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Abstract

We propose a new method for solving equilibrium problems on polyhedra, where
the underlying function is continuous and satisfies a pseudomonone assumption
which is called an interior proximal cutting hyperplane method. The method is
based on the special interior proximal function which replaces the usual quadratic
function. This leads to an interior proximal algorithm. The algorithm can be viewed
as combining the cutting hyperplane method and the special interior proximal
function. Finally some preliminary computational results are given.
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1 Introduction
Equilibrium problems appear frequently in many practical problems arising, for

instance, physics, engineering, game theory, transportation, economics and network

(see [1,2]). They become an attractive field for many researchers both theory and appli-

cations (see [3-8]). These problems are models whose formulation includes optimiza-

tion, variational inequalities, (vector) optimization problems, fixed point problems,

saddle point problems, Nash equilibria and complementarity problems as particular

cases (see [1,5,9]). In this article, we consider the equilibrium problems (shortly EP

(f, C)):

Find x∗ ∈ C such that f (x∗, y) ≥ 0 for all y ∈ C,

where C is a polyhedral set on ℝn defined by

C := {x ∈ Rn|Ax ≤ b}, (1:1)

A is a p × n matrix, b Î ℝp, f : C × C ® ℝ is a bifunction such that f(x, x) = 0 for

every x Î C.

Throughout this article, we assume that:

(A.1) intC = {x | Ax <b} is nonempty.

(A.2) f(x,·) is convex on C for all xÎ C.

(A.3) f is continuous on C × C.

(A.4) The solution set S of EP (f, C) is nonempty.
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Theory of equilibrium problems has been studied extensively and intensively on the

existence of solutions and generalization to many abstract ways. However, methods for

solving EP(f, C) still restrict and have not satisfy the need of applications. There are

popular approaches for solving EP(f, C) to our knowledge. The first approach is based

on the gap function (see [10]), the second way is to use the proximal point method [7]

and the third one is the auxiliary subproblem principle [8].

In [3,4], Anh proposed interior proximal methods for solving monotone equilibrium

problems when C is a polyhedral convex set. The method is based on a special interior

proximal function which replaces the usual quadratic function. The method has also

been studied to variational inequalities by many authors (see [11,12]). This leads to an

interior proximal-type algorithm, which can be viewed as combining an Armijo-type

line search technique and the special interior proximal function. The only assumption

required is that f is monotone on C.

In this article, we propose an algorithm for solving EP(f, C), by making no assump-

tions on the problem other than continuity and pseudomonotonicity of the bifunction

f. Recently, Anh and Kuno [13] introduced a new method for solving multivalued var-

iational inequalities on a closed convex set, where the underlying function is upper

semicontinuous and generalized monotone. We extend the cutting hyperplane method

to EP(f, C). First, we construct an appropriate hyperplane which separates the current

iterative point from the solution set. Next we combine this technique with Armijo-type

line search technique to obtain a convergent algorithm for pseudomonotone equili-

brium problems. Then the next iteration is obtained as the projection of the current

iteration onto the intersection of the feasible set with the halfspace containing the

solution set.

The article is organized as follows. In Section 2, we give formal definitions of our

target EP(f, C) and the pseudomonotonicity of f. We then combined an idea often used

for multivalued variational inequalities to EP(f, C) and interior proximal technique to

develop an iterative algorithm. Section 3 is devoted to the proof of its global conver-

gence to a solution of EP(f, C). In the last section, we apply the algorithm for the

Nash-Cournot oligopolistic market equilibrium model. The numerical results are

implemented to verify our development.

2 The interior proximal cutting hyperplane algorithm
We list some well known definitions and the projection under the Euclidean norm

which will be required in our following analysis.

Definition 2.1 Let C be a closed convex subset of ℝn, we denote the projection on C

by PrC(·), i.e,

PrC(x) = argmin{∥∥y − x
∥∥ |y ∈ C} ∀x ∈ Rn.

