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Abstract

At the present article, we consider a new class of general nonlinear random A-
maximal m-relaxed h-accretive equations with random relaxed cocoercive mappings
and random fuzzy mappings in q-uniformly smooth Banach spaces. By using the
resolvent mapping technique for A-maximal m-relaxed h-accretive mappings due to
Lan et al. and Chang’s lemma, we construct a new iterative algorithm with mixed
errors for finding the approximate solutions of this class of nonlinear random
equations. We also verify that the approximate solutions obtained by the our
proposed algorithm converge to the exact solution of the general nonlinear random
A-maximal m-relaxed h-accretive equations with random relaxed cocoercive
mappings and random fuzzy mappings in q-uniformly smooth Banach spaces.
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1 Introduction
The theory of variational inequalities was extended and generalized in many different

directions because of its applications in mechanics, physics, optimization, economics

and engineering sciences. For the applications, physical formulation, numerical meth-

ods and other aspects of variational inequalities (see [1-63] and the references therein).

Quasi-variational inequalities are generalized forms of variational inequalities in which

the constraint set depend on the solution. These were introduced and studied by Ben-

soussan et al. [11]. In 1991, Chang and Huang [16,17] introduced and studied some

new classes of complementarity problems and variational inequalities for set-valued

mappings with compact values in Hilbert spaces. An useful and important generaliza-

tion of the variational inequalities is called the variational inclusions, due to Hassouni

and Moudafi [34], which have wide applications in the fields of optimization and con-

trol, economics and transportation equilibrium, engineering science.
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Meanwhile, it is known that accretivity of the underlying operator plays indispensable

roles in the theory of variational inequality and its generalizations. In 2001, Huang and

Fang [41] were the first to introduce generalized m-accretive mapping and gave the

definition of the resolvent operator for generalized m-accretive mappings in Banach

spaces. Subsequently, Verma [59,60] introduced and studied new notions of A-mono-

tone and (A, h)-monotone operators and studied some properties of them in Hilbert

spaces. In [52], Lan et al. first introduced the concept of (A, h)-accretive mappings,

which generalizes the existing h-subdifferential operators, maximal h-monotone opera-

tors, H-monotone operators, A-monotone operators, (H, h)-monotone operators,

(A, h)-monotone operators in Hilbert spaces, H-accretive mapping, generalized

m-accretive mappings and (H, h)-accretive mappings in Banach spaces.

On the other hand, the fuzzy set theory which was introduced by Professor Lotfi

Zadeh [62] at the university of California in 1965 has emerged as an interesting and

fascinating branch of pure and applied sciences. The applications of the fuzzy set the-

ory can be found in many branches of regional, physical, mathematical and engineering

sciences (see, for example [10,32,63]). In 1989, by using the concept of fuzzy set,

Chang and Zu [20] first introduced and studied a class of variational inequalities for

fuzzy mappings. Since then several classes of variational inequalities with fuzzy map-

pings were considered by Chang and Haung [15], Ding [30], Ding and Park [31],

Haung [36], Kumam and Petrot [48], Noor [55] and Park and Jeong [56,57] in Hilbert

spaces. Recently, Huang and Lan [43], considered nonlinear equations with fuzzy map-

ping in fuzzy normed spaces and subsequently Lan and Verma [54] considered fuzzy

variational inclusion problems in Banach spaces. It is worth to mention that variational

inequalities with fuzzy mapping have been useful in the study of equilibrium and opti-

mal control problem (see, for example [14]).

The random variational inequality and random quasi-variational inequality problems,

random variational inclusion problems and random quasi-complementarity problems

have been introduced and studied by Chang [13], Chang and Huang [18,19], Chang and

Zhu [21], Cho et al. [22], Ganguly and Wadhawa [33], Huang and Cho [40], Khan et al.

[47] and Lan [51], etc. Recently, Lan et al. [53] introduced and studied a class of general

nonlinear random set-valued operator equations involving generalized m-accretive map-

pings in Banach spaces. They also established the existence theorems of the solution and

convergence theorems of the generalized random iterative procedures with errors for

these nonlinear random set-valued operator equations in q-uniformly smooth Banach

spaces. Cho and Lan [23] considered and studied a class of generalized nonlinear random

(A, h)-accretive equations with random relaxed cocoercive mappings in Banach spaces

and by introducing some random iterative algorithms, they proved the convergence of

iterative sequences generated by proposed algorithms. Further, by considering the con-

cepts of random mappings and fuzzy mappings, Haung [39] was first introduced the con-

cept of random fuzzy mapping. Subsequently, the random variational inclusion problem

for random fuzzy mappings is studied by Ahmad and Bazan [4]. Very recently, Onjai-Uea

and Kumam [58] introduced and studied a class of general nonlinear random (H, h)-accre-
tive equations with random fuzzy mappings in Banach spaces and by using the resolvent

mapping technique for the (H, h)-accretive mappings proved the existence and conver-

gence theorems of the generalized random iterative algorithms for these nonlinear random

equations with random fuzzy mappings in q-uniformly smooth Banach spaces.
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At the present article, inspired and motivated by recent researches in this field, we

shall introduce and study a new class of general nonlinear random A-maximal

m-relaxed h-accretive (so called (A, h)-accretive [52]) equations with random relaxed

cocoercive mappings and random fuzzy mappings in Banach spaces. By using the

resolvent mapping technique for A-maximal m-relaxed h-accretive mappings due to

Lan et al. [52] and Chang’s lemma [12], we construct a new iterative algorithm with

mixed errors for finding the approximate solutions of this class of nonlinear random

equations. We also prove the existence of random solutions and the convergence of

random iterative sequences generated by the our proposed algorithm in q-uniformly

smooth Banach spaces. The results presented in this article improve and extend the

corresponding results of [13,18,22-24,33,34,37-40,42,44,46,49,53,58] and many other

recent works.

