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Abstract
Let {Xni , 1≤ i ≤ n,n≥ 1} be an array of rowwise pairwise NQD random variables.
Some sufficient conditions of complete convergence for weighted sums of arrays of
rowwise pairwise NQD random variables are presented without assumption of
identical distribution. Our results partially extend the corresponding ones for
independent random variables and negatively associated random variables.
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1 Introduction
Throughout the paper, let I(A) be the indicator function of the set A. C denotes a positive
constant which may be different in various places and an = O(bn) stands for an ≤ Cbn.
Denote logx = lnmax(x, e), where lnx is the natural logarithm.
The concept of complete convergencewas introduced byHsu andRobbins [] as follows.

A sequence of random variables {Un,n≥ } is said to converge completely to a constantC if∑∞
n= P(|Un–C| > ε) < ∞ for all ε > . In view of the Borel-Cantelli lemma, this implies that

Un → C almost surely (a.s.). The converse is true if the {Un,n ≥ } are independent. Hsu
and Robbins [] proved that the sequence of arithmetic means of independent and iden-
tically distributed (i.i.d.) random variables converges completely to the expected value if
the variance of the summands is finite. Since thenmany authors, such as Spitzer [], Baum
and Katz [], Gut [] and so forth, have studied the complete convergence for partial sums
and weighted sums of random variables. The main purpose of the present investigation
is to provide the complete convergence results for weighted sums of arrays of rowwise
pairwise negatively quadrant dependent random variables.
Firstly, let us recall the definition of pairwise negatively quadrant dependent random

variables.

Definition . Two random variables X and Y are said to be negatively quadrant depen-
dent (NQD in short) if for any x, y ∈R,

P(X ≤ x,Y ≤ y) ≤ P(X ≤ x)P(Y ≤ y). (.)

A sequence of random variables {Xn,n ≥ } is said to be pairwise NQD if Xi and Xj are
NQD for all i, j ∈N and i �= j.
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An array of random variables {Xni,  ≤ i ≤ n,n ≥ } is called rowwise pairwise NQD
random variables if for every n ≥ , {Xni,  ≤ i ≤ n} are pairwise NQD random variables.

The concept of pairwise NQDwas introduced by Lehmann []. Obviously, a sequence of
pairwise NQD random variables is a family of very wide scope, which contains a pairwise
independent random variable sequence and a negatively orthant dependent (NOD) ran-
dom variable sequence as special cases. For more details about NOD random variables,
one can refer to Joag-Dev and Proschan [], Wang et al. [, ] and so forth. Many known
types of negative dependence such as negative upper (lower) orthant dependence and neg-
ative association (see Joag-Dev and Proschan []) have been developed on the basis of this
notion. Among them, the negatively associated class is the most important and special
case of a pairwise NQD sequence. So, it is very significant to study probabilistic proper-
ties of this wider pairwise NQD class. Since Lehmann’s article appeared, a number of limit
theorems for pairwise NQD random variables have been established. For example, Mat-
ula [] obtained the Kolmogorov strong law of large numbers for a pairwise NQD random
variable sequence with identical distribution, Wang et al. [] and Wu [] investigated
some limit properties for such a sequence, Li and Wang [] obtained the central limit
theorem, Gan and Chen [] studied further some limit properties for the pairwise NQD
sequence without limitation of an identically distributed condition and obtained Baum-
Katz (Baum and Katz []) type complete convergence and the strong stability of Jamison
(Jamison et al. []) type weighted sums for the pairwise NQD sequence which may have
different distributions, Huang et al. [] studied the complete convergence for sequences
of pairwise NQD random variables and so forth.
Our goal in this paper is to further study the complete convergence for weighted sums

of arrays of rowwise pairwise NQD random variables under some moment conditions.
We will give some sufficient conditions for complete convergence for an array of rowwise
pairwise NQD random variables without assumption of identical distribution. The results
presented in this paper are obtained by using the truncated method and the generalized
Kolmogorov type inequality of pairwise NQD random variables.

Definition . An array of random variables {Xni, i ≥ ,n ≥ } is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P
(|Xni| > x

) ≤ CP
(|X| > x

)
(.)

for all x ≥ , i≥  and n≥ .