Then the bifunction f: C × C ® ℝ ∪ {+∞} is said to be

(i) monotone on C if for each x, y Î C,

f (x, y) + f (y, x) ≤ 0;

(ii) pseudomonotone on C if for each x, y Î C,

f (x, y) ≥ 0 implies f (y, x) ≤ 0.
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It is observe that (i) ⇒ (ii). But the converse is not true. There are some examples in

[14].

Classical variational inequality problems (shortly VIP) are to find a vector x* Î C

such that〈
F(x∗), y − x∗〉 ≥ 0 ∀y ∈ C,

where C ⊆ ℝn is a nonempty closed convex subset of ℝn and F is a continuous map-

ping from C into ℝn. Then they can be alternatively formulated as finding the zero

point of the operator T(x) = F(x) + NC(x) where

NC(x) =
{ {y ∈ C| 〈y, z − x

〉 ≤ 0, ∀z ∈ C} if x ∈ C,
∅ otherwise.

A well known method to solve this problem is the proximal point algorithm [2],

which starting with any point x0 Î C and lk ≥ l > 0, iteratively updates xk+1 conform-

ing the following problem:

0 ∈ λkT(x) + ∇xh(x, xk), (2:1)

where

h(x, xk) =
1
2

∥∥∥x − xk
∥∥∥2.

Motivation for studying the algorithm of problem (2.1) could be found in [11,15,16].

Auslender et al. [12] have proposed an interior proximal-type method for solving

(VIP) on C := Rn
+ = {x ∈ Rn|x ≥ 0} through replacing function h(x, xk) by dj(x, x

k)

which is defined as

dφ(x, y) =
n∑
i=1

y2i φ(y
−1
i xi),

where

φ(t) =
{

ν
2 (t − 1)2 + μ(t − log t − 1) if t > 0,
+∞ otherwise,

(2:2)

with ν >μ > 0. The fundamental difference here is that the term dj is used to force

the iterations {xk+1} to stay in the interior of Rn
+ . This technique is extended by many

authors to variational inequalities and equilibrium problems (see [1,3]).

Applying this idea to the equilibrium problem EP(f, C), we consider another interior

proximal function defined by

D(x, y) =

⎧⎨
⎩

1
2

∥∥x − y
∥∥2 + μ

p∑
i=1

l2i (y)
(
li(x)
li(y)

log li(x)
li(y)

− li(x)
li(y)

+ 1
)
if x ∈ int C,

+∞ otherwise,

with μ Î (0, 1), ai (i = 1, ..., p) are the rows of the matrix A, and

li(x) = bi − 〈ai, x〉 ,
l(x) =

(
l1(x), l2(x), . . . , lp(x)

)T .
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We denote by ∇1D(x, y) the gradient of D(·, y) at x for every y Î C. It is easy to see

that

∇1D(x, y) = x − y − μATXy log
l(x)
l(y)

,

where

Xy := diag
(
l1(y), . . . , lp(y)

)
and log

l(x)
l(y)

:=
(
log

l1(x)
l1(y)

, · · · , log lp(x)

lp(y)

)
.

Then we consider the following regularized auxiliary problem (shortly RAP):

Find x∗ ∈ C such that f (x∗, y) +
1
c
D(y, x∗) ≥ 0 for all y ∈ C,

where c > 0 is a regularization parameter.

The equivalence between EP(f, C) and (RAP) is due to the following lemma (see [1]).

Lemma 2.2 Let f: C × C ® ℝ ⋂ {+∞} be a bifunction and x* Î C. Then x* is a solu-

tion to EP(f, C) if and only if x* is a solution to (RAP).

Lemma 2.2 shows that the solution of the equilibrium problem EP(f, C) can be

approximated by an iterative procedure xk+l = h(xk), k = 0, 1,..., where c > 0, x0 is any

starting point in C and h(xk) is the unique solution of the strongly convex program:

min
{
f (xk, y) +

1
c
D(y, xk)|y ∈ C

}
.