2 Preliminaries
Throughout this article, let (�,A,μ) be a complete s-finite measure space and X be a

separable real Banach space endowed with dual space X*, the norm ∥.∥ and the dual pair

〈., .〉 between X and X*. We denote by B(X), CB(X) and Ĥ(., .) the class of Borel s-fileds
in X, the family of all nonempty closed bounded subsets of X and the Hausdorff metric

Ĥ(A,B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}

on CB(X), respectively.

The generalized duality mapping jq : X⊸X* is defined by

Jq(x) = {f ∗ ∈ X∗ : 〈x, f ∗〉 = ‖x‖q, ∥∥f ∗∥∥ = ‖x‖q−1}, ∀x ∈ X,

where q > 1 is a constant. In particular, J2 is usual normalized duality mapping. It is

known that, in general, Jq(x) = ∥x∥q-2 J2(x) for all x ≠ 0 and Jq is single-valued if X* is

strictly convex. In the sequel, we always assume that X is a real Banach space such

that Jq is single-valued. If X is a Hilbert space, then J2 becomes the identity mapping

on X.

The modulus of smoothness of X is the function rX : [0,∞) ®[0, ∞) defined by

ρX(t) = sup
{
1
2
(
∥∥x + y

∥∥ +
∥∥x − y

∥∥) − 1 : ‖x‖ ≤ 1,
∥∥y∥∥ ≤ t

}
.

A Banach space X is called uniformly smooth if

lim
t→0

ρX(t)
t

= 0.

Further, a Banach space X is called q-uniformly smooth if there exists a constant c > 0

such that

ρX(t) ≤ ctq, q > 1.

It is well-known that Hilbert spaces, Lp(or lp) spaces, 1 <p < ∞, and the Sobolev

spaces Wm, p, 1 <p < ∞, are all q-uniformly smooth.
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Concerned with the characteristic inequalities in q-uniformly smooth Banach spaces,

Xu [61] proved the following result.

Lemma 2.1. Let X be a real uniformly smooth Banach space. Then X is q-uniformly

smooth if and only if there exists a constant cq > 0 such that for all x, y Î X,∥∥x + y
∥∥q ≤ ‖x‖q + q〈y, Jq(x)〉 + cq

∥∥y∥∥q.
Definition 2.2. A mapping x : Ω ® X is said to be measurable if, for any

B ∈ B(X), {t ∈ � : x(t) ∈ B} ∈ A .

Definition 2.3. A mapping T : Ω × X ® X is called a random mapping if, for any x

Î X, T(., x): Ω ® X is measurable. A random mapping T is said to be continuous if,

for any t Î Ω, the mapping T(t, .): X ® X is continuous.

Similarly, we can define a random mapping a : Ω × X × X ® X. We shall write Tt(x)

= T(t, x(t)) and at(x, y) = a(t, x(t),y(t)) for all t Î Ω and x(t),y(t) Î X.

It is well-known that a measurable mapping is necessarily a random mapping.

Definition 2.4. A set-valued mapping V : Ω⊸X is said to be measurable if, for any

B ∈ B(X), V−1(B) = {t ∈ � : V(t) ∩ B �=� 0} ∈ A .

Definition 2.5. A mapping u : Ω ® X is called a measurable selection of a set-valued

measurable mapping V : Ω⊸X if, u is measurable and for any t Î Ω, u(t) Î V(t).

Definition 2.6. A set-valued mapping V : Ω × X⊸X is called a random set-valued

mapping if, for any x Î X, V(., x) is measurable. A random set-valued mapping V : Ω

× X⊸X is said to be Ĥ-continuous if, for any t Î Ω, V(t, .) is continuous in the Haus-

dorff metric on CB(X).

Definition 2.7. Let X be a q-uniformly smooth Banach space, T, A : Ω × X ® X and

h : Ω × X × X ® X be random single-valued mappings. Then

(a) T is said to be accretive if

〈Tt(x) − Tt(y), Jq(x(t) − y(t))〉 ≥ 0, ∀x(t), y(t) ∈ X, t ∈ �;

(b) T is called strictly accretive if T is accretive and

〈Tt(x) − Tt(y), Jq(x(t) − y(t))〉 = 0,

if and only if x(t) = y(t) for all t Î Ω;

(c) T is said to be r-strongly accretive if there exists a measurable function r : Ω ®
(0, ∞) such that

〈Tt(t) − Tt(y), Jq(x(t) − y(t))〉 ≥ r(t)
∥∥x(t) − y(t)

∥∥q, ∀x(t), y(t) ∈ X, t ∈ �;

(d) T is said to be (θ, �)-relaxed cocoercive if there exist measurable functions θ, � :

Ω ® (0, ∞) such that

〈Tt(x)−Tt(y), Jq(x(t)−y(t))〉 ≥ −θ(t)
∥∥Tt(x) − Tt(y)

∥∥q+κ(t)
∥∥x(t) − y(t)

∥∥q, ∀x(t), y(t) ∈ X, t ∈ �;

(e) T is called ϱ-Lipschitz continuous if there exists a measurable function ϱ : Ω ®
(0, ∞) such that
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∥∥Tt(x) − Tt(y)
∥∥ ≤ �(t)

∥∥x(t) − y(t)
∥∥ , ∀x(t), y(t) ∈ X, t ∈ �;

(f) h is said to be τ-Lipschitz continuous if there exists a measurable function τ : Ω

® (0, ∞) such that∥∥ηt(x, y)
∥∥ ≤ τ (t)

∥∥x(t) − y(t)
∥∥ , ∀x(t), y(t) ∈ X, t ∈ �;

(g) h is said to be μ-Lipschitz continuous in the second argument if there exists a

measurable function μ : Ω ® (0, ∞) such that∥∥ηt(x, u) − ηt(y, u)
∥∥ ≤ μ(t)

∥∥x(t) − y(t)
∥∥ , ∀x(t), y(t), u(t) ∈ X, t ∈ �;

In a similar way to part (g), we can define the Lipschitz continuity of the mapping h
in the third argument.

