A note on the (h, q)-zeta-type function with weight α

Elif Cetin ${ }^{1}$, Mehmet Acikgoz², Ismail Naci Cangul ${ }^{1}$ and Serkan Araci2 ${ }^{*}$

"Correspondence:
mtsrkn@hotmail.com
${ }^{2}$ Faculty of Arts and Science, Department of Mathematics, University of Gaziantep, Gaziantep, 27310, Turkey
Full list of author information is available at the end of the article

Abstract

The objective of this paper is to derive the symmetric property of an (h, q)-zeta function with weight α. By using this property, we give some interesting identities for (h, q)-Genocchi polynomials with weight α. As a result, our applications possess a number of interesting properties which we state in this paper. MSC: 11S80; 11B68

Keywords: (h,q)-Genocchi numbers and polynomials with weight α; (h,q)-zeta function with weight α; p-adic q-integral on \mathbb{Z}_{p}

1 Introduction

Recently, Kim has developed a new method by using the q-Volkenborn integral (or p-adic q-integral on \mathbb{Z}_{p}) and has added weight to q-Bernoulli numbers and polynomials and investigated their interesting properties (see [1]). He also showed that these polynomials are closely related to weighted q-Bernstein polynomials and derived novel properties of q-Bernoulli numbers with weight α by using the symmetric property of weighted q-Bernstein polynomials with the help of the q-Volkenborn integral (for more details, see [2]). Afterward, Araci et al. have introduced weighted (h,q)-Genocchi polynomials and defined (h, q)-zeta-type function with weight α by applying the Mellin transformation to the generating function of the (h, q)-Genocchi polynomials with weight α which interpolates for (h, q)-Genocchi polynomials with weight α at negative integers (for details, see [3]). In this paper, we also consider a (h,q)-zeta-type function with weight α and derive some interesting properties

We firstly list some notations as follows.
Imagine that p is a fixed odd prime. Throughout this work, $\mathbb{Z}, \mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} will denote by the ring of integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_{p}, respectively. Also, we denote $\mathbb{N}^{*}=\mathbb{N} \cup\{0\}$ and $\exp (x)=e^{x}$. Let $v_{p}: \mathbb{C}_{p} \rightarrow \mathbb{Q} \cup\{\infty\}$ (\mathbb{Q} is the field of rational numbers) denote the p-adic valuation of \mathbb{C}_{p} normalized so that $v_{p}(p)=1$. The absolute value on \mathbb{C}_{p} will be denoted as $|\cdot|$, and $|x|_{p}=p^{-v_{p}(x)}$ for $x \in \mathbb{C}_{p}$. When one speaks of q-extensions, q is considered in many ways, e.g., as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, we assume that $|q|<1$. If $q \in \mathbb{C}_{p}$, we assume $|1-q|_{p}<p^{-\frac{1}{p-1}}$ so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. We use the following notation:

$$
\begin{equation*}
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad[x]_{-q}=\frac{1-(-q)^{x}}{1+q} . \tag{1.1}
\end{equation*}
$$

We want to note that $\lim _{q \rightarrow 1}[x]_{q}=x ; c f$. [1-23].
For a fixed positive integer d, set

$$
\begin{aligned}
& X=X_{d}=\lim _{\overleftarrow{\hbar}} \mathbb{Z} / d p^{n} \mathbb{Z}, \\
& X^{*}=\bigcup_{\substack{0<a<d p \\
(a, p)=1}} a+d p \mathbb{Z}_{p}
\end{aligned}
$$

and

$$
a+d p^{n} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a\left(\bmod d p^{n}\right)\right\}
$$

where $a \in \mathbb{Z}$ satisfies the condition $0 \leq a<d p^{n}$ (see [1-23]).
The following p-adic q-Haar distribution was defined by Kim:

$$
\mu_{q}\left(x+p^{n} \mathbb{Z}_{p}\right)=\frac{q^{x}}{\left[p^{n}\right]_{q}}
$$

