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Abstract
The objective of this paper is to derive the symmetric property of an (h,q)-zeta
function with weight α. By using this property, we give some interesting identities for
(h,q)-Genocchi polynomials with weight α. As a result, our applications possess a
number of interesting properties which we state in this paper.
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1 Introduction
Recently, Kim has developed a newmethod by using the q-Volkenborn integral (or p-adic
q-integral on Zp) and has added weight to q-Bernoulli numbers and polynomials and
investigated their interesting properties (see []). He also showed that these polynomi-
als are closely related to weighted q-Bernstein polynomials and derived novel proper-
ties of q-Bernoulli numbers with weight α by using the symmetric property of weighted
q-Bernstein polynomials with the help of the q-Volkenborn integral (for more details, see
[]). Afterward, Araci et al. have introduced weighted (h,q)-Genocchi polynomials and
defined (h,q)-zeta-type function with weight α by applying the Mellin transformation to
the generating function of the (h,q)-Genocchi polynomials with weight α which interpo-
lates for (h,q)-Genocchi polynomials with weight α at negative integers (for details, see
[]). In this paper, we also consider a (h,q)-zeta-type function with weight α and derive
some interesting properties.
We firstly list some notations as follows.
Imagine that p is a fixed odd prime. Throughout this work, Z, Zp,Qp andCp will denote

by the ring of integers, the field of p-adic rational numbers and the completion of the
algebraic closure of Qp, respectively. Also, we denote N∗ = N ∪ {} and exp(x) = ex. Let
vp : Cp → Q ∪ {∞} (Q is the field of rational numbers) denote the p-adic valuation of
Cp normalized so that vp(p) = . The absolute value on Cp will be denoted as | · |, and
|x|p = p–vp(x) for x ∈ Cp. When one speaks of q-extensions, q is considered in many ways,
e.g., as an indeterminate, a complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C,
we assume that |q| < . If q ∈ Cp, we assume | – q|p < p–


p– so that qx = exp(x logq) for

|x|p ≤ . We use the following notation:

[x]q =
 – qx

 – q
, [x]–q =

 – (–q)x

 + q
. (.)
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We want to note that limq→[x]q = x; cf. [–].
For a fixed positive integer d, set

X = Xd = lim←–n
Z/dpnZ,

X∗ =
⋃

<a<dp
(a,p)=

a + dpZp

and

a + dpnZp =
{
x ∈ X | x ≡ a

(
moddpn

)}
,

where a ∈ Z satisfies the condition  ≤ a < dpn (see [–]).
The following p-adic q-Haar distribution was defined by Kim:

μq
(
x + pnZp

)
=

qx

[pn]q

for any positive n (see [, ]).
Let UD(Zp) be the set of uniformly differentiable functions on Zp. We say that f is a

uniformly differentiable function at a point a ∈ Zp if the difference quotient

Ff (x, y) =
f (x) – f (y)

x – y

has a limit f ′(a) as (x, y)→ (a,a) and denote this by f ∈UD(Zp). In [] and [], the p-adic
q-integral of the function f ∈UD(Zp) is defined by Kim as follows:

Iq(f ) =
∫
Zp

f (ξ )dμq(ξ ) = lim
n→∞

pn–∑
ξ=

f (ξ )μq
(
ξ + pnZp

)
. (.)

The bosonic integral is considered as the bosonic limit q → , I(f ) = limq→ Iq(f ). Simi-
larly, the p-adic fermionic integration on Zp is defined by Kim [] as follows:

I–q(f ) = lim
q→–q

Iq(f ) =
∫
Zp

f (x)dμ–q(x). (.)

By using a fermionic p-adic q-integral on Zp, (h,q)-Genocchi polynomials are defined
by []

G̃(α,h)
n+,q(x)
n + 

=
∫
Zp

q(h–)ξ [x + ξ ]nqα dμ–q(ξ )

= lim
n→∞


[pn]–q

pn–∑
ξ=

(–)ξ [x + ξ ]nqαqhξ . (.)
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For x =  in (.), we have G̃(α,h)
n,q () := G̃(α,h)

n,q are called (h,q)-Genocchi numbers with
weight α which is defined by

G̃(α,h)
,q =  and qh

G̃(α,h)
m+ ()
m + 

+
G̃(α,h)

m+
m + 

=

⎧⎨⎩[]q ifm = ,

 ifm �= .

By (.), we have a distribution formula for (h,q)-Genocchi polynomials, which is shown
by []

G̃(α,h)
n+,q(x) =

[]q
[]qa

[a]nqα

a–∑
j=

(–)jqjhG̃(α,h)
n+,qa

(
x + j
a

)
.

By applying some elementary methods, we will give symmetric properties of weighted
(h,q)-Genocchi polynomials and a weighted (h,q)-zeta-type function. Consequently, our
applications seem to be interesting and worthwhile for further works of manymathemati-
cians in analytic numbers theory.

2 On the (h,q)-zeta-type function
In this part, we firstly recall the (h,q)-zeta-type function with weight α which is derived
in [] as follows:

ζ̃ (α,h)
q (s,x) = []q

∞∑
m=

(–)mqmh

[m + x]sqα

, (.)

where q ∈C, h ∈N and �(s) > . It is clear that the special case h =  and q →  in (.) re-
duces to the ordinary Hurwitz-Euler zeta function. Now, we consider (.) in the following
form:

ζ̃
(α,h)
qa

(
s,bx +

bj
a

)
= []qa

∞∑
m=

(–)mqmah

[m + bx + bj
a ]

s
qaα

.

By applying some basic operations to the above identity, that is, for any positive integers
m and b, there exist unique non-negative integers k and i such thatm = bk + i with ≤ i ≤
b – . For a≡ (mod) and b≡ (mod). Thus, we can compute as follows:

ζ̃
(α,h)
qa

(
s,bx +

bj
a

)

= [a]sqα []qa
∞∑
m=

(–)mqmah

[ma + abx + bj]sqaα

= [a]sqα []qa
∞∑
m=

b–∑
i=

(–)i+mbq(i+mb)ah

[(i +mb)a + abx + bj]sqaα

= [a]sqα []qa
b–∑
i=

(–)iqiah
∞∑
m=

(–)mqmbah

[ab(m + x) + ai + bj]sqα

. (.)
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From this, we can easily discover the following:

a–∑
j=

(–)jqjbhζ̃ (α,h)
qa

(
s,bx +

bj
a

)

= [a]sqα []qa
a–∑
j=

(–)jqjbh
b–∑
i=

(–)iqiah
∞∑
m=

(–)mqmbah

[ab(m + x) + ai + bj]sqα

. (.)

Replacing a by b and j by i in (.), we have the following:

ζ̃
(α,h)
qb

(
s,ax +

ai
b

)
= [b]sqα []qb

a–∑
j=

(–)jqjbh
∞∑
m=

(–)mqmbah

[ab(m + x) + ai + bj]sqα

.

By considering the above identity in (.), we can easily state the following theorem.

Theorem  The following identity is true:

[]qb
[a]sqα

a–∑
i=

(–)iqibhζ̃ (α,h)
qa

(
s,bx +

bi
a

)
=
[]qa
[b]sqα

b–∑
i=

(–)iqiahζ̃ (α,h)
qb

(
s,ax +

ai
b

)
.

Now, setting b =  in Theorem , we have the following distribution formula:

ζ̃ (α,h)
q (s,ax) =

[]q
[]qa [a]sqα

a–∑
i=

(–)iqihζ̃ (α,h)
qa

(
s,x +

i
a

)
. (.)

Putting a =  in (.) leads to the following corollary.

Corollary  The following identity holds true:

ζ̃ (α,h)
q (s, x) =

[]q
[]q []sqα

(
ζ̃
(α,h)
q (s,x) – qhζ̃ (α,h)

q

(
s,x +




))
.

Taking s = –m into Theorem , we have the symmetric property of (h,q)-Genocchi poly-
nomials by the following theorem.

Theorem  The following identity is true:

[]qb [a]m–
qα

a–∑
j=

(–)iqibhG̃(α,h)
m,qa

(
bx +

bi
a

)
= []qa [b]m–

qα

b–∑
i=

(–)iqiahG̃(α,h)
m,qb

(
ax +

ai
b

)
.

Now also, setting b =  and replacing x by x
a in the above theorem, we can rewrite the

following (h,q)-Genocchi polynomials with weight α:

G̃(α,h)
n,q (x) =

[]q
[]qa

[a]n–qα

a–∑
i=

(–)iqihG̃(α,h)
n,qa

(
x + i
a

)
( � a).
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Due to Araci et al. [], we develop as follows:

∞∑
n=

G̃(α,h)
n,q (x + y)

tn

n!
= []qt

∞∑
m=

(–)mqmhet[x+y+m]qα

= []qt
∞∑
m=

(–)mqmhet[y]qα e(q
αyt)[x+m]qα

=

( ∞∑
n=

[y]nqα

tn

n!

)( ∞∑
n=

qα(n–)yG̃(α,h)
n,q (x)

tn

n!

)
.

By using the Cauchy product, we see that

∞∑
n=

( n∑
j=

(
n
j

)
qα(j–)yG̃(α,h)

j,q (x)[y]n–jqα

)
tn

n!
.

Thus, by comparing the coefficients of tn
n! , we state the following corollary.

Corollary  The following equality holds true:

G̃(α,h)
n,q (x + y) =

n∑
j=

(
n
j

)
qα(j–)yG̃(α,h)

j,q (x)[y]n–jqα . (.)

By using Theorem  and (.), we readily derive the following symmetric relation after
some applications.

Theorem  The following equality holds true:

[]qb
m∑
i=

(
m
i

)
[a]i–qα [b]m–i

qα G̃(α,h)
i,qa (bx)̃S(α)m–i:qb,h+i–(a)

= []qa
m∑
i=

(
m
i

)
[b]i–qα [a]m–i

qα G̃(α,h)
i,qb (ax)̃S(α)m–i:qa,h+i–(b),

where S̃(α)m:q,i(a) =
∑a–

j= (–)jqji[j]mqα .

When q →  into Theorem , it leads to the following corollary.

Corollary  The following identity holds true:

m∑
i=

(
m
i

)
ai–bm–iGi(bx)Sm–i(a)

=
m∑
i=

(
m
i

)
bi–am–iGi(ax)Sm–i(b),
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where Sm(a) =
∑a–

j= (–)jjm and Gn(x) are called the ordinary Genocchi polynomials which
are defined via the following generating function:

∞∑
n=

Gn(x)
tn

n!
=

t
et + 

ext .
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