Definition 2.8. Let X be a q-uniformly smooth Banach space, h : Ω × X × X ® X

and H, A : Ω × X ® X be three random single-valued mappings. Then set-valued map-

ping M : Ω × X⊸X is said to be:

(a) accretive if

〈u(t)−v(t), Jq(x(t)−y(t))〉 ≥ 0, ∀x(t), y(t) ∈ X, u(t) ∈ Mt(x), v(t) ∈ Mt(y), t ∈ �;

(b) h-accretive if

〈u(t)−v(t), Jq(ηt(x, y))〉 ≥ 0, ∀x(t), y(t) ∈ X, u(t) ∈ Mt(x), v(t) ∈ Mt(y), t ∈ �;

(c) strictly h-accretive if M is h-accretive and the equality holds if and only if x(t) =

y(t), ∀t Î Ω;

(d) r-strongly h-accretive if there exists a measurable function r : Ω ® (0, ∞) such

that

〈u(t)−v(t), Jq(ηt(x, y))〉 ≥ r(t)
∥∥x(t) − y(t)

∥∥q, ∀x(t), y(t) ∈ X, u(t) ∈ Mt(x), v(t) ∈ Mt(y), t ∈ �;

(e) a-relaxed h-accretive if there exists a measurable function a : Ω ® (0, ∞) such

that

〈u(t)−v(t), Jq(ηt(x, y))〉 ≥ −α(t)
∥∥x(t) − y(t)

∥∥q, ∀x(t), y(t) ∈ X, u(t) ∈ Mt(x), v(t) ∈ Mt(y), t ∈ �;

(f) m-accretive if M is accretive and (It + r(t)Mt)(X) = X for all t Î Ω and for any

measurable function r : Ω ® (0,∞), where I denotes the identity mapping on X, It
(x) = x(t), for all x(t) ÎX, t Î Ω;

(g) generalized m-accretive if M is h-accretive and (It + r(t)Mt)(X) = X for all t Î Ω

and any measurable function r : Ω ® (0, ∞);

(h) H-accretive if M is accretive and (Ht + r(t)Mt)(X) = X for all t Î Ω and any

measurable function r : Ω ® (0, ∞), where Ht(.) = H(t,.) for all t Î Ω;

(i) (H, h)-accretive if M is h-accretive and (Ht + r(t)Mt)(X) = X for all t Î Ω and

any measurable function r : Ω ® (0, ∞);
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(j) A-maximal m-relaxed h-accretive if M is m-relaxed h-accretive and (At+r(t)Mt)

(X) = X for all t Î Ω and any measurable function r : Ω ® (0, ∞), where At(.) = A

(t,.) for all t Î Ω;

(k) b-Ĥ-Lipschitz continuous if there exists a measurable function b : Ω ® (0, +∞)

such that

Ĥ(Mt(x),Mt(y)) ≤ β(t)
∥∥x(t) − y(t)

∥∥ , ∀x(t), y(t) ∈ X, t ∈ �.

Remark 2.9. (1) If X = H is a Hilbert space, then parts (a)-(i) of Definition 2.8

reduce to the definitions of monotone operators, h-monotone operators, strictly h-
monotone operators, strongly h-monotone operators, relaxed h-monotone operators,

maximal monotone operators, maximal h-monotone operators, H-monotone operators

and (H, h)-monotone operators, respectively.

(2) For appropriate and suitable choices of m, A, h and X, it is easy to see that part

(j) of Definition 2.8 includes a number of definitions of monotone operators and accre-

tive mappings (see [52]).

Proposition 2.10. [52]Let A : Ω × X ® X be an r-strongly h-accretive mapping and

M : Ω × X ⊸ X be an A-maximal m-relaxed h-accretive mapping. Then the operator

(At + r(t)Mt)
-1 is single-valued for any measurable function r : Ω ® (0, +∞) and t Î

Ω.

Definition 2.11. Let A : Ω × X ® X be a strictly h-accretive mapping and M : Ω ×

X⊸X be an A-maximal m-relaxed h-accretive mapping. Then, for any measurable func-

tion r : Ω ® (0, +∞), the resolvent operator Jηt ,Mt

ρ(t),At
: X → X is defined by:

Jηt ,Mt

ρ(t),At
(u(t)) = (At + ρ(t)Mt)−1(u(t)), ∀t ∈ �, u(t) ∈ X.

Proposition 2.12. [52]Let X be a q-uniformly smooth Banach space and h : Ω × X ×

X ® X be τ-Lipschitz continuous, A : Ω × X ® X be an r-strongly h-accretive mapping

and M : Ω × X ⊸ X be an A-maximal m-relaxed h-accretive mapping. Then the resol-

vent operator Jηt ,Mt

ρ(t),At
: X → X is τ q−1(t)

r(t)−ρ(t)m(t) -Lipschitz continuous, i.e.,

∥∥∥Jηt ,Mt

ρ(t),At
(x(t)) − Jηt ,Mt

ρ(t),At
(y(t))

∥∥∥ ≤ τ q−1(t)
r(t) − ρ(t)m(t)

∥∥x(t) − y(t)
∥∥ , ∀x(t), y(t) ∈ X, t ∈ �,

where ρ(t) ∈
(
0, r(t)

m(t)

)
is a real-valued random variable for all t Î Ω.

3 A new random variational inclusion problem and random iterative
algorithm
In what follows, we denote the collection of all fuzzy sets on X by

F(X) = {A|A : X → [0, 1]} . For any set K, a mapping S from K into F(X) is called a

fuzzy mapping. If S : K → F(X) is a fuzzy mapping, then S(x) , for any x Î K, is a

fuzzy set on F(X) (in the sequel, we denote S(x) by Sx ) and Sx(y), for any y Î X, is

the degree of membership of y in Sx . For any A ∈ F(X) and a Î [0,1], the set

(A)α = {x ∈ X : A(x) ≥ α}

is called a a-cut set of A.
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Definition 3.1. A fuzzy mapping S : � → F(X) is called measurable if, for any a Î

(0, 1], (S(.))α : � � X is a measurable set-valued mapping.