for any positive n (see $[12,13]$)
Let $U D\left(\mathbb{Z}_{p}\right)$ be the set of uniformly differentiable functions on \mathbb{Z}_{p}. We say that f is a uniformly differentiable function at a point $a \in \mathbb{Z}_{p}$ if the difference quotient

$$
F_{f}(x, y)=\frac{f(x)-f(y)}{x-y}
$$

has a limit $f^{\prime}(a)$ as $(x, y) \rightarrow(a, a)$ and denote this by $f \in U D\left(\mathbb{Z}_{p}\right)$. In [12] and [13], the p-adic q-integral of the function $f \in U D\left(\mathbb{Z}_{p}\right)$ is defined by Kim as follows:

$$
\begin{equation*}
I_{q}(f)=\int_{\mathbb{Z}_{p}} f(\xi) d \mu_{q}(\xi)=\lim _{n \rightarrow \infty} \sum_{\xi=0}^{p^{n}-1} f(\xi) \mu_{q}\left(\xi+p^{n} \mathbb{Z}_{p}\right) \tag{1.2}
\end{equation*}
$$

The bosonic integral is considered as the bosonic limit $q \rightarrow 1, I_{1}(f)=\lim _{q \rightarrow 1} I_{q}(f)$. Similarly, the p-adic fermionic integration on \mathbb{Z}_{p} is defined by Kim [8] as follows:

$$
\begin{equation*}
I_{-q}(f)=\lim _{q \rightarrow-q} I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x) \tag{1.3}
\end{equation*}
$$

By using a fermionic p-adic q-integral on $\mathbb{Z}_{p},(h, q)$-Genocchi polynomials are defined by [3]

$$
\begin{align*}
\frac{\widetilde{G}_{n+1, q}^{(\alpha, h)}(x)}{n+1} & =\int_{\mathbb{Z}_{p}} q^{(h-1) \xi}[x+\xi]_{q^{\alpha}}^{n} d \mu_{-q}(\xi) \\
& =\lim _{n \rightarrow \infty} \frac{1}{\left[p^{n}\right]_{-q}} \sum_{\xi=0}^{p^{n}-1}(-1)^{\xi}[x+\xi]_{q^{\alpha}}^{n} q^{h \xi} . \tag{1.4}
\end{align*}
$$

For $x=0$ in (1.4), we have $\widetilde{G}_{n, q}^{(\alpha, h)}(0):=\widetilde{G}_{n, q}^{(\alpha, h)}$ are called (h, q)-Genocchi numbers with weight α which is defined by

$$
\widetilde{G}_{0, q}^{(\alpha, h)}=0 \quad \text { and } \quad q^{h} \frac{\widetilde{G}_{m+1}^{(\alpha, h)}(1)}{m+1}+\frac{\widetilde{G}_{m+1}^{(\alpha, h)}}{m+1}= \begin{cases}{[2]_{q}} & \text { if } m=0 \\ 0 & \text { if } m \neq 0\end{cases}
$$

By (1.4), we have a distribution formula for (h, q)-Genocchi polynomials, which is shown by [3]

$$
\widetilde{G}_{n+1, q}^{(\alpha, h)}(x)=\frac{[2]_{q}}{[2]_{q^{a}}}[a]_{q^{\alpha}}^{n} \sum_{j=0}^{a-1}(-1)^{j} q^{j h} \widetilde{G}_{n+1, q^{a}}^{(\alpha, h)}\left(\frac{x+j}{a}\right) .
$$

By applying some elementary methods, we will give symmetric properties of weighted (h, q)-Genocchi polynomials and a weighted (h, q)-zeta-type function. Consequently, our applications seem to be interesting and worthwhile for further works of many mathematicians in analytic numbers theory.

