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Abstract
In this paper we apply this form of convergence to prove some Korovkin-type
approximation theorem by using the test functions 1, e–x , e–2x , which generalizes the
results of Boyanov and Veselinov (Bull. Math. Soc. Sci. Math. Roum. 14(62):9-13, 1970).
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1 Introduction and preliminaries
Let c and �∞ denote the spaces of all convergent and bounded sequences, respectively, and
note that c⊂ �∞. In the theory of sequence spaces, an application of thewell-knownHahn-
Banach extension theorem gave rise to the concept of the Banach limit. That is, the lim
functional defined on c can be extended to the whole of �∞ and this extended functional
is known as the Banach limit. In , Lorentz [] used this notion of a generalized limit
to define a new type of convergence, known as almost convergence. Later on, Raimi []
gave a slight generalization of almost convergence and named it σ -convergence. Before
proceeding further, we recall some notations and basic definitions used in this paper.
Let σ be a mapping of the set of positive integers into itself. A continuous linear func-

tional ϕ defined on the space �∞ of all bounded sequences is called an invariant mean (or
a σ -mean; cf. []) if it is non-negative, normal and ϕ(x) = ϕ((xσ (n))).
A sequence x = (xk) is said to be σ -convergent to the number L if and only if all of its σ -

means coincide with L, i.e., ϕ(x) = L for all ϕ. A bounded sequence x = (xk) is σ -convergent
(cf. []) to the number L if and only if limp→∞ tpm = L uniformly in m, where

tpm =
xm + xσ (m) + xσ(m) + · · · + xσp(m)

p + 
.

We denote the set of all σ -convergent sequences by Vσ and in this case we write xk →
L(Vσ ) and L is called the σ -limit of x. Note that a σ -mean extends the limit functional on
c in the sense that ϕ(x) = limx for all x ∈ c if and only if σ has no finite orbits (cf. []) and
c ⊂ Vσ ⊂ �∞.
If σ is a translation then the σ -mean is called a Banach limit and σ -convergence is

reduced to the concept of almost convergence introduced by Lorentz [].
In [], the idea of statistical σ -convergence is defined which is further applied to prove

some approximation theorems in [] and [].
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If m = , then we get (C, ) convergence, and in this case we write xk → �(C, ), where
� = (C, )-limx.

Remark . Note that
(a) a convergent sequence is also σ -convergent;
(b) a σ -convergent sequence implies (C, ) convergence.

Example . Let σ (n) = n + . Define the sequence z = (zn) by

zn =

{
 if n is odd,
 if n is even.

Then x is σ -convergent to / but not convergent.

Let C[a,b] be the space of all functions f continuous on [a,b]. We know that C[a,b]
is a Banach space with the norm ‖f ‖∞ := supa≤x≤b |f (x)|, f ∈ C[a,b]. Suppose that Tn :
C[a,b]→ C[a,b]. We write Tn(f ,x) for Tn(f (t),x) and we say that T is a positive operator
if T(f ,x)≥  for all f (x)≥ .
The classical Korovkin approximation theorem states the following []: Let (Tn) be a se-

quence of positive linear operators fromC[a,b] intoC[a,b]. Then limn ‖Tn(f ,x)– f (x)‖∞ =
, for all f ∈ C[a,b] if and only if limn ‖Tn(fi,x) – fi(x)‖∞ = , for i = , , , where f(x) = ,
f(x) = x and f(x) = x.
Quite recently, such type of approximation theorem has been studied in [, ] and []

by using λ-statistical convergence, while in [] lacunary statistical convergence has been
used. Boyanov and Veselinov [] have proved the Korovkin theorem on C[,∞) by us-
ing the test functions , e–x, e–x. In this paper, we generalize the result of Boyanov and
Veselinov by using the notion of σ -convergence. Our results also generalize the results of
Mohiuddine [], in which the author has used almost convergence and the test functions
, x, x.

