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Abstract

We show that for C1 generic diffeomorphisms, an isolated homoclinic class is
shadow-able if and only if it is a hyperbolic basic set.
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1 Introduction
Let M be a closed C∞ manifold, and denote by d the distance on M induced from the

Riemannian metric ∥ · ∥ on the tangent bundle TM. Denote by Diff(M) the space of

diffeo-morphisms of M endowed with the C1-topology. Let f Î Diff(M). For δ > 0, a

sequence of points {xi}bi=a (−∞ ≤ a < b ≤ ∞) in M is called a δ-pseudo orbit of f if d(f

(xi),xi+1) <δ for all a ≤ i ≤ b - 1. A closed f-invariant set Λ ⊂ M is said to be chain

transitive if for any points x, y ⇝ Λ and δ > 0, there is a δ-pseudo orbit

{xi}bδi=aδ
⊂ �(aδ) < bδ of f such that xaδ

= x and xbδ
= y . For given x, y Î M, we write x

⇝ y if for any δ > 0, there is a δ-pseudo orbit {xi}bi=a (a < b) of f such that xa = x and

xb = y. Write x ↭ y if x ⇝ y and y ⇝ x. The set of points {x Î M : x ↭ x} is called the

chain recurrent set of f and is denoted by R(f ) . If we denote the set of periodic points

f by P(f), then P(f ) ⊂ �(f ) ⊂ R(f ) , where Ω(f) is the non-wandering set of f. The rela-

tion ↭ on R(f ) induces an equivalence relation, whose classes are called chain compo-

nents of f. Every chain component of f is a closed f-invariant set.

Denote by f|Λ the restriction of f to the set Λ. We say that f|Λ has the shadowing

property (or, Λ is shadowable for f) if for any � > 0 there is δ > 0 such that for any δ-

pseudo orbit {xi}iÎℤ ⊂ Λ of f there is y Î M such that d(fi(y),xi) < �, for i Î ℤ.

It is well known that if p is a hyperbolic periodic point f with period k then the sets

Ws(p) =
{
x ∈ M : f kn(x) → p as n → ∞

}
and

Wu(p) =
{
x ∈ M : f−kn(x) → p as n → ∞

}

are C1-injectively immersed submanifolds of M. Every point in the transversal inter-

section (Ws (p) ⋔ Wu(p)) of Ws(p) and Wu(p) is called the homoclinic point of f asso-

ciated to p. The closure of the homoclinic points of f associated to p is called the

homoclinic class of f and it is denoted by Hf(p).

Note that the homoclinic class Hf(p) is a subset of the chain component Cf(p) of f

containing p. We consider only the hyperbolic periodic orbits of saddle type. We say
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that two hyperbolic periodic points p and q are homoclinically related, and write p ~ q,

if Ws(p) � Wu(q) �= ∅ and Wu(p) � Ws(q) �= ∅. We know that if p ~ q then index(p) =

index(q). Here index(p) denotes the dimension of the stable manifold Ws(p) of p. By

Smale’s transverse homoclinic theorem, we know that the closure of the set of homo-

clinically related points with a hyperbolic periodic point p is the homoclinic class Hf(p)

of f associated to p.

We say that Λ is hyperbolic if the tangent bundle TΛM has a Df-invariant splitting Es

⊕ Eu and there exist constants C > 0 and 0 < l < 1 such that
∥∥Dxf

n|Esx
∥∥ ≤ Cλn and

∥∥Dxf
−n|Eux

∥∥ ≤ Cλn

for all x Î Λ and n ≥ 0. It is well-known that if Λ is hyperbolic, then Λ is

shadowable.

We say that Λ is isolated (or locally maximal) if there is a compact neighborhood U

of Λ such that ∩nÎℤ fn(U) = Λ. We say that a subset G ⊂ Diff(M) is residual if G con-

tains the intersection of a countable family of open and dense subsets of Diff (M); in

this case, G is dense in Diff(M). A property “P” is said to be (C1)-generic if “P” holds

for all diffeo-morphisms which belong to a residual subset of Diff(M). We use the ter-

minology “for C1 generic f“ to express “there is a residual subset G ⊂ Diff(M) such

that for any f ∈ G ...”.

In [1], Abdenur and Díaz posed the following conjecture:

Conjecture. For C1 generic f, f is shadowable if and only if it is hyperbolic.

In this article, we gives a partial answer to the above conjecture. First, we show that

C1-generically, the chain recurrent set is hyperbolic if and only if it has the shadowing

property. Next, we prove that C1-generically, the isolated homoclinic class containing a

hyperbolic periodic point is shadowable if and only if it is hyperbolic.

It is explain in [2] that every C1-generic diffeomorphism come in one of two types:

tame diffeomorphisms, which have a finite number of homoclinic classes and whose

nonwandering sets admits partitions into a finite number of disjoint transitive sets