we operate $T_{\sigma^k(n)}(1,x)$ for all *n* to this inequality since $T_{\sigma^k(n)}(f,x)$ is monotone and linear. We obtain

$$\begin{split} T_{\sigma^{k}(n)}(1;x) \bigg(-\varepsilon - \frac{2M}{\delta^{2}}(\psi_{1})\bigg) &< T_{\sigma^{k}(n)}(1;x) \big(f(s) - f(x)\big) \\ &< T_{\sigma^{k}(n)}(1;x) \bigg(\varepsilon + \frac{2M}{\delta^{2}}(\psi_{1})\bigg). \end{split}$$

Note that *x* is fixed and so f(x) is a constant number. Therefore

$$-\varepsilon T_{\sigma^{k}(n)}(1;x) - \frac{2M}{\delta^{2}} T_{\sigma^{k}(n)}(\psi_{1};x) < T_{\sigma^{k}(n)}(f;x) - f(x)T_{\sigma^{k}(n)}(1;x) < \varepsilon T_{\sigma^{k}(n)}(1;x) + \frac{2M}{\delta^{2}} T_{\sigma^{k}(n)}(\psi_{1};x).$$
(2.7)

But

$$T_{\sigma^{k}(n)}(f;x) - f(x)$$

$$= T_{\sigma^{k}(n)}(f;x) - f(x)T_{\sigma^{k}(n)}(1;x) + f(x)T_{\sigma^{k}(n)}(1;x) - f(x)$$

$$= [T_{\sigma^{k}(n)}(f;x) - f(x)T_{\sigma^{k}(n)}(1;x)] + f(x)[T_{\sigma^{k}(n)}(1;x) - 1].$$
(2.8)

Using (2.7) and (2.8), we have

$$T_{\sigma^{k}(n)}(f;x) - f(x) < \varepsilon T_{\sigma^{k}(n)}(1;x) + \frac{2M}{\delta^{2}} T_{\sigma^{k}(n)}(\psi_{1};x) + f(x) (T_{\sigma^{k}(n)}(1;x) - 1).$$
(2.9)

Now

$$\begin{split} T_{\sigma^{k}(n)}(\psi_{1};x) &= T_{\sigma^{k}(n)}\big(\big(e^{-s} - e^{-x}\big)^{2};x\big) = T_{\sigma^{k}(n)}\big(e^{-2s} - 2e^{-s}e^{-x} + e^{-2x};x\big) \\ &= T_{\sigma^{k}(n)}\big(e^{-2s};x\big) - 2e^{-x}T_{\sigma^{k}(n)}\big(e^{-s};x\big) + \big(e^{-2x}\big)T_{\sigma^{k}(n)}(1;x) \\ &= \big[T_{\sigma^{k}(n)}\big(e^{-2s};x\big) - e^{-2x}\big] - 2e^{-x}\big[T_{\sigma^{k}(n)}\big(e^{-s};x\big) - e^{-x}\big] \\ &+ e^{-2x}\big[T_{\sigma^{k}(n)}(1;x) - 1\big]. \end{split}$$

Using (2.9), we obtain

$$\begin{split} T_{\sigma^{k}(n)}(f;x) - f(x) &< \varepsilon T_{\sigma^{k}(n)}(1;x) + \frac{2M}{\delta^{2}} \left\{ \left[T_{\sigma^{k}(n)}\left(\left(e^{-2s} \right);x \right) - e^{-2x} \right] \right. \\ &- 2e^{-x} \left[T_{\sigma^{k}(n)}\left(e^{-s};x \right) - e^{-x} \right] + e^{-2x} \left[T_{\sigma^{k}(n)}(1;x) - 1 \right] \right\} \\ &+ f(x) \left(T_{\sigma^{k}(n)}(1;x) - 1 \right) \\ &= \varepsilon \left[T_{\sigma^{k}(n)}(1;x) - 1 \right] + \varepsilon + \frac{2M}{\delta^{2}} \left\{ \left[T_{\sigma^{k}(n)}\left(\left(e^{-2s} \right);x \right) - e^{-2x} \right] \right. \\ &- 2e^{-x} \left[T_{\sigma^{k}(n)}\left(e^{-s};x \right) - e^{-x} \right] + e^{-2x} \left[T_{\sigma^{k}(n)}(1;x) - 1 \right] \right\} \\ &+ f(x) \left(T_{\sigma^{k}(n)}(1;x) - 1 \right). \end{split}$$