Definition 3.2. A fuzzy mapping S : � × X → F(X) is called a random fuzzy map-

ping if, for any x ∈ X, S(., x) : � → F(X) is a measurable fuzzy mapping.

Now, let us introduce our main considered problem.

Suppose that S,T ,P ,Q,G : � × X → F(X) are random fuzzy mappings, A, p : Ω ×

X ® X and h : Ω × X × X ® X, N : Ω × X × X × X ® X are random single-valued

mappings. Further, let a, b, c, d, e : X ® [0, 1] be any mappings and M : Ω × X × X⊸X

be a random set-valued mapping such that, for each fixed t Î Ω and z(t) Î X, M (t,.,z

(t)):X⊸X be an A-maximal m-relaxed h-accretive mapping with Im(p)∩dom M (t,.,z(t))≠

∅. Now, we consider the following problem:

For any element h : Ω ® X and any measurable function l : Ω ® (0, +∞), find mea-

surable mappings x, υ, u, v, ϑ, w : Ω ® X such that for each
t ∈ �, x(t) ∈ X, St,x(t)(ν(t)) ≥ a(x(t)), Tt,x(t)(u(t)) ≥ b(x(t)), Pt,x(t)(v(t)) ≥ c(x(t)), Qt,x(t)(ϑ(t)) ≥ d(x(t)), Gt,x(t)(w(t)) ≥ e(x(t)) and

h(t) ∈ Nt(ν, u, v) + λ(t)Mt(pt(x) − ϑ ,w), ∀t ∈ �. (3:1)

The problem (3.1) is called the general nonlinear random A-maximal m-relaxed h-
accretive equation with random relaxed cocoercive mappings and random fuzzy map-

pings in Banach spaces.

Remark 3.3. Obviously, the random fuzzy mapping includes set-valued mapping,

random set-valued mapping and fuzzy mapping as the special cases. These mean that

for appropriate and suitable choices of X, A, η, λ, p, M, N, S, T , P , Q, G and h,

one can obtain many known classes of random variational inequalities, random quasi-

variational inequalities, random complementarity and random quasi-complementarity

problems as special cases of the problem (3.1), (see, for example

[1-3,22,23,34,37,45,49,50,53,58] and the references therein).

In the sequel, we will develop and analyze a new class of iterative methods and con-

struct a new random iterative algorithm with mixed errors for solving the problem

(3.1). For this end, we need the following lemmas.

Lemma 3.4. [12]Let M : Ω × X ® CB(X) be a Ĥ-continuous random set-valued map-

ping. Then, for any measurable mapping x : Ω ® X, the set-valued mapping M(., x(.)):

Ω ® CB(X) is measurable.

Lemma 3.5. [12]Let M, V : Ω ® CB(X) be two measurable set-valued mappings, � >

0 be a constant and x : Ω ® X be a measurable selection of M. Then there exists a

measurable selection y : Ω ® X of V such that, for any t Î Ω,∥∥x(t) − y(t)
∥∥ ≤ (1 + ε)Ĥ(M(t), V(t)).

The following lemma offers a good approach for solving the problem (3.1).

Lemma 3.6. The set of measurable mappings x, υ, u, v, ϑ, w : Ω ® X is a random

solution of the problem (3.1) if and only if, for each t Î Ω, υ(t) Î St(x), u(t) Î Tt(x), v

(t) Î Pt(x), ϑ(t) Î Qt(x), w(t) Î Gt(x) and

pt(x) = ϑ(t) + Jηt ,Mt(.,w)
ρ(t)λ(t),At

[At(pt(x) − ϑ) − ρ(t)(Nt(ν, u, v) − h(t))],
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where Jηt ,Mt(.,w)
ρ(t)λ(t),At

= (At + ρ(t)λ(t)Mt(.,w))−1 and r : Ω ® (0, ∞) is a measurable

function.

Proof. The fact follows directly from the definition of Jηt ,Mt(.,w)
ρ(t)λ(t),At

.

In order to prove our main result, the following concepts are also needed. Let

S,T ,P ,Q,G : � × X → F(X) be five random fuzzy mappings satisfying the following

condition (*): There exist five mappings a, b, c, d, e : X ® [0,1] such that

(St,x(t))a(x(t)) ∈ CB(X), (Tt,x(t))b(x(t)) ∈ CB(X), (Pt,x(t))c(x(t)) ∈ CB(X),

(Qt,x(t))d(x(t)) ∈ CB(X), (Gt,x(t))e(x(t)) ∈ CB(X), ∀(t, x(t)) ∈ � × X.

By using the random fuzzy mapping S satisfying (*) with the corresponding function

a : X ® [0,1], we can define a random set-valued mapping S as follows:

S : � × X → CB(X), (t, x(t)) 
→ (St,x(t))a(x(t)), ∀(t, x(t)) ∈ � × X,

Where St,x(t) = S(t, x(t)) . From now on, the random fuzzy mappings S, T , P , Q
and G , are assumed to satisfying the condition (*) and we will let S, T, P, Q and G are

the random set-valued mappings induced by those five random fuzzy mappings,

respectively.

Now, by using Chang’s lemma [12] and based on Lemma 3.6, we can construct the

new following iterative algorithm for solving the problem (3.1).

Algorithm 3.7. Let A, p, η, M, N, S, T , P , Q, G, h, λ be the same as in the pro-

blem (3.1) and let S, T, P, Q, G be Ĥ-continuous random set-valued mappings induced

by S, T , P , Q and G , respectively. Assume that a : Ω ® (0, 1] is a measurable step

size function. For any measurable mapping x0 : Ω ® X, the set-valued mappings S(., x0
(.)), T(., x0(.)), P(., x0(.)), Q(., x0(.)), G(., x0(.)): Ω ® CB(X) are measurable by Lemma

3.4. Hence there exist measurable selections υ0 : Ω ® X of S(., x0(.)), u0 : Ω ® X of T

(., x0(.)), v0 : Ω ® X of P(., x0(.)), ϑ0 : Ω ® X of Q(., x0(.)) and w0 : Ω ® X of G(., x0
(.)) by Himmelberg [35]. For each t Î Ω, set

x1(t) = (1 − α(t))x0(t) + α(t){x0(t) − pt(x0) + ϑ0(t) + Jηt ,Mt(.,w0)
ρ(t)λ(t),At

[At(pt(x0) − ϑ0)

− ρ(t)(Nt(ν0, u0, v0) − h(t))]} + α(t)e0(t) + r0(t),

where r(t) is the same as in Lemma 3.6 and e0, r0 : Ω ® X are measurable functions.