However, generally, the sequence {xk} does not converge to a solution of the equili-

brium problems (see [2]).

Let f be a mapping defined by

f (x, y) := sup{〈w, y − x
〉 |w ∈ F(x)},

where F : C → 2R
n is a multivalued mapping such that F(x) 
= ∅ for all x Î C. Then

EP(f, C) can be formulated as the multivalued variational inequality problems (shortly

MVIP):

Find x* Î C, w* Î F(x*) such that〈
w∗, x − x∗〉 ≥ 0 ∀x ∈ C.

In this case, it is known that solutions coincide with zeros of the following projected

residual function

T(x) := x − PrC(x − w∗).

In other words, with x0 Î C, w0 Î F(x0), the point (x0, w0) is a solution of (MVIP) if

and only if T(x0) = 0, where T(x0) = x0 - PrC(x
0 - w0) (see [16]). Applying this idea and

interior proximal function technique D(·,·) to the equilibrium problem EP(f, C), we

obtain the solution scheme: Let xk be a current approximation to the solution of EP

(f, C). First, we compute yk = arg min{f(xk, y) + bD(y, xk) | y Î C} for some positive

constant b. Next, we search the line segment between xk and r(xk) = xk-yk for a point

(w̄k, zk) such that the hyperplane ∂Hk = {x ∈ Rn| 〈w̄k, x − zk
〉
= 0} strictly separates xk
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from the solution set S of EP(f, C). To find such (w̄k, zk) , we may use a computation-

ally inexpensive Armijo-type procedure. Then we compute the next iterate xk+1 by pro-

jecting xk onto the intersection of the feasible set C with the halfspace

Hk = {x ∈ Rn| 〈w̄k, x − zk
〉 ≤ 0} .

Then, the algorithm is described as follows.

Algorithm 2.3

Step 0. Choose σ > 0, x0 ∈ C, 0 < σ <
β

2 , and g Î (0, 1).

Step 1. Compute

yk := argmin{f (xk, y) + βD(y, xk)|y ∈ C}, r(xk) := xk − yk. (2:3)

Find the smallest nonnegative number mk of m such that

f (xk − γmkr(xk), yk) + σ

∥∥∥r(xk)∥∥∥2 ≤ 0. (2:4)

Step 2. (Cutting hyperplane) Choose w̄k ∈ ∂2f (zk, zk) , where zk := xk − γmkr(xk) .

Set

Hk := {x ∈ Rn|
〈
w̄k, x − zk

〉
≤ 0}.

Find xk+1 := PrC∩Hk(x
k) .

Step 3. Set k: = k + 1, and go to Step 1.

3 Convergence of the algorithm
In the next lemma, we justify the stopping criterion.

Lemma 3.1 If r(xk) = 0, then xk is a solution to equilibrium problem EP(f, C).

Proof. Since yk is the solution to problem (2.3) and an optimization result in convex

programming (see [1]), we have

0 ∈ ∂2f (xk, yk) + β∇1D(yk, xk) +NC(yk),

where NC denotes the normal cone. From yk Î intC, it follows that NC(y
k) = {0}.

Hence

ξ k + β∇1D(yk, xk) = 0,

where ξk Î ∂2f (x
k, yk). Replacing yk = xk in this equality, we get

ξ k + β∇1D(xk, xk) = 0.

Since

∇1D(x, y) = x − y − μATXy log
l(x)
l(y)

∀x, y ∈ C, (3:1)

we have

∇1D(xk, xk) = 0.
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Thus ξk = 0. Combining this with f(xk,xk) = 0, we obtain

f (xk, y) ≥
〈
ξ k, y − ξ k

〉
= 0 ∀y ∈ C.

which means that xk is a solution to EP(f, C).

In Algorithm 2.3, we need to show the existence of the nonnegative integer mk.