Since ε is arbitrary, we can write

$$\begin{split} T_{\sigma^{k}(n)}(f;x) - f(x) &\leq \varepsilon \big[T_{\sigma^{k}(n)}(1;x) - 1 \big] + \frac{2M}{\delta^{2}} \big\{ \big[T_{\sigma^{k}(n)}\big(\big(e^{-2s}\big);x\big) - e^{-2x} \big] \\ &\quad - 2e^{-x} \big[T_{\sigma^{k}(n)}\big(e^{-s};x\big) - e^{-x} \big] + e^{-2x} \big[T_{\sigma^{k}(n)}(1;x) - 1 \big] \big\} \\ &\quad + f(x) \big[T_{\sigma^{k}(n)}(1;x) - 1 \big]. \end{split}$$

Therefore

$$\begin{split} \left| T_{\sigma^{k}(n)}(f;x) - f(x) \right| \\ &\leq \varepsilon + (\varepsilon + M) \left| T_{\sigma^{k}(n)}(1;x) - 1 \right| + \frac{2M}{\delta^{2}} \left| e^{-2x} \right| \left| T_{\sigma^{k}(n)}(1;x,y) - 1 \right| \\ &+ \frac{2M}{\delta^{2}} \left| T_{\sigma^{k}(n)}(e^{-2s};x) \right| \left| -e^{-2x} \right| + \frac{4M}{\delta^{2}} \left| e^{-x} \right| \left| T_{\sigma^{k}(n)}(e^{-s};x) - e^{-x} \right| \\ &\leq \varepsilon + \left(\varepsilon + M + \frac{4M}{\delta^{2}} \right) \left| T_{\sigma^{k}(n)}(1;x) - 1 \right| + \frac{2M}{\delta^{2}} \left| e^{-2x} \right| \left| T_{\sigma^{k}(n)}(1;x) - 1 \right| \\ &+ \frac{2M}{\delta^{2}} \left| T_{\sigma^{k}(n)}(e^{-2s};x) - e^{-2x} \right| + \frac{4M}{\delta^{2}} \left| T_{\sigma^{k}(n)}(e^{-s};x) - e^{-x} \right| \end{split}$$

since $|e^{-x}| \le 1$ for all $x \in I$. Now, taking $\sup_{x \in I}$

$$\begin{split} \left\| T_{\sigma^{k}(n)}(f;x) - f(x) \right\|_{\infty} &\leq \varepsilon + K \big(\left\| T_{\sigma^{k}(n)}(1;x) - 1 \right\|_{\infty} + \left\| T_{\sigma^{k}(n)}(e^{-s};x) - e^{-x} \right\|_{\infty} \\ &+ \left\| T_{\sigma^{k}(n)}(e^{-2s};x) - e^{-2x} \right\|_{\infty} \big), \end{split}$$

where $K = \max\{\varepsilon + M + \frac{4M}{\delta^2}, \frac{2M}{\delta^2}\}$. Now writing

$$D_{n,p}(f,x) = \frac{1}{p} \sum_{k=0}^{p-1} T_{\sigma^k(n)}(f,x),$$

we get

$$\begin{split} \left\| D_{n,p}(f,x) - f(x) \right\|_{\infty} &\leq \left(\epsilon + \frac{2Mb^2}{\delta^2} + M \right) \left\| D_{n,p}(1,x) - 1 \right\|_{\infty} \\ &+ \frac{4Mb}{\delta^2} \left\| D_{n,p}(t,x) - e^{-x} \right\|_{\infty} + \frac{2M}{\delta^2} \left\| D_{n,p}(t^2,x) - e^{-2x} \right\|_{\infty} \end{split}$$

Letting $p \rightarrow \infty$ and using (2.2), (2.3), (2.4), we get

$$\lim_{p \to \infty} \left\| D_{n,p}(f,x) - f(x) \right\|_{\infty} = 0, \quad \text{uniformly in } n.$$

In the following example we construct a sequence of positive linear operators satisfying the conditions of Theorem 2.1 but not satisfying the conditions of the Korovkin theorem of Boyanov and Veselinov [12].

Example 2.1 Consider the sequence of classical Baskakov operators [14]

$$V_n(f;x) := \sum_{k=0}^{\infty} f\left(\frac{k}{n}\right) \binom{n-1+k}{k} x^k (1+x)^{-n-k},$$

where $0 \le x, y < \infty$.

Let the sequence (L_n) be defined by $L_n : C(I) \to C(I)$ with $L_n(f;x) = (1+z_n)V_n(f;x)$, where z_n is defined as above. Since

$$L_n(1;x) = 1,$$

$$L_n(e^{-s};x) = (1 + x - xe^{-\frac{1}{n}})^{-n},$$

$$L_n(e^{-2s};x) = (1 + x^2 - x^2e^{-\frac{1}{n}})^{-n},$$

and the sequence (P_n) satisfies the conditions (2.1), (2.2) and (2.3). Hence we have

$$\sigma - \lim \left\| L_n(f, x) - f(x) \right\|_{\infty} = 0.$$

On the other hand, we get $L_n(f, 0) = (1 + z_n)f(0)$ since $L_n(f, 0) = f(0)$, and hence

$$||L_n(f,x)-f(x)||_{\infty} \ge |L_n(f,0)-f(0)| = z_n|f(0)|.$$

We see that (L_n) does not satisfy the classical Korovkin theorem since $\limsup_{n\to\infty} z_n$ does not exist. Hence our Theorem 2.1 is stronger than that of Boyanov and Veselinov [12].