It is easy to know that x1 : Ω ® X is measurable. Since υ0(t) Î St(x0) Î CB(X), u0(t) Î
Tt(x0) Î CB(X), v0(t) Î Pt(x0) Î CB(X), ϑ0(t) Î Qt(x0) Î CB(X) and w0(t) Î Gt(x0) Î
CB(X), by Lemma 3.5, there exist measurable selections υ1, u1, v1, w1, ϑ1 : Ω ® X of

the set-valued measurable mappings S(., x1(.)), T(., x1(.)), P(., x1(.)), Q(., x1(.)) and G(.,

x1(.)), respectively, such that, for all t Î Ω,

∥∥ν0(t) − ν1(t)
∥∥ ≤

(
1 +

1
1

)
Ĥ(St(x0), St(x1)),

∥∥u0(t) − u1(t)
∥∥ ≤

(
1 +

1
1

)
Ĥ(Tt(x0),Tt(x1)),

∥∥v0(t) − v1(t)
∥∥ ≤

(
1 +

1
1

)
Ĥ(Pt(x0),Pt(x1)),

∥∥ϑ0(t) − ϑ1(t)
∥∥ ≤

(
1 +

1
1

)
Ĥ(Qt(x0),Qt(x1)),

∥∥w0(t) − w1(t)
∥∥ ≤

(
1 +

1
1

)
Ĥ(Gt(x0),Gt(x1)).
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Letting

x2(t) = (1 − α(t))x1(t) + α(t){x1(t) − pt(x1) + ϑ1(t) + Jηt ,Mt(.,w1)
ρ(t)λ(t),At

[At(pt(x1) − ϑ1)

− ρ(t)(Nt(ν1, u1, v1) − h(t))]} + α(t)e1(t) + r1(t), ∀t ∈ �,

then x2 : Ω ® X is measurable. By induction, we can define the sequences {xn(t)}, {υn
(t)}, {un(t)}, {vn(t)}, {ϑn(t)} and {wn(t)} for solving the problem (3.1) inductively satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1(t) = (1 − α(t))xn(t) + α(t){xn(t) − pt(xn) + ϑn(t) + Jηt ,Mt(.,wn)
ρ(t)λ(t),At

[At(pt(xn) − ϑn)

−ρ(t)(Nt(νn, un, vn) − h(t))]} + α(t)en(t) + rn(t), ∀t ∈ �,
νn(t) ∈ St(xn),

∥∥νn(t) − νn+1(t)
∥∥ ≤ (

1 + 1
1+n

)
Ĥ(St(xn), St(xn+1)),

un(t) ∈ Tt(xn),
∥∥un(t) − un+1(t)

∥∥ ≤ (
1 + 1

1+n

)
Ĥ(Tt(xn),Tt(xn+1)),

vn(t) ∈ Pt(xn),
∥∥vn(t) − vn+1(t)

∥∥ ≤ (
1 + 1

1+n

)
Ĥ(Pt(xn),Pt(xn+1)),

ϑn(t) ∈ Qt(xn),
∥∥ϑn(t) − ϑn+1(t)

∥∥ ≤ (
1 + 1

1+n

)
Ĥ(Qt(xn),Qt(xn+1)),

wn(t) ∈ Gt(xn),
∥∥wn(t) − wn+1(t)

∥∥ ≤ (
1 + 1

1+n

)
Ĥ(Gt(xn),Gt(xn+1)),

(3:2)

where for all n ≥ 0 and t Î Ω, en(t), rn(t) Î X are real-valued random errors to take

into account a possible inexact computation of the random resolvent operator point

satisfying the following conditions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
n→∞

∥∥en(t)∥∥ = lim
n→∞

∥∥rn(t)∥∥ = 0, ∀t ∈ �;
∞∑
n=0

∥∥en(t) − en−1(t)
∥∥ < ∞, ∀t ∈ �;

∞∑
n=0

∥∥rn(t) − rn−1(t)
∥∥ < ∞, ∀t ∈ �.

(3:3)

Remark 3.8. For a suitable and appropriate choice of the mappings

A, p, η, M, N, S, T , P , Q, G, S, T, P, Q, G, α, h, λ , the sequences {en}, {rn} and

the space X, Algorithm 3.7 includes many known algorithms which due to classes of

variational inequalities and variational inclusions (see, for example

[13,18,22-24,33,34,37-40,42,44,46,53,58]).

4 Main result
In this section, we prove the existence of solutions for the problem (3.1) and the con-

vergence of iterative sequences generated by Algorithm 3.7 in Banach spaces.

Theorem 4.1. Let X be a q-uniformly smooth Banach space,

A, p, η, M, N, S, T , P , Q, G, h, λ be the same as in the problem (3.1) and S, T, P,

Q, G : Ω × X ® CB(X) be five random set-valued mappings induced by

S, T , P , Q, G respectively. Further, suppose that

(a) p is (g, ϖ)-relaxed cocoercive and π-Lipschitz continuous;

(b) A is r-strongly h-accretive and s-Lipschitz continuous;

(c) h is τ-Lipschitz continuous;

(d) S, T, P, Q and G are ξ-Ĥ-Lipschitz continuous, ζ-Ĥ-Lipschitz continuous, ς-Ĥ-

Lipschitz continuous, ϱ-Ĥ-Lipschitz continuous and ι-Ĥ-Lipschitz continuous,

respectively;