The following lemmas are useful for the proof of the main results.

Lemma . (cf. Lehmann []) Let X and Y be NQD, then
(i) EXY ≤ EXEY ;
(ii) P(X > x,Y > y) ≤ P(X > x)P(Y > y), for any x, y ∈ R;
(iii) If f and g are both nondecreasing (or nonincreasing) functions, then f (X) and g(Y )

are NQD.

Lemma . (cf. Wu []) Let {Xn,n≥ } be a sequence of pairwise NQD random variables
with EXn =  and EX

n < ∞ for every n ≥ . Denote Tj(k) =
∑j+k

i=j+Xi, j ≥ , k ≥ . Then, for
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every n≥ ,

ET
j (k)≤

j+k∑
i=j+

EX
i , (.)

E
(
max
≤k≤n

T
j (k)

)
≤ (log n)

j+n∑
i=j+

EX
i . (.)

Lemma . Let {Xn,n ≥ } be a sequence of random variables which is stochastically dom-
inated by a random variable X. For any α >  and b > , the following two statements hold:

E|Xn|αI
(|Xn| ≤ b

) ≤ C
[
E|X|αI(|X| ≤ b

)
+ bαP

(|X| > b
)]
, (.)

E|Xn|αI
(|Xn| > b

) ≤ CE|X|αI(|X| > b
)
, (.)

where C and C are positive constants.

Proof The proof can be found in Wu []. So, we omit the details. �

The following two lemmas are from Sung [].

Lemma . Let X be a random variable and {ani,  ≤ i ≤ n,n≥ } be an array of constants
satisfying

n∑
i=

|ani|α =O(n) (.)

for some α > . Let bn = n/α(logn)/γ for some γ > . Then

∞∑
n=

n–
n∑
i=

P
(|aniX| > bn

) ≤

⎧⎪⎪⎨
⎪⎪⎩
CE|X|α , for α > γ ,

CE|X|α log( + |X|), for α = γ ,

CE|X|γ , for α < γ .

Lemma . Let X be a random variable and {ani,  ≤ i ≤ n,n≥ } be an array of constants
satisfying ani =  or ani > , and

∑n
i= |ani|α ≤ n some α > . Let bn = n/α(logn)/α . If q > α,

then

∞∑
n=

n–b–qn
n∑
i=

E|aniX|qI(|aniX| ≤ bn
) ≤ CE|X|α log( + |X|).

2 Main results
Theorem . Let {Xni,  ≤ i ≤ n,n ≥ } be an array of rowwise pairwise NQD random
variables which is stochastically dominated by a random variable X and {ani,  ≤ i ≤ n,
n ≥ } be an array of constants satisfying (.) for some  < α < . Let bn

.= n/α(logn)/α . If
EXni =  for  < α <  and E|X|α log( + |X|) < ∞, then for any ε > ,

∞∑
n=

n–P

(∣∣∣∣∣
n∑
i=

aniXni

∣∣∣∣∣ > εbn

)
< ∞. (.)
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Proof Without loss of generality, we may assume that
∑n

i= |ani|α ≤ n and ani ≥  for all
 ≤ i≤ n and n≥ . For fixed n≥ , define for  ≤ i ≤ n that

X(n)
i = –bnI(aniXni < –bn) + aniXniI

(|aniXni| ≤ bn
)
+ bnI(aniXni > bn),

T (n) =
n∑
i=

(
X(n)
i – EX(n)

i
)
.

It is easy to check that for any ε > ,

(∣∣∣∣∣
n∑
i=

aniXni

∣∣∣∣∣ > εbn

)
⊂

(
max
≤i≤n

|aniXni| > bn
)

∪
(∣∣∣∣∣

n∑
i=

X(n)
i

∣∣∣∣∣ > εbn

)
,

which implies that

P

(∣∣∣∣∣
n∑
i=

aniXni

∣∣∣∣∣ > εbn

)
≤ P

(
max
≤i≤n

|aniXni| > bn
)
+ P

(∣∣∣∣∣
n∑
i=

X(n)
i

∣∣∣∣∣ > εbn

)

≤
n∑
i=

P
(|aniXni| > bn

)
+ P

(∣∣T (n)∣∣ > εbn –

∣∣∣∣∣
n∑
i=

EX(n)
i

∣∣∣∣∣
)

≤ C
n∑
i=

P
(|aniX| > bn

)
+ P

(∣∣T (n)∣∣ > εbn –

∣∣∣∣∣
n∑
i=

EX(n)
i

∣∣∣∣∣
)
.