2 On the (h, q)-zeta-type function

In this part, we firstly recall the (h, q)-zeta-type function with weight α which is derived in [3] as follows:

$$
\begin{equation*}
\widetilde{\zeta}_{q}^{(\alpha, h)}(s, x)=[2]_{q} \sum_{m=0}^{\infty} \frac{(-1)^{m} q^{m h}}{[m+x]_{q^{\alpha}}^{s}}, \tag{2.1}
\end{equation*}
$$

where $q \in \mathbb{C}, h \in \mathbb{N}$ and $\Re(s)>1$. It is clear that the special case $h=0$ and $q \rightarrow 1$ in (2.1) reduces to the ordinary Hurwitz-Euler zeta function. Now, we consider (2.1) in the following form:

$$
\widetilde{\zeta}_{q^{a}}^{(\alpha, h)}\left(s, b x+\frac{b j}{a}\right)=[2]_{q^{a}} \sum_{m=0}^{\infty} \frac{(-1)^{m} q^{m a h}}{\left[m+b x+\frac{b j}{a}\right]_{q^{a \alpha}}^{s}} .
$$

By applying some basic operations to the above identity, that is, for any positive integers m and b, there exist unique non-negative integers k and i such that $m=b k+i$ with $0 \leq i \leq$ $b-1$. For $a \equiv 1(\bmod 2)$ and $b \equiv 1(\bmod 2)$. Thus, we can compute as follows:

$$
\begin{align*}
& \widetilde{\zeta}_{q^{a}}^{(\alpha, h)}\left(s, b x+\frac{b j}{a}\right) \\
& \quad=[a]_{q^{\alpha}}^{s}[2]_{q^{a}} \sum_{m=0}^{\infty} \frac{(-1)^{m} q^{m a h}}{[m a+a b x+b j]_{q^{a \alpha}}^{s}} \\
& \quad=[a]_{q^{\alpha}}^{s}[2]_{q^{a}} \sum_{m=0}^{\infty} \sum_{i=0}^{b-1} \frac{(-1)^{i+m b} q^{(i+m b) a h}}{[(i+m b) a+a b x+b j]_{q^{a \alpha}}^{s}} \\
& \quad=[a]_{q^{\alpha}}^{s}[2]_{q^{a}} \sum_{i=0}^{b-1}(-1)^{i} q^{i a h} \sum_{m=0}^{\infty} \frac{(-1)^{m} q^{m b a h}}{[a b(m+x)+a i+b j]_{q^{\alpha}}^{s}} . \tag{2.2}
\end{align*}
$$

From this, we can easily discover the following:

$$
\begin{align*}
& \sum_{j=0}^{a-1}(-1)^{j} q^{j b h} \widetilde{\zeta}_{q^{a}}^{(\alpha, h)}\left(s, b x+\frac{b j}{a}\right) \\
& \quad=[a]_{q^{\alpha}}^{s}[2]_{q^{a}} \sum_{j=0}^{a-1}(-1)^{j} q^{j b h} \sum_{i=0}^{b-1}(-1)^{i} q^{i a h} \sum_{m=0}^{\infty} \frac{(-1)^{m} q^{m b a h}}{[a b(m+x)+a i+b j]_{q^{\alpha}}^{s}} \tag{2.3}
\end{align*}
$$

Replacing a by b and j by i in (2.2), we have the following:

$$
\widetilde{\zeta}_{q^{b}}^{(\alpha, h)}\left(s, a x+\frac{a i}{b}\right)=[b]_{q^{\alpha}}^{s}[2]_{q^{b}} \sum_{j=0}^{a-1}(-1)^{j} q^{j b h} \sum_{m=0}^{\infty} \frac{(-1)^{m} q^{m b a h}}{[a b(m+x)+a i+b j]_{q^{\alpha}}^{s}} .
$$

By considering the above identity in (2.3), we can easily state the following theorem.