(e) N is �-Lipschitz continuous in the second argument, δ-Lipschitz continuous in

the third argument and �-Lipschitz continuous in the fourth argument;
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(f) There exist the measurable functions μ : Ω ® (0, +∞) and r : Ω ® (0, +∞) with

ρ(t) ∈
(
0,

r(t)
λ(t)m(t)

)
, for all t Î Ω, such that

∥∥∥Jηt ,Mt(.,x)
ρ(t)λ(t),At

(z(t)) − Jηt ,Mt(.,y)
ρ(t)λ(t),At

(z(t))
∥∥∥ ≤ μ(t)

∥∥x(t) − y(t)
∥∥ , ∀t ∈ �, x(t), y(t), z(t) ∈ X (4:1)

and ⎧⎪⎨
⎪⎩

ϕ(t) = �(t) + μ(t)ι(t) + q

√
1 − q� (t) +

(
qγ (t) + cq

)
π q(t) < 1,

σ (t)
(
π(t) + �(t)

)
+ ρ(t)(ε(t)ξ(t) + δ(t)ζ (t) + κ(t)ς(t))

< τ 1−q(t)(1 − ϕ(t))(r(t) − ρ(t)λ(t)m(t)),

(4:2)

where cq is the same as in Lemma 2.1. Then there exists a set of measurable map-

pings x*, υ*, u*, v*, ϑ*, w*: Ω ® X which is a random solution of the problem (3.1) and

for each t Î Ω, xn(t) ® x*(t), υn(t) ® υ*(t), un(t) ® u*(t), vn(t) ® v*(t), ϑn(t) ® ϑ*(t),

wn(t) ® w*(t) as n ® ∞, where {xn(t)}, {υn(t)}, {un(t)}, {vn(t)}, {ϑn(t)} and {wn(t)} are the

iterative sequences generated by Algorithm 3.7.

Proof. Firstly, for each n ≥ 0, by considering (3.2) and (4.1), in view of Proposition

2.12, we see that∥∥xn+1(t) − xn(t)
∥∥

≤
∥∥∥(1 − α(t))xn(t) + α(t){xn(t) − pt(xn) + ϑn(t) + Jηt,Mt(.,wn)

ρ(t)λ(t),At
[At(pt(xn) − ϑn)

−ρ(t)(Nt(νn, un, vn) − h(t))]} + α(t)en(t) + rn(t) − (1 − α(t))xn−1(t)

−α(t)
{
xn−1(t) − pt(xn−1) + ϑn−1(t) + Jηt ,Mt(.,wn−1)

ρ(t)λ(t),At
[At(pt(xn−1) − ϑn−1)

−ρ(t)(Nt(νn−1, un−1, vn−1) − h(t))]
} − α(t)en−1(t) − rn−1(t)

∥∥
≤ (

1 − α(t)
) ∥∥xn(t) − xn−1(t)

∥∥ + α(t)
(∥∥xn(t) − xn−1(t) − (pt(xn) − pt(xn−1))

∥∥
+

∥∥ϑn(t) − ϑn−1(t)
∥∥ +

∥∥∥Jηt ,Mt(.,wn)
ρ(t)λ(t),At

[At(pt(xn) − ϑn) − ρ(t)(Nt(νn, un, vn) − h(t))]

−Jηt ,Mt(.,wn−1)
ρ(t)λ(t),At

[At(pt(xn−1) − ϑn−1) − ρ(t)(Nt(νn−1, un−1, vn−1) − h(t))]
∥∥∥)

+α(t)
∥∥en(t) − en−1(t)

∥∥ +
∥∥rn(t) − rn−1(t)

∥∥
≤ (1 − α(t))

∥∥xn(t) − xn−1(t)
∥∥ + α(t)

(∥∥xn(t) − xn−1(t) − (pt(xn) − pt(xn−1))
∥∥

+
∥∥ϑn(t) − ϑn−1(t)

∥∥ +
∥∥∥Jηt ,Mt(.,wn)

ρ(t)λ(t),At
[At(pt(xn) − ϑn) − ρ(t)(Nt(νn, un, vn) − h(t))]

−Jηt ,Mt(.,wn)
ρ(t)λ(t),At

[At(pt(xn−1) − ϑn−1) − ρ(t)(Nt(νn−1, un−1, vn−1) − h(t))]
∥∥∥

+Jηt ,Mt(.,wn)
ρ(t)λ(t),At

[At(pt(xn−1) − ϑn−1) − ρ(t)(Nt(νn−1, un−1, vn−1) − h(t))]

−Jηt ,Mt(.,wn−1)
ρ(t)λ(t),At

[At(pt(xn−1) − ϑn−1) − ρ(t)(Nt(νn−1, un−1, vn−1) − h(t))]
∥∥∥)

+α(t)
∥∥en(t) − en−1(t)

∥∥ +
∥∥rn(t) − rn−1(t)

∥∥
≤ (1 − α(t))

∥∥xn(t) − xn−1(t)
∥∥ + α(t)

(∥∥xn(t) − xn−1(t) − (pt(xn) − pt(xn−1))
∥∥ +

∥∥ϑn(t) − ϑn−1(t)
∥∥

+μ(t)
∥∥wn(t) − wn−1(t)

∥∥ +
τ q−1(t)

r(t) − ρ(t)λ(t)m(t)

(∥∥At(pt(xn) − ϑn) − At(pt(xn−1) − ϑn−1)
∥∥

+ρ(t)
∥∥Nt(νt , un, vn) − Nt(νn−1, un−1, vn−1)

∥∥)) + α(t)
∥∥en(t) − en−1(t)

∥∥ +
∥∥rn(t) − rn−1(t)

∥∥ .

(4:3)

Meanwhile, by Lemma 2.1, there exists a constant cq > 0 such that
∥∥xn(t) − xn−1(t) − (pt(xn) − pt(xn−1))

∥∥q
≤ ∥∥xn(t) − xn−1(t)

∥∥q − q〈pt(xn) − pt(xn−1), Jq(xn(t) − xn−1(t))〉 + cq
∥∥pt(xn) − pt(xn−1)

∥∥q
.