2 Korovkin-type approximation theorem
We prove the following σ -version of the classical Korovkin approximation theorem.

Theorem . Let (Tk) be a sequence of positive linear operators from C(I) into C(I). Then,
for all f ∈ C(I),

σ - lim
k→∞

∥∥Tk(f ;x) – f (x)
∥∥∞ =  (.)

if and only if

σ - lim
k→∞

∥∥Tk(;x) – 
∥∥∞ = , (.)

σ - lim
k→∞

∥∥Tk
(
e–s;x

)
– e–x

∥∥∞ = , (.)

σ - lim
k→∞

∥∥Tk
(
e–s;x

)
– e–x

∥∥∞ = . (.)
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Proof Since each , e–x, e–x belongs to C(I), conditions (.)-(.) follow immediately
from (.). Let f ∈ C(I). Then there exists a constantM >  such that |f (x)| ≤ M for x ∈ I .
Therefore,

∣∣f (s) – f (x)
∣∣ ≤ M, –∞ < s,x < ∞. (.)

It is easy to prove that for a given ε >  there is a δ >  such that

∣∣f (s) – f (x)
∣∣ < ε, (.)

whenever |e–s – e–x| < δ for all x ∈ I .
Using (.), (.), putting ψ = ψ(s,x) = (e–s – e–x), we get

∣∣f (s) – f (x)
∣∣ < ε +

M
δ

(ψ), ∀|s – x| < δ.

This is,

–ε –
M
δ

(ψ) < f (s) – f (x) < ε +
M
δ

(ψ).

Now, we operate Tσ k (n)(,x) for all n to this inequality since Tσ k (n)(f ,x) is monotone and
linear. We obtain

Tσ k (n)(;x)
(
–ε –

M
δ

(ψ)
)
< Tσ k (n)(;x)

(
f (s) – f (x)

)

< Tσ k (n)(;x)
(

ε +
M
δ

(ψ)
)
.

Note that x is fixed and so f (x) is a constant number. Therefore

–εTσ k (n)(;x) –
M
δ

Tσ k (n)(ψ;x) < Tσ k (n)(f ;x) – f (x)Tσ k (n)(;x)

< εTσ k (n)(;x) +
M
δ

Tσ k (n)(ψ;x). (.)

But

Tσ k (n)(f ;x) – f (x)

= Tσ k (n)(f ;x) – f (x)Tσ k (n)(;x) + f (x)Tσ k (n)(;x) – f (x)

=
[
Tσ k (n)(f ;x) – f (x)Tσ k (n)(;x)

]
+ f (x)

[
Tσ k (n)(;x) – 

]
. (.)

Using (.) and (.), we have

Tσ k (n)(f ;x) – f (x) < εTσ k (n)(;x) +
M
δ

Tσ k (n)(ψ;x)

+ f (x)
(
Tσ k (n)(;x) – 

)
. (.)
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Now

Tσ k (n)(ψ;x) = Tσ k (n)
((
e–s – e–x

);x) = Tσ k (n)
(
e–s – e–se–x + e–x;x

)
= Tσ k (n)

(
e–s;x

)
– e–xTσ k (n)

(
e–s;x

)
+

(
e–x

)
Tσ k (n)(;x)

=
[
Tσ k (n)

(
e–s;x

)
– e–x

]
– e–x

[
Tσ k (n)

(
e–s;x

)
– e–x

]
+ e–x

[
Tσ k (n)(;x) – 

]
.

Using (.), we obtain

Tσ k (n)(f ;x) – f (x) < εTσ k (n)(;x) +
M
δ

{[
Tσ k (n)

((
e–s

)
;x

)
– e–x

]
– e–x

[
Tσ k (n)

(
e–s;x

)
– e–x

]
+ e–x

[
Tσ k (n)(;x) – 

]}
+ f (x)

(
Tσ k (n)(;x) – 

)
= ε[Tσ k (n)(;x) – ] + ε +

M
δ

{[
Tσ k (n)

((
e–s

)
;x

)
– e–x

]
– e–x

[
Tσ k (n)

(
e–s;x

)
– e–x

]
+ e–x

[
Tσ k (n)(;x) – 

]}
+ f (x)

(
Tσ k (n)(;x) – 

)
.