Theorem 1 The following identity is true:

$$
\frac{[2]_{q^{b}}}{[a]_{q^{\alpha}}^{s}} \sum_{i=0}^{a-1}(-1)^{i} q^{i b h} \widetilde{\zeta}_{q^{a}}^{(\alpha, h)}\left(s, b x+\frac{b i}{a}\right)=\frac{[2]_{q^{a}}}{[b]_{q^{\alpha}}^{s}} \sum_{i=0}^{b-1}(-1)^{i} q^{i a h} \widetilde{\zeta}_{q^{b}}^{(\alpha, h)}\left(s, a x+\frac{a i}{b}\right) .
$$

Now, setting $b=1$ in Theorem 1, we have the following distribution formula:

$$
\begin{equation*}
\widetilde{\zeta}_{q}^{(\alpha, h)}(s, a x)=\frac{[2]_{q}}{[2]_{q^{a}}[a]_{q^{\alpha}}^{s}} \sum_{i=0}^{a-1}(-1)^{i} q^{i h} \widetilde{\zeta}_{q^{a}}^{(\alpha, h)}\left(s, x+\frac{i}{a}\right) . \tag{2.4}
\end{equation*}
$$

Putting $a=2$ in (2.4) leads to the following corollary.

Corollary 1 The following identity holds true:

$$
\widetilde{\zeta}_{q}^{(\alpha, h)}(s, 2 x)=\frac{[2]_{q}}{[2]_{q^{2}}[2]_{q^{\alpha}}^{s}}\left(\tilde{\zeta}_{q^{2}}^{(\alpha, h)}(s, x)-q^{h} \widetilde{\zeta}_{q^{2}}^{(\alpha, h)}\left(s, x+\frac{1}{2}\right)\right) .
$$

Taking $s=-m$ into Theorem 1, we have the symmetric property of (h, q)-Genocchi polynomials by the following theorem.

Theorem 2 The following identity is true:

$$
[2]_{q^{b}}[a]_{q^{\alpha}}^{m-1} \sum_{j=0}^{a-1}(-1)^{i} q^{i b h} \widetilde{G}_{m, q^{a}}^{(\alpha, h)}\left(b x+\frac{b i}{a}\right)=[2]_{q^{a}}[b]_{q^{\alpha}}^{m-1} \sum_{i=0}^{b-1}(-1)^{i} q^{i a h} \widetilde{G}_{m, q^{b}}^{(\alpha, h)}\left(a x+\frac{a i}{b}\right) .
$$

Now also, setting $b=1$ and replacing x by $\frac{x}{a}$ in the above theorem, we can rewrite the following (h,q)-Genocchi polynomials with weight α :

$$
\widetilde{G}_{n, q}^{(\alpha, h)}(x)=\frac{[2]_{q}}{[2]_{q^{a}}}[a]_{q^{\alpha}}^{n-1} \sum_{i=0}^{a-1}(-1)^{i} q^{i h} \widetilde{G}_{n, q^{a}}^{(\alpha, h)}\left(\frac{x+i}{a}\right) \quad(2 \nmid a) .
$$

Due to Araci et al. [3], we develop as follows:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \widetilde{G}_{n, q}^{(\alpha, h)}(x+y) \frac{t^{n}}{n!} & =[2]_{q} t \sum_{m=0}^{\infty}(-1)^{m} q^{m h} e^{t[x+y+m]_{q^{\alpha}}} \\
& =[2]_{q} t \sum_{m=0}^{\infty}(-1)^{m} q^{m h} e^{t[y]_{q^{\alpha}}} e^{\left(q^{\alpha y} t\right)[x+m]_{q^{\alpha}}} \\
& =\left(\sum_{n=0}^{\infty}[y]_{q^{\alpha}}^{n} \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} q^{\alpha(n-1) y} \widetilde{G}_{n, q}^{(\alpha, h)}(x) \frac{t^{n}}{n!}\right) .
\end{aligned}
$$

By using the Cauchy product, we see that

$$
\sum_{n=0}^{\infty}\left(\sum_{j=0}^{n}\binom{n}{j} q^{\alpha(j-1) y} \widetilde{G}_{j, q}^{(\alpha, h)}(x)[y]_{q^{\alpha}}^{n-j}\right) \frac{t^{n}}{n!} .
$$

Thus, by comparing the coefficients of $\frac{t^{n}}{n!}$, we state the following corollary.