Firstly, we will show that

b–n

∣∣∣∣∣
n∑
i=

EX(n)
i

∣∣∣∣∣ → , as n→ ∞. (.)

When  < α < , we have by EXni = , (.) of Lemma . and Markov’s inequality that

b–n

∣∣∣∣∣
n∑
i=

EX(n)
i

∣∣∣∣∣ ≤
n∑
i=

P
(|aniXni| > bn

)
+ b–n

∣∣∣∣∣
n∑
i=

aniEXniI
(|aniXni| > bn

)∣∣∣∣∣
≤ C

n∑
i=

P
(|aniX| > bn

)
+ b–n

n∑
i=

E|aniXni|I
(|aniXni| > bn

)

≤ Cb–α
n

n∑
i=

|ani|αE|X|α +Cb–α
n

n∑
i=

|ani|αE|X|α

≤ CE|X|α(logn)– →  as n→ ∞. (.)

When  < α ≤ , we have by (.) of Lemma . and Markov’s inequality that

b–n

∣∣∣∣∣
n∑
i=

EX(n)
i

∣∣∣∣∣ ≤
n∑
i=

P
(|aniXni| > bn

)
+ b–n

n∑
i=

E|aniXni|I
(|aniXni| ≤ bn

)

≤ C
n∑
i=

P
(|aniX| > bn

)
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+Cb–n
n∑
i=

[
E|aniX|I(|aniX| ≤ bn

)
+ bnP

(|aniX| > bn
)]

≤ C
n∑
i=

P
(|aniX| > bn

)
+Cb–n

n∑
i=

E|aniX|I(|aniX| ≤ bn
)

≤ Cb–α
n

n∑
i=

|ani|αE|X|α +Cb–α
n

n∑
i=

E|aniX|αI(|aniX| ≤ bn
)

≤ Cb–α
n nE|X|α +Cb–α

n nE|X|α

= CE|X|α(logn)– →  as n→ ∞. (.)

By (.) and (.), we can get (.) immediately. Hence, for n large enough,

P

(∣∣∣∣∣
n∑
i=

aniXni

∣∣∣∣∣ > εbn

)
≤ C

n∑
i=

P
(|aniX| > bn

)
+ P

(∣∣T (n)∣∣ > ε


bn

)
.

To prove (.), we only need to show that

I .=
∞∑
n=

n–
n∑
i=

P
(|aniX| > bn

)
< ∞, (.)

J .=
∞∑
n=

n–P
(∣∣T (n)∣∣ > ε


bn

)
<∞. (.)

By Lemma . and the condition E|X|α log( + |X|) < ∞, we can see that

I ≤ CE|X|α log( + |X|) < ∞,

which implies (.).
For fixed n ≥ , it is easily seen that {X(n)

i – EX(n)
i ,  ≤ i ≤ n} are still pairwise NQD

with mean zero by (iii) of Lemma .. Hence, it follows from Markov’s inequality, (.)
of Lemma . and (.) of Lemma . that

J ≤ C
∞∑
n=

n–b–n E
∣∣T (n)∣∣ ≤ C

∞∑
n=

n–b–n
n∑
i=

E
∣∣X(n)

i
∣∣

≤ C
∞∑
n=

n–b–n
n∑
i=

[
E|aniXni|I

(|aniXni| ≤ bn
)
+ bnP

(|aniXni| > bn
)]

≤ C
∞∑
n=

n–b–n
n∑
i=

[
E|aniX|I(|aniX| ≤ bn

)
+ bnP

(|aniX| > bn
)]

= C
∞∑
n=

n–b–n
n∑
i=

E|aniX|I(|aniX| ≤ bn
)
+C

∞∑
n=

n–
n∑
i=

P
(|aniX| > bn

)
.= J + J. (.)