Since ε is arbitrary, we can write

Tσ k (n)(f ;x) – f (x) ≤ ε
[
Tσ k (n)(;x) – 

]
+
M
δ

{[
Tσ k (n)

((
e–s

)
;x

)
– e–x

]
– e–x

[
Tσ k (n)

(
e–s;x

)
– e–x

]
+ e–x

[
Tσ k (n)(;x) – 

]}
+ f (x)

[
Tσ k (n)(;x) – 

]
.

Therefore

∣∣Tσ k (n)(f ;x) – f (x)
∣∣

≤ ε + (ε +M)
∣∣Tσ k (n)(;x) – 

∣∣ + M
δ

∣∣e–x∣∣∣∣Tσ k (n)(;x, y) – 
∣∣

+
M
δ

∣∣Tσ k (n)
(
e–s;x

)∣∣∣∣–e–x∣∣ + M
δ

∣∣e–x∣∣∣∣Tσ k (n)
(
e–s;x

)
– e–x

∣∣
≤ ε +

(
ε +M +

M
δ

)∣∣Tσ k (n)(;x) – 
∣∣ + M

δ

∣∣e–x∣∣∣∣Tσ k (n)(;x) – 
∣∣

+
M
δ

∣∣Tσ k (n)
(
e–s;x

)
– e–x

∣∣ + M
δ

∣∣Tσ k (n)
(
e–s;x

)
– e–x

∣∣
since |e–x| ≤  for all x ∈ I . Now, taking supx∈I

∥∥Tσ k (n)(f ;x) – f (x)
∥∥∞ ≤ ε +K

(∥∥Tσ k (n)(;x) – 
∥∥∞ +

∥∥Tσ k (n)
(
e–s;x

)
– e–x

∥∥∞

+
∥∥Tσ k (n)

(
e–s;x

)
– e–x

∥∥∞
)
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/103


Al-Mezel Journal of Inequalities and Applications 2013, 2013:103 Page 5 of 7
http://www.journalofinequalitiesandapplications.com/content/2013/1/103

where K =max{ε +M + M
δ
, M

δ
}. Now writing

Dn,p(f ,x) =

p

p–∑
k=

Tσ k (n)(f ,x),

we get

∥∥Dn,p(f ,x) – f (x)
∥∥∞ ≤

(
ε +

Mb

δ
+M

)∥∥Dn,p(,x) – 
∥∥∞

+
Mb
δ

∥∥Dn,p(t,x) – e–x
∥∥∞ +

M
δ

∥∥Dn,p
(
t,x

)
– e–x

∥∥∞.

Letting p → ∞ and using (.), (.), (.), we get

lim
p→∞

∥∥Dn,p(f ,x) – f (x)
∥∥∞ = , uniformly in n. �

In the following example we construct a sequence of positive linear operators satisfying
the conditions of Theorem . but not satisfying the conditions of the Korovkin theorem
of Boyanov and Veselinov [].

Example . Consider the sequence of classical Baskakov operators []

Vn(f ;x) :=
∞∑
k=

f
(
k
n

)(
n –  + k

k

)
xk( + x)–n–k ,

where  ≤ x, y <∞.
Let the sequence (Ln) be defined by Ln : C(I) → C(I) with Ln(f ;x) = (+zn)Vn(f ;x), where

zn is defined as above. Since

Ln(;x) = ,

Ln
(
e–s;x

)
=

(
 + x – xe–


n
)–n,

Ln
(
e–s;x

)
=

(
 + x – xe–


n
)–n,

and the sequence (Pn) satisfies the conditions (.), (.) and (.). Hence we have

σ -lim
∥∥Ln(f ,x) – f (x)

∥∥∞ = .