Lemma 3.2 For γ ∈ (0, 1), 0 < σ <
β

2 , if r (xk) > 0 then there exists the smallest

nonnegative integer mk such that the inequality (2.4) holds.

Proof. Assume on the contrary, the inequality (2.4) is not satisfied for any nonnega-

tive integer i, i.e.,

f (xk − γ ir(xk), yk) + σ

∥∥∥r(xk)∥∥∥2 > 0.

Letting i ® ∞, from the continuity of f we have

f (xk, yk) + σ

∥∥∥r(xk)∥∥∥ ≥ 0. (3:2)

Otherwise, for each t > 0 we have 1 − 1
t ≤ log t . We obtain after multiplication by

li(yk)
li(xk)

> 0 for each i = 1, ..., p,

li(yk)
li(xk)

− 1 ≤ li(yk)
li(xk)

log
li(yk)
li(xk)

.

Then,

D(yk, xk) =
1
2

∥∥∥xk − yk
∥∥∥2 + μ

n∑
i=1

l2i (x
k)
(
li(yk)
li(xk)

log
li(yk)
li(xk)

− li(yk)
li(xk)

+ 1
)

≥ 1
2

∥∥∥r(xk)∥∥∥2.
(3:3)

Since yk is the solution to the strongly convex program (2.4), we have

f (xk, y) + βD(y, xk) ≥ f (xk, yk) + βD(yk, xk) ∀y ∈ C.

Substituting y = xk Î C and using assumptions f(xk, xk) = 0, D(xk, xk) = 0, we get

f (xk, yk) + βD(yk, xk) ≤ 0. (3:4)

Combining (3.3) with (3.4), we obtain

f (xk, yk) +
β

2

∥∥∥r(xk)∥∥∥2 ≤ 0. (3:5)

Then, inequalities (3.2) and (3.5) imply that

−σ

∥∥∥r(xk)∥∥∥2 ≤ f (xk, yk) ≤ −β

2

∥∥∥r(xk)∥∥∥2.
Hence it must be either r(xk) = 0 or σ ≥ β

2 . The first case contradicts to r(xk) ≠ 0,

while the second one contradicts to the fact σ <
β

2 .

The following results perform some property of the cutting hyperplane Hk.
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Lemma 3.3 Let {xk} be the sequence generated by Algorithm 2.3. Then the following

hold:

(i) xk ∉ Hk, S ⊆ C ⋂ Hk.

(ii) xk+1 = prC∩Hk
(ȳk), where ȳk = PrHk(x

k) .

Proof. (i) Since w̄k ∈ ∂2f (zk, zk), yk ∈ C, f (zk, zk) = 0 , and zk = xk − γmkr(xk) , we have

f (zk, yk) ≥
〈
w̄k, yk − zk

〉
= −(1 + γmk)

〈
w̄k, r(xk)

〉
.

Combining this with (2.4), we obtain that

(1 + γmk)
〈
w̄k, r(xk)

〉
≥ σ

∥∥∥r(xk)∥∥∥2. (3:6)

Hence〈
w̄k, xk − zk

〉
= γmk

〈
w̄k, r(xk)

〉
≥ σγmk

1 + γmk

∥∥∥r(xk)∥∥∥2
> 0.

This implies xk ∉ Hk.

Since f is assumed to be pseudomonotone on C, zk Î C and x* Î S,

f (x∗, zk) ≥ 0 ⇒ f (zk, x∗) ≤ 0.

Combining this with w̄k ∈ ∂2f (zk, zk) , we get

〈
w̄k, x∗ − zk

〉
≤ f (zk, x∗) − f (zk, zk)

≤ 0.

Thus, x* Î Hk.

(ii) We know that

H = {x ∈ Rn| 〈w, x − x0
〉 ≤ 0}, PrH(y) = y −

〈
w, y − x0

〉
‖w‖2 w.