Consequently, since p is (g, ϖ)-relaxed cocoercive and π-Lipschitz continuous, we

obtain ∥∥xn(t) − xn−1(t) − (pt(xn) − pt(xn−1))
∥∥q

≤ ∥∥xn(t) − xn−1(t)
∥∥q + (qγ (t) + cq)

∥∥pt(xn) − pt(xn−1)
∥∥q − q� (t)

∥∥xn(t) − xn−1(t)
∥∥q

= (1 − q� (t) + (qγ (t) + cq)π q(t))
∥∥xn(t) − xn−1(t)

∥∥q.
(4:4)
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Furthermore, by ϱ-Ĥ-Lipschitz continuity of Q and ι-Ĥ-Lipschitz continuity of G,

from (3.2) we deduce that

∥∥ϑn(t) − ϑn−1(t)
∥∥ ≤

(
1 +

1
n

)
Ĥ(Qt(xn),Qt(xn−1))

≤ �(t)
(
1 +

1
n

)∥∥xn(t) − xn−1(t)
∥∥ (4:5)

and

∥∥wn(t) − wn−1(t)
∥∥ ≤

(
1 +

1
n

)
Ĥ(Gt(xn),Gt(xn−1))

≤ ι(t)
(
1 +

1
n

)∥∥xn(t) − xn−1(t)
∥∥ . (4:6)

By using (4.5) together with s-Lipschitz continuity of A, π-Lipschitz continuity of p,

we obtain∥∥At(pt(xn) − ϑn) − At(pt(xn−1) − ϑn−1)
∥∥

≤ σ (t)(
∥∥pt(xn) − pt(xn−1)

∥∥ +
∥∥ϑn(t) − ϑn−1(t)

∥∥)
≤ σ (t)

(
π(t) + �(t)

(
1 +

1
n

))∥∥xn(t) − xn−1(t)
∥∥ .

(4:7)

Moreover, since N is �-Lipschitz continuous in the second argument, δ-Lipschitz

continuous in the third argument, �-Lipschitz continuous in the fourth argument and

S, T, P are ξ-Ĥ-Lipschitz continuous, ζ-Lipschitz continuous and ς-Ĥ-Lipschitz contin-

uous, respectively, by (3.2), we get∥∥Nt(νn, un, vn) − Nt(νn−1, un−1, vn−1)
∥∥

≤ ∥∥Nt(νn, un, vn) − Nt(νn−1, un, vn)
∥∥ +

∥∥Nt(νn−1, un, vn) − Nt(νn−1, un−1, vn)
∥∥

+
∥∥Nt(νn−1, un−1, νn) − Nt(νn−1, un−1, vn−1)

∥∥
≤ ε(t)

∥∥νn(t) − νn−1(t)
∥∥ + δ(t)

∥∥un(t) − un−1(t)
∥∥ + κ(t)

∥∥vn(t) − vn−1(t)
∥∥

≤ (
ε(t)ξ(t) + δ(t)ζ (t) + κ(t)ς(t)

) (
1 +

1
n

)∥∥xn(t) − xn−1(t)
∥∥ .

(4:8)

Now, substitute (4.4)-(4.8) into (4.3), we get that∥∥xn+1(t) − xn(t)
∥∥ ≤ (1 − α(t) + α(t)ψ(t,n))

∥∥xn(t) − xn−1(t)
∥∥

+ α(t)
∥∥en(t) − en−1(t)

∥∥ +
∥∥rn(t) − rn−1(t)

∥∥ , (4:9)

where

ψ(t,n) = (�(t) + μ(t)ι(t))
(
1 +

1
n

)
+ q

√
1 − q� (t) + (qγ (t) + cq)π q(t) +

τ q−1(t)�(t,n)
r(t) − ρ(t)λ(t)m(t)

,

�(t,n) = σ (t)
(

π(t) + �(t)
(
1 +

1
n

))
+ ρ(t)(ε(t)ξ(t) + δ(t)ζ (t) + κ(t)ς(t))

(
1 +

1
n

)
.

Let us put

θ(t,n) = 1 − α(t) + α(t)ψ(t,n), for each n ≥ 0, t ∈ �.

Then, for each t Î Ω, we know that

θ(t,n) → θ(t) = 1 − α(t) + α(t)ψ(t), as n → ∞,
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where

ψ(t) = �(t) + μ(t)ι(t) + q

√
1 − q� (t) + (qγ (t) + cq)π q(t) +

τ q−1(t)�(t)
r(t) − ρ(t)λ(t)m(t)

,

�(t) = σ (t)(π(t) + �(t)) + ρ(t)(ε(t)ξ(t) + δ(t)ζ (t) + κ(t)ς(t)).

It follows that, in view of the condition (4.2), we have ψ(t) Î (0, 1) for all t Î Ω. This

implies 0 < θ(t) <1 for all t Î Ω. Hence there exist n0 Î N and a measurable function

θ̂ : � → (0,∞) (Take θ̂(t) = θ(t)+1
2 ∈ (θ(t), 1) for each t Î Ω) such that

θ(t,n) ≤ θ̂(t) for all n ≥ n0 and t Î Ω. Accordingly, for all n >n0, by (4.9), deduce

that, for all t Î Ω,∥∥xn+1(t) − xn(t)
∥∥

≤ θ̂(t)
∥∥xn(t) − xn−1(t)

∥∥ + α(t)
∥∥en(t) − en−1(t)

∥∥ +
∥∥rn(t) − rn−1(t)

∥∥
≤ θ̂(t)[θ̂(t)

∥∥xn−1(t) − xn−2(t)
∥∥ + α(t)

∥∥en−1(t) − en−2(t)
∥∥ +

∥∥rn−1(t) − rn−2(t)
∥∥]

+α(t)
∥∥en(t) − en−1(t)

∥∥ +
∥∥rn(t) − rn−1(t)

∥∥
= θ̂2(t)

∥∥xn−1(t) − xn−2(t)
∥∥ + α(t)[θ̂(t)

∥∥en−1(t) − en−2(t)
∥∥

+
∥∥en(t) − en−1(t)

∥∥] + θ̂(t)
∥∥rn−1(t) − rn−2(t)

∥∥ +
∥∥rn(t) − rn−1(t)

∥∥
≤
...