On the other hand, we get Ln(f , ) = ( + zn)f () since Ln(f , ) = f (), and hence

∥∥Ln(f ,x) – f (x)
∥∥∞ ≥ ∣∣Ln(f , ) – f ()

∣∣ = zn
∣∣f ()∣∣.

We see that (Ln) does not satisfy the classical Korovkin theorem since lim supn→∞ zn
does not exist. Hence our Theorem . is stronger than that of Boyanov and Veselinov
[].
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3 A consequence
Now we present a slight general result.

Theorem . Let (Tn) be a sequence of positive linear operators on C(I) such that

lim
n
sup
m


n

n–∑
k=

‖Tn – Tσ k (m)‖ = .

If

σ -lim
n

∥∥Tn
(
e–νs,x

)
– e–νx∥∥∞ =  (ν = , , ), (.)

then, for any function f ∈ C(I) bounded on the real line, we have

lim
n

∥∥Tn(f ,x) – f (x)
∥∥∞ = . (.)

Proof From Theorem ., we have that if (.) holds, then

σ -lim
n

∥∥Tn(f ,x) – f (x)
∥∥∞ = ,

which is equivalent to

lim
n

∥∥∥sup
m

Dm,n(f ,x) – f (x)
∥∥∥∞

= .

Now

Tn –Dm,n = Tn –

n

n–∑
k=

Tσ k (m)

=

n

n–∑
k=

(Tn – Tσ k (m)).

Therefore

Tn – sup
m

Dm,n = sup
m


n

n–∑
k=

(Tn – Tσ k (m)).

Hence, using the hypothesis, we get

lim
n

∥∥Tn(f ,x) – f (x)
∥∥∞ = lim

n

∥∥∥sup
m

Dm,n(f ,x) – f (x)
∥∥∥∞

= ,

that is, (.) holds. �
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7. Karakuş, S, Demirci, K: Equi-statistical σ -convergence of positive linear operators. Comput. Math. Appl. 60, 2212-2218

(2010)
8. Edely, OHH, Mohiuddine, SA, Noman, AK: Korovkin type approximation theorems obtained through generalized

statistical convergence. Appl. Math. Lett. 23, 1382-1387 (2010)
9. Mursaleen, M, Alotaibi, A: Statistical summability and approximation by de la Vallée-Pousin mean. Appl. Math. Lett.

24, 320-324 (2011)
10. Srivastava, HM, Mursaleen, M, Khan, A: Generalized equi-statistical convergence of positive linear operators and

associated approximation theorems. Math. Comput. Model. 55, 2040-2051 (2012)
11. Mursaleen, M, Alotaibi, A: Statistical lacunary summability and a Korovkin type approximation theorem. Ann. Univ.

Ferrara 57(2), 373-381 (2011)
12. Boyanov, BD, Veselinov, VM: A note on the approximation of functions in an infinite interval by linear positive

operators. Bull. Math. Soc. Sci. Math. Roum. 14(62), 9-13 (1970)
13. Mohiuddine, SA: An application of almost convergence in approximation theorems. Appl. Math. Lett. 24, 1856-1860

(2011)
14. Becker, M: Global approximation theorems for Szasz-Mirakjan and Baskakov operators in polynomial weight spaces.

Indiana Univ. Math. J. 27(1), 127-142 (1978)

doi:10.1186/1029-242X-2013-103
Cite this article as: Al-Mezel: Invariant mean and a Korovkin-type approximation theorem. Journal of Inequalities and
Applications 2013 2013:103.

http://www.journalofinequalitiesandapplications.com/content/2013/1/103

	Invariant mean and a Korovkin-type approximation theorem
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Korovkin-type approximation theorem
	A consequence
	Competing interests
	References