Hence,

ȳk = PrHk(x
k)

= xk −
〈
w̄k, xk − zk

〉
∥∥w̄k
∥∥2 w̄k

= xk − γmk
〈
w̄k, r(xk)

〉
∥∥w̄k
∥∥2 w̄k.

Otherwise, for every y Î C ⋂ Hk there exists l Î (0, 1) such that

x̂ = λxk + (1 − λ)y ∈ C ∩ ∂Hk,
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where ∂Hk = {x ∈ Rn
∣∣〈w̄k, x − zk〉 = 0 } , because xk Î C but xk ∉ Hk.∥∥∥y − ȳk

∥∥∥2 ≥ (1 − λ)2
∥∥∥y − ȳk

∥∥∥2
=
∥∥∥x̂ − λxk − (1 − λ)ȳk

∥∥∥2
=
∥∥∥(x̂ − ȳk) − λ(xk − ȳk)

∥∥∥2
=
∥∥∥x̂ − ȳk

∥∥∥2 + λ2
∥∥∥xk − ȳk

∥∥∥2 − 2λ〈x̂ − ȳk, xk − ȳk〉

=
∥∥∥x̂ − ȳk

∥∥∥2 + λ2
∥∥∥xk − ȳk

∥∥∥2
≥
∥∥∥x̂ − ȳk

∥∥∥2,

(3:7)

because ȳk = PrHk(x
k) . Also we have

∥∥∥x̂ − xk
∥∥∥2 =

∥∥∥x̂ − ȳk + ȳk − xk
∥∥∥2

=
∥∥∥x̂ − ȳk

∥∥∥2 − 2〈x̂ − ȳk, xk − ȳk〉 +
∥∥∥ȳk − xk

∥∥∥2
=
∥∥∥x̂ − ȳk

∥∥∥2 + ∥∥∥ȳk − xk
∥∥∥2.

Since xk+1 = PrC∩Hk(x
k), using the Pythagorean theorem we can reduce that

∥∥∥x̂ − ȳk
∥∥∥2 =

∥∥∥x̂ − xk
∥∥∥2 −

∥∥∥ȳk − xk
∥∥∥2

≥
∥∥∥xk+1 − xk

∥∥∥2 −
∥∥∥ȳk − xk

∥∥∥2
=
∥∥∥xk+1 − ȳk

∥∥∥2.
(3:8)

From (3.7) and (3.8), we have∥∥∥xk+1 − ȳk
∥∥∥ ≤

∥∥∥y − ȳk
∥∥∥ ∀y ∈ C ∩ Hk,

which implies

xk+1 = PrC∩Hk(ȳ
k).

In order to prove the convergence of Algorithm 2.3, we give the following key prop-

erty of the sequence {xk} generated by the algorithm.

Lemma 3.4 The sequence {xk} generated by Algorithm 2.3 satisfies the following

inequality.

∥∥∥xk+1 − x∗
∥∥∥2 ≤

∥∥∥xk − x∗
∥∥∥2 −

∥∥∥xk+1 − yk
∥∥∥2 −

(
γmkσ∥∥w̄k
∥∥ (1 + γmk)

)2∥∥∥r(xk)∥∥∥4. (3:9)

Proof. Since xk+1 = PrC∩Hk(y
k) , we have

〈
yk − xk+1, z − xk+1

〉
≤ 0 ∀z ∈ C ∩ Hk.
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Substituting z = x* Î C ⋂ Hk, then we have〈
yk − xk+1, x∗ − xk+1

〉
≤ 0 ⇔

〈
yk − xk+1, x∗ − yk + yk − xk+1

〉
≤ 0,

which implies∥∥∥xk+1 − yk
∥∥∥2 ≤

〈
xk+1 − yk, x∗ − yk

〉
.