3 A consequence

Now we present a slight general result.

Theorem 3.1 Let (T_n) be a sequence of positive linear operators on C(I) such that

$$\lim_{n} \sup_{m} \frac{1}{n} \sum_{k=0}^{n-1} \|T_n - T_{\sigma^k(m)}\| = 0.$$

If

$$\sigma - \lim_{n} \left\| T_n(e^{-\nu x}, x) - e^{-\nu x} \right\|_{\infty} = 0 \quad (\nu = 0, 1, 2),$$
(3.1)

then, for any function $f \in C(I)$ bounded on the real line, we have

$$\lim_{n} \|T_{n}(f,x) - f(x)\|_{\infty} = 0.$$
(3.2)

Proof From Theorem 2.1, we have that if (3.1) holds, then

 $\sigma - \lim_n \left\| T_n(f, x) - f(x) \right\|_\infty = 0,$

which is equivalent to

$$\lim_{n}\left\|\sup_{m}D_{m,n}(f,x)-f(x)\right\|_{\infty}=0.$$

Now

$$T_n - D_{m,n} = T_n - \frac{1}{n} \sum_{k=0}^{n-1} T_{\sigma^k(m)}$$
$$= \frac{1}{n} \sum_{k=0}^{n-1} (T_n - T_{\sigma^k(m)}).$$

Therefore

$$T_n - \sup_m D_{m,n} = \sup_m \frac{1}{n} \sum_{k=0}^{n-1} (T_n - T_{\sigma^k(m)}).$$

Hence, using the hypothesis, we get

$$\lim_{n} \|T_{n}(f,x) - f(x)\|_{\infty} = \lim_{n} \|\sup_{m} D_{m,n}(f,x) - f(x)\|_{\infty} = 0,$$

that is, (3.2) holds.

Competing interests

The author declares that they have no competing interests.

Received: 29 May 2012 Accepted: 24 February 2013 Published: 15 March 2013

References

- 1. Lorentz, GG: A contribution to theory of divergent sequences. Acta Math. 80, 167-190 (1948)
- 2. Raimi, RA: Invariant means and invariant matrix methods of summability. Duke Math. J. 30, 81-94 (1963)
- 3. Schaefer, P: Infinite matrices and invariant means. Proc. Am. Math. Soc. 36, 104-110 (1972)
- 4. Mursaleen, M: On some new invariant matrix methods of summability. Quart. J. Math. Oxford **34**, 77-86 (1983)
- 5. Mursaleen, M, Edely, OHH: On the invariant mean and statistical convergence. Appl. Math. Lett. 22, 1700-1704 (2009)
- 6. Demirci, K, Dirik, F: Statistical σ -convergence of positive linear operators. Appl. Math. Lett. 24, 375-380 (2011)
- Karakuş, S, Demirci, K: Equi-statistical σ-convergence of positive linear operators. Comput. Math. Appl. 60, 2212-2218 (2010)
- Edely, OHH, Mohiuddine, SA, Noman, AK: Korovkin type approximation theorems obtained through generalized statistical convergence. Appl. Math. Lett. 23, 1382-1387 (2010)
- Mursaleen, M, Alotaibi, A: Statistical summability and approximation by de la Vallée-Pousin mean. Appl. Math. Lett. 24, 320-324 (2011)
- Srivastava, HM, Mursaleen, M, Khan, A: Generalized equi-statistical convergence of positive linear operators and associated approximation theorems. Math. Comput. Model. 55, 2040-2051 (2012)
- Mursaleen, M, Alotaibi, A: Statistical lacunary summability and a Korovkin type approximation theorem. Ann. Univ. Ferrara 57(2), 373-381 (2011)
- 12. Boyanov, BD, Veselinov, VM: A note on the approximation of functions in an infinite interval by linear positive operators. Bull. Math. Soc. Sci. Math. Roum. 14(62), 9-13 (1970)
- 13. Mohiuddine, SA: An application of almost convergence in approximation theorems. Appl. Math. Lett. 24, 1856-1860 (2011)
- Becker, M: Global approximation theorems for Szasz-Mirakjan and Baskakov operators in polynomial weight spaces. Indiana Univ. Math. J. 27(1), 127-142 (1978)

doi:10.1186/1029-242X-2013-103

Cite this article as: Al-Mezel: Invariant mean and a Korovkin-type approximation theorem. *Journal of Inequalities and Applications* 2013 2013:103.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com