Corollary 2 The following equality holds true:

$$
\begin{equation*}
\widetilde{G}_{n, q}^{(\alpha, h)}(x+y)=\sum_{j=0}^{n}\binom{n}{j} q^{\alpha(j-1) y} \widetilde{G}_{j, q}^{(\alpha, h)}(x)[y]_{q^{\alpha}}^{n-j} . \tag{2.5}
\end{equation*}
$$

By using Theorem 2 and (2.5), we readily derive the following symmetric relation after some applications.

Theorem 3 The following equality holds true:

$$
\begin{aligned}
& {[2]_{q^{b}} \sum_{i=0}^{m}\binom{m}{i}[a]_{q^{\alpha}}^{i-1}[b]_{q^{\alpha}}^{m-i} \widetilde{G}_{i, q^{a}}^{(\alpha, h)}(b x) \widetilde{S}_{m-i: q^{b}, h+i-1}^{(\alpha)}(a)} \\
& \quad=[2]_{q^{a}} \sum_{i=0}^{m}\binom{m}{i}[b]_{q^{\alpha}}^{i-1}[a]_{q^{\alpha}}^{m-i} \widetilde{G}_{i, q^{b}}^{(\alpha, h)}(a x) \widetilde{S}_{m-i: q^{a}, h+i-1}^{(\alpha)}(b),
\end{aligned}
$$

where $\widetilde{S}_{m: q, i}^{(\alpha)}(a)=\sum_{j=0}^{a-1}(-1)^{j} q^{j i}[j]_{q^{\alpha}}^{m}$.

When $q \rightarrow 1$ into Theorem 3, it leads to the following corollary.

Corollary 3 The following identity holds true:

$$
\begin{aligned}
& \sum_{i=0}^{m}\binom{m}{i} a^{i-1} b^{m-i} G_{i}(b x) S_{m-i}(a) \\
& \quad=\sum_{i=0}^{m}\binom{m}{i} b^{i-1} a^{m-i} G_{i}(a x) S_{m-i}(b),
\end{aligned}
$$

where $S_{m}(a)=\sum_{j=0}^{a-1}(-1)^{j} j^{m}$ and $G_{n}(x)$ are called the ordinary Genocchi polynomials which are defined via the following generating function:

$$
\sum_{n=0}^{\infty} G_{n}(x) \frac{t^{n}}{n!}=\frac{2 t}{e^{t}+1} e^{x t}
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors completed the paper together. All authors read and approved the final manuscript.

Author details

${ }^{1}$ Faculty of Arts and Science, Department of Mathematics, Uludag University, Bursa, Turkey. ${ }^{2}$ Faculty of Arts and Science, Department of Mathematics, University of Gaziantep, Gaziantep, 27310, Turkey.

Acknowledgements

Dedicated to Professor Hari M Srivastava.
We would like to thank the referees for their valuable suggestions and comments on the present paper. The third author is supported by Uludag University Research Fund, Project Number F-2012/16 and F-2012/19.