Hence,∥∥∥xk+1 − x∗
∥∥∥2 =

∥∥∥xk+1 − yk + yk − x∗
∥∥∥2

=
∥∥∥xk+1 − yk

∥∥∥2 + ∥∥∥yk − x∗
∥∥∥2 + 2

〈
xk+1 − yk, yk − x∗

〉
≤
〈
x∗ − yk, xk+1 − yk

〉
+
∥∥∥yk − x∗

∥∥∥2 + 2
〈
xk+1 − yk, yk − x∗

〉
=
∥∥∥yk − x∗

∥∥∥2 + 〈xk+1 − yk, yk − x∗
〉

=
∥∥∥yk − x∗

∥∥∥2 −
∥∥∥xk+1 − yk

∥∥∥2.

(3:10)

Since zk = xk − γmkr(xk) and

yk − PrHk(x
k) = xk −

〈
w̄k, xk − zk

〉
∥∥w̄k
∥∥2 w̄k,

we have∥∥∥yk − x∗
∥∥∥2

=
∥∥∥xk − x∗

∥∥∥2 +
〈
w̄k, xk − zk

〉2∥∥w̄k
∥∥4

∥∥∥w̄k
∥∥∥2 − 2

〈
w̄k, xk − zk

〉
∥∥w̄k
∥∥2

〈
w̄k, xk − x∗

〉

=
∥∥∥xk − x∗

∥∥∥2 +
(

γmk
〈
w̄k, r(xk)

〉∥∥w̄k
∥∥

)2

− 2γmk
〈
w̄k, r(xk)

〉
∥∥w̄k
∥∥2

〈
w̄k, xk − x∗

〉

=
∥∥∥xk − x∗

∥∥∥2 −
(

γmk
〈
w̄k, r(xk)

〉∥∥w̄k
∥∥

)2

−2

⎡
⎣γmk

〈
w̄k, r(xk)

〉
∥∥w̄k
∥∥2

〈
w̄k, xk − x∗

〉
−
(

γmk
〈
w̄k, r(xk)

〉∥∥w̄k
∥∥

)2
⎤
⎦

=
∥∥∥xk − x∗

∥∥∥2 −
(

γmk
〈
w̄k, r(xk)

〉∥∥w̄k
∥∥

)2

−2γmk
〈
w̄k, r(xk)

〉
∥∥w̄k
∥∥2

[〈
w̄k, xk − x∗

〉
− γmk

〈
w̄k, r(xk)

〉]

=
∥∥∥xk − x∗

∥∥∥2 −
(

γmk
〈
w̄k, r(xk)

〉∥∥w̄k
∥∥

)2

−2γmk
〈
w̄k, r(xk)

〉
∥∥w̄k
∥∥2

〈
w̄k, xk − x∗ − γmkr(xk)

〉

=
∥∥∥xk − x∗

∥∥∥2 −
(

γmk
〈
w̄k, r(xk)

〉∥∥w̄k
∥∥

)2

− 2γmk
〈
w̄k, r(xk)

〉
∥∥w̄k
∥∥2

〈
w̄k, zk − x∗

〉
.

(3:11)
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From (3.6), it follows that

〈
w̄k, r(xk)

〉
≥ σ

1 + γmk

∥∥∥r(xk)∥∥∥2.
Thus, (3.11) reduces to

∥∥∥yk − x∗
∥∥∥2 ≤

∥∥∥xk − x∗
∥∥∥2 −

(
γmk

〈
w̄k, r(xk)

〉∥∥w̄k
∥∥

)2

≤
∥∥∥xk − x∗

∥∥∥2 −
(

γmkσ∥∥w̄k
∥∥ (1 + γmk)

)2∥∥∥r(xk)∥∥∥4.
(3:12)

Combining (3.10) and (3.12), we obtain the inequality (3.9)

Theorem 3.5 Suppose that Assumptions A.1-A.4 hold, the mapping ∂2f (·, z
k) is uni-

formly bounded by M > 0, and f is pseudomonone on C. Then the sequence {xk} gener-

ated by Algorithm 2.3 converges to a solution of EP(f, C).