≤ θ̂n−n0 (t)
∥∥xn0+1(t) − xn0 (t)

∥∥ +
n−n0∑
i=1

α(t)θ̂ i−1(t)
∥∥en−(i−1)(t) − en−i(t)

∥∥

+
n−n0∑
i=1

θ̂ i−1(t)
∥∥rn−(i−1)(t) − rn−i(t)

∥∥.

(4:10)

By using the inequality (4.10), it follows that, for any m ≥ n >n0,

∥∥xm(t) − xn(t)
∥∥ ≤

m−1∑
j=n

∥∥xj+1(t) − xj(t)
∥∥ ≤

m−1∑
j=n

θ̂ j−n0(t)
∥∥xn0+1(t) − xn0(t)

∥∥

+
m−1∑
j=n

j−n0∑
i=1

α(t)θ̂ i−1(t)
∥∥en−(i−1)(t) − en−i(t)

∥∥

+
m−1∑
j=n

j−n0∑
i=1

θ̂ i−1(t)
∥∥rn−(i−1)(t) − rn−i(t)

∥∥.

(4:11)

Since θ̂(t) < 1 for all t Î Ω, it follows from (3.3) and (4.11) that ∥xm(t) - xn(t)∥ ® 0

as n ® ∞. This means {xn(t)} is a Cauchy sequence in X. In view of completeness of X,

there exists x*(t) Î X such that xn(t) ® x*(t) for all t Î Ω.

Consequently, by using (3.2), ξ-Ĥ-Lipschitz continuity of S, ζ-Ĥ-Lipschitz continuity

of T, ς-Ĥ-Lipschitz continuity of P, ϱ-Ĥ-Lipschitz continuity of Q and ι-Ĥ-Lipschitz

continuity of G, we know that {υn(t)}, {un(t)}, {vn(t)}, {ϑn(t)} and {wn(t)} are also Cauchy

sequences in X. Thus there are υ*(t), u*(t), v*(t), ϑ*(t), w*(t) in X such that, for all t Î
Ω, υn(t) ® υ*(t), un(t) ® u*(t), vn(t) ® v*(t), ϑn(t) ® ϑ*(t) and wn(t) ® w*(t) as n ®
∞. Since {xn(t)}, {υn(t)}, {un(t)}, {vn(t)}, {ϑn(t)} and {wn(t)} are sequences of measurable

mappings, we know that x, υ, u, v, ϑ, w : Ω ® X are also measurable. Further, for each

t Î Ω, we have
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d(ν∗(t), St(x∗)) = inf{∥∥ν∗(t) − z
∥∥ : z ∈ St(x∗)}

≤ ∥∥ν∗(t) − νn(t)
∥∥ + d(νn(t), St(x∗))

≤ ∥∥ν∗(t) − νn(t)
∥∥ + Ĥ(St(xn), St(x∗))

≤ ∥∥ν∗(t) − νn(t)
∥∥ + ξ(t)

∥∥xn(t) − x∗(t)
∥∥ .

Notice that, the right side of the above inequality tends to zero as n ® ∞, this

implies that υ*(t) Î St(x*).

Similarly, we can verify that for each t Î Ω, u*(t) Î Tt(x*), v*(t) Î Pt(x*), ϑ*(t) Î Qt

(x*) and w*(t) Î Gt(x*). Moreover, the condition (4.1) and wn(t) ® w*(t), for all t Î Ω,

as n ® ∞, imply that for each t ∈ �, Jηt ,Mt(.,wn)
ρ(t)λ(t),At

→ Jηt ,Mt(.,w∗)
ρ(t)λ(t),At

uniformly on X, as n ® ∞.

Now, since for each t Î Ω, the mappings Jηt ,Mt(.,wn)
ρ(t)λ(t),At

and At are continuous, it follows

from (3.2) and (3.3) that for each t Î Ω,

pt(x∗) = ϑ∗(t) + Jηt ,Mt(.,w∗)
ρ(t)λ(t),At

[At(pt(x∗) − ϑ∗) − ρ(t)(Nt(ν∗, u∗, v∗) − h(t))].

Finally, Lemma 3.6 implies that measurable mappings x*, υ*, u*, v*, ϑ*, w*: Ω ® X

are a random solution of the problem (3.1). This completes the proof.

Remark 4.2. If X is a 2-uniformly smooth Banach space and there exists a measur-

able function r : Ω ® (0, ∞) with ρ(t) ∈ (0, r(t)
λ(t)m(t)) , for all t Î Ω, such that

ϕ(t) = �(t) + μ(t)ι(t) +
√
1 − 2� (t) + (2γ (t) + c2)π2(t) < 1,

2� (t) − (2γ (t) + c2)π2(t) < 1,

ρ(t) <
r(t)(1 − ϕ(t)) − r(t)σ (t)(π(t) + �(t))

τ (t)[(ε(t)ξ(t) + δ(t)ζ (t) + κ(t)ς(t)] + (1 − ϕ(t))λ(t)m(t)
,

then (4.2) holds. As we know, Hilbert spaces and Lp(or lp) spaces, 2 ≤ p < ∞, are 2-

uniformly smooth.

Remark 4.3. Theorem 4.1 generalizes and improves Theorems 3.1 and 3.2 in [23],

Theorems 3.1, 3.3 and 3.4 in [53] and Theorems 4.1, 4.3 and 4.4 in [58]. In brief, for

an appropriate choice of the mappings

A, p, η, M, N, S, T , P , Q, G, S, T, P, Q, G, h, λ , the measurable step size func-

tion a, the sequences {en}, {rn} and the space X, Theorem 4.1 includes many known

results of generalized variational inclusions as special cases (see

[13,18,22-24,33,34,37-40,42,44,46,49,53,58] and the references therein).
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