By Lemma . and the condition E|X|α log( + |X|) < ∞ again, we can see that

J ≤ CE|X|α log( + |X|) < ∞.
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To prove J < ∞, we divide {ani,  ≤ i ≤ n} into three subsets {ani : |ani| ≤ /(logn)s},
{ani : /(logn)s < |ani| ≤ }, {ani : |ani| > }, where s = 

–α
. Hence

J = C
∞∑
n=

n–b–n
∑

i:|ani|≤/(logn)s
E|aniX|I(|aniX| ≤ bn

)

+C
∞∑
n=

n–b–n
∑

i:/(logn)s<|ani|≤

E|aniX|I(|aniX| ≤ bn
)

+C
∞∑
n=

n–b–n
∑

i:|ani|>
E|aniX|I(|aniX| ≤ bn

)
.= J + J + J.

Note that

∑
i:|ani|≤/(logn)s

|ani|α ≤ n(logn)–sα ,

we have by E|X|α < ∞ that

J
.= C

∞∑
n=

n–b–n
∑

i:|ani|≤/(logn)s
E|aniX|I(|aniX| ≤ bn

)

≤ C
∞∑
n=

n–b–α
n

∑
i:|ani|≤/(logn)s

E|aniX|αI(|aniX| ≤ bn
)

(since  < α < )

≤ C
∞∑
n=

n–b–α
n

∑
i:|ani|≤/(logn)s

|ani|α

≤ C
∞∑
n=

n–(logn)––sα <∞.

Note that s = 
–α

and

∑
i:/(logn)s<|ani|≤

|ani| ≤ n,

we have by E|X|α < ∞ again that

J
.= C

∞∑
n=

n–b–n
∑

i:/(logn)s<|ani|≤

E|aniX|I(|aniX| ≤ bn
)

≤ C
∞∑
n=

n–b–n
∑

i:/(logn)s<|ani|≤

|ani|EXI
(|X| ≤ bn(logn)s

)

≤ C
∞∑
n=

b–n EXI
(|X| ≤ n/α(logn)s+/α

)

= C
∞∑
n=

b–n
n∑
i=

EXI
(
(i – )/α

(
log(i – )

)s+/α < |X| ≤ i/α(log i)s+/α
)
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= C
∞∑
i=

EXI
(
(i – )/α

(
log(i – )

)s+/α < |X| ≤ i/α(log i)s+/α
) ∞∑

n=i

n–/α(logn)–/α

≤ C
∞∑
i=

EXI
(
(i – )/α

(
log(i – )

)s+/α < |X| ≤ i/α(log i)s+/α
)
(log i)–/α

∞∑
n=i

n–/α

≤ C
∞∑
i=

EXI
(
(i – )/α

(
log(i – )

)s+/α < |X| ≤ i/α(log i)s+/α
)
(log i)–/αi–/α

≤ C
∞∑
i=

E|X|αI((i – )/α
(
log(i – )

)s+/α < |X| ≤ i/α(log i)s+/α
) (

since s =


 – α

)

≤ CE|X|α < ∞.

By Lemma . and the condition E|X|α log( + |X|) < ∞, we can see that

J
.= C

∞∑
n=

n–b–n
∑

i:|ani|>
E|aniX|I(|aniX| ≤ bn

) ≤ CE|X|α log( + |X|) < ∞.

Therefore, J < ∞ follows from the statements above. This completes the proof of the
theorem. �

Remark . The key to the proof of Theorem . is the Kolmogorov type inequality for
pairwise NQD random variables. For many sequences of random variables, such as inde-
pendent sequence, negatively associated sequence (see Shao []), negatively dependent
sequence (see Asadian et al. []), ρ∗-mixing sequence (see Utev and Peligrad []), ϕ-
mixing sequence (see Wang et al. []) and so forth, the Kolmogorov type inequality also
holds. So, Theorem . also holds for these sequences.

Remark . Theorem . only holds for  < α < . It is still an open question whether
Theorem . holds for α = . In addition, it is still an open question whether

∞∑
n=

n–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXni

∣∣∣∣∣ > εbn

)
< ∞

holds for any ε >  under the conditions of Theorem .. The authors suggest that a so-
lution can be obtained if a better moment inequality than the one presented above in
Lemma . could be established.
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