Proof. The inequality (3.9) implies that the sequence {∥xk-x*∥} is nonincreasing and

hence convergent. Consequently, the sequence {xk} is bounded.

Since the mapping ∂2f (·, z
k) is uniformly bounded by M > 0, i.e.,∥∥∥wk

∥∥∥ ≤ M ∀k = 1, ....

This, together with (3.9), implies

∥∥∥xk+1 − x∗
∥∥∥2 ≤

∥∥∥xk − x∗
∥∥∥2 −

∥∥∥xk+1 − yk
∥∥∥2 −

(
γmkσ

M(1 + γmk)

)2∥∥r(x4)∥∥4. (3:13)

Since {∥xk - x*∥} converges to zero, it is easy to see that

lim
k→∞

γmk

∥∥∥r(xk)∥∥∥ = 0.

The cases remaining to consider are the following.

Case 1. lim sup
k→∞

γmk > 0 . This case must follow that lim inf
k→∞

∥∥r(xk)∥∥ = 0. Since {xk} is

bounded, there exists x̄ which is an accumulation point of {xk}. In other words, a sub-

sequence {xki} converges to some x̄ such that r(x̄) = 0 , as i ® ∞. Then we see from

Lemma 3.3 that x̄ ∈ S , and besides we can take x∗ = x̄ , in particular in (3.13). Thus{∥∥xk − x̄
∥∥} is a convergent sequence. Since x̄ is an accumulation point of {xk}, the

sequence {∥xk - x*∥} converges to zero, i.e., {xk} converges to x̄ ∈ S .

Case 2. lim
k→∞

γmk = 0 . Since mk is the smallest nonnegative integer, mk - 1 does not

satisfy (2.4). Hence, we have

f (xk − γmk−1r(xk), yk) > −σ

∥∥∥r(xk)∥∥∥2,
and besides

f (xki − γmki−1r(xki), yki) > −σ

∥∥∥r(xki)∥∥∥2. (3:14)
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Passing onto the limit in (3.14), as i ® ∞, and using the continuity of f, we have

f (x̄, ȳ) ≥ −σ
∥∥x̄ − ȳ

∥∥2. (3:15)

From (3.5) we have

f (xki , yki) ≤ −β

2

∥∥∥r(xki∥∥∥2.
Since f is continuous, passing onto the limit, as i ® ∞, we obtain

f (x̄, ȳ) ≤ −β

2

∥∥x̄ − ȳ
∥∥2.

Combining this with (3.15), we have

sσ
∥∥x̄ − ȳ

∥∥2 ≥ β

2

∥∥x̄ − ȳ
∥∥2,

which implies r(x̄) :=
∥∥x̄ − ȳ

∥∥ = 0 or σ ≥ β

2
. The second case contradicts to the fact

0 < σ <
β

2
and hence r(x̄) = 0, x̄ ∈ S . Letting x∗ = x̄ and repeating the previous argu-

ments, we conclude that the whole sequence {xk} converges to x̄ ∈ S .

4 Numerical results
We applied the algorithm to solve a problem of production competition under the

Nash-Cournot oligopolistic market equilibrium model (see [1,2,17]). In this model, it is

assumed that there are n-firms producing a common homogenous commodity and

that the price pi of firm i depends on the total quantity σx =
∑n

i=1 xi of the commodity.

Let hi(xi) denote the cost of the firm i when its production level is xi. Suppose that

the profit of firm i is given by

fi(x1, ..., xn) := xipi(σx) − hi(xi) i = 1, ...,n, (4:1)

where hi is the cost function of firm i that is assumed to be dependent only on its

production level.