Received: 28 January 2013 Accepted: 20 February 2013 Published: 13 March 2013

References

1. Kim, T: On the weighted q-Bernoulli numbers and polynomials. Adv. Stud. Contemp. Math. 21(2), 207-215 (2011)
2. Kim, T, Bayad, A, Kim, YH: A study on the p-adic q-integrals representation on \mathbb{Z}_{p} associated with the weighted q-Bernstein and q-Bernoulli polynomials. J. Inequal. Appl. 2011, Article ID 513821 (2011)
3. Araci, S, Seo, JJ, Erdal, D: New construction weighted (h,q)-Genocchi numbers and polynomials related to zeta type function. Discrete Dyn. Nat. Soc. 2011, Article ID 487490 (2011). doi:10.1155/2011/487490
4. Bayad, A, Kim, T: Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ. J. Math. Phys. 18(2), 133-143 (2011)
5. Ryoo, CS: Some relations between twisted q-Euler numbers and Bernstein polynomials. Adv. Stud. Contemp. Math. 21(2), 217-223 (2011)
6. Ryoo, CS, Kim, T: An analogue of the zeta function and its applications. Appl. Math. Lett. 19, 1068-1072 (2006)
7. Kim, T: q-generalized Euler numbers and polynomials. Russ. J. Math. Phys. 13(3), 293-308 (2006)
8. Kim, T : Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_{p}. Russ. J. Math. Phys. 16, 484-491 (2009)
9. Kim, T: On the q-extension of Euler and Genocchi numbers. J. Math. Anal. Appl. 326, 1458-1465 (2007)
10. Kim, T: On the analogs of Euler numbers and polynomials associated with p-adic q-integral on \mathbb{Z}_{p} at $q=1$. J. Math. Anal. Appl. 331, 779-792 (2007)
11. Kim, T, Lee, SH, Han, HH, Ryoo, CS: On the values of the weighted q-zeta and L-functions. Discrete Dyn. Nat. Soc. 2011, Article ID 476381 (2011)
12. Kim, T: q-Volkenborn integration. Russ. J. Math. Phys. 9, 288-299 (2002)
13. Kim, T: On a q-analogue of the p-adic log gamma functions and related integrals. J. Number Theory 76, 320-329 (1999)
14. Kim, T: Note on the Euler q-zeta functions. J. Number Theory 129(7), 1798-1804 (2009)
15. Kim, T: Some formulae for the q-Bernstein polynomials and q-deformed binomial distributions. J. Comput. Anal. Appl. 14(5), 917-933 (2012)
16. Kim, T : An identity of the symmetry for the Frobenius-Euler polynomials associated with the fermionic p-adic invariant q-integrals on \mathbb{Z}_{p}. Rocky Mt. J. Math. 41(1), 239-247 (2011)
17. Kim, T, Lee, SH: Some properties on the q-Euler numbers and polynomials. Abstr. Appl. Anal. 2012, Article ID 284826 (2012)
18. Dolgy, DV, Kang, DJ, Kim, T, Lee, B: Some new identities on the twisted (h, q)-Euler numbers and q-Bernstein polynomials. J. Comput. Anal. Appl. 14(5), 974-984 (2012)
19. Ozden, H, Cangul, IN, Simsek, Y: Multivariate interpolation functions of higher order q-Euler numbers and their applications. Abstr. Appl. Anal. 2008, Article ID 390857 (2008)
20. Araci, S, Acikgoz, M, Park, KH, Jolany, H: On the unification of two families of multiple twisted type polynomials by using p-adic q-integral on \mathbb{Z}_{p} at $q=-1$. Bull. Malays. Math. Sci. Soc. (to appear)
21. Araci, S, Acikgoz, M, Park, KH: A note on the q-analogue of Kim's p-adic log gamma type functions associated with q-extension of Genocchi and Euler numbers with weight α. Bull. Korean Math. Soc. (accepted)
22. Araci, S, Erdal, D, Seo, JJ: A study on the fermionic p-adic q-integral representation on \mathbb{Z}_{p} associated with weighted q-Bernstein and q-Genocchi polynomials. Abstr. Appl. Anal. 2011, Article ID 649248 (2011)
23. Jolany, H, Araci, S, Acikgoz, M, Seo, JJ: A note on the generalized q-Genocchi measure with weight α. Bol. Soc. Parana. Mat. 31(1), 17-27 (2013)
[^0]
[^0]: doi:10.1186/1029-242X-2013-100
 Cite this article as: Cetin et al.: A note on the (h, q)-zeta-type function with weight α. Journal of Inequalities and Applications 2013 2013:100.