Let C ⊂ Rn
+ := {x ∈ Rn |x ≥ 0 } be closed convex which denotes the strategy set of

firms. Each firm seeks to maximize its own profit by choosing the corresponding pro-

duction level under the presumption that the production of the other firms are para-

metric input. In this context, a Nash equilibrium is a production pattern in which no

firm can increase its profit by changing its controlled variables. Thus under this equili-

brium concept, each firm determines its best response given other firms’ actions.

Mathematically, a point x∗ = (x∗
1, ..., x

∗
n) ∈ C is said to be a Nash equilibrium point if

fi(x∗
1, ..., x

∗
i−1, yi, x

∗
i+1, ..., x

∗
n) ≤ fi(x∗

1, ..., x
∗
n) ∀y ∈ C. (4:2)

When hi is affine, this market problem can be formulated as a special Nash equili-

brium problem in the n-person nonco-operative game theory.

Set

φ(x, y) := −
n∑
i=1

fi(x1, ..., xi−1, yi, xi+1, ..., xn) (4:3)
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and

f (x, y) : = φ(x, y) − φ(x, x)

=
n∑
i=1

⎛
⎝hi(yi) − hi(xi) − yip

⎛
⎝yi +∑

j
=i
xj

⎞
⎠ + xip

(
n∑
i=1

xi

)⎞
⎠. (4:4)

Then it has been proved in [17] that the problem of finding an equilibrium point of

this model can be formulated as EP(f, C):

Find x ∈ C such that f (x∗, y) ≥ 0, for all y ∈ C.

Proposition 4.1 [2]A point x* is an equilibrium point for the oligopolistic market pro-

blem if and only if it is a solution to EP(f, C), where

f (x, y) :=
〈
H(x) − p(σx)e − p′(σx)x, y − x

〉
H(x) =

(
h’1(x1), ..., h

’
n(xn)

)T
, e = (1, ..., 1)T , σx = 〈x, e〉 .

The following proposition gives some properties of the bifunction f.

Proposition 4.2 [2]Let p : C ® ℝ+ be convex, twice continuously differentiable, and

nonincreasing and let the function μτ: ℝ+® ℝ+, defined by μτ(sx) = sxp(sx + τ) be con-

cave for every τ ≥ 0. Also, let the function hi: ℝ+® ℝ, i = 1, ..., n, be convex and twice

continuously differentiable. Then, the cost bifunction

f (x, y) :=
〈
H(x) − p(σx)e − p′(σx)x, y − x

〉
is monotone on C.

We now applied the algorithm to the example with seven firms (n = 7) provided in

[9,17], where the cost and inverse demand functions have the form

H(x) := (2x1 + 1, 3x2 + 4, 4x3 + 2, 1.5x4 + 3, 4x5 + 1, x6 − 2, 3x7 + 1)T,

p(t) :=
2
3t

t ∈ (0, +∞).

Then Propositions 4.1 and 4.2 show that the bifunction defined by (4.4) is monotone

on C × C and therefore assumptions of our algorithm are satisfied.

In this example, we choose

n = 7,

η = 0.1,

γ = 2,

β = 5,

μ = 0.5,

x0 = (3, 3, 3, 3, 3, 3, 3)T ,

C =

{
x ∈ Rn

∣∣∣∣∣13 ≤
n∑
i=1

xi ≤ 25, 1 ≤ xi ≤ 5(i = 1, ..., n)

}
.

Note that in this case, at iteration k, we have

∂2f (zk, zk) = {H(zk) − p(σzk)e − p′(σzk)z
k},
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where p′(σzk) = − 2

3σ 2
zk
. Lemma 3.1 shows that if r(xk) = 0, then xk is a solution to EP

(f, C). So we can say that xk is an �-solution to EP(f, C) if we have ∥r(xk)∥ ≤ �. The tol-

erance is taken by � = 10-6, we obtained the following Table 1.

The approximate solution obtained after seven iterations is

x7 = (2.0940, 1.0000, 1.0003, 1.4610, 1.0482, 5.0001, 1.3968)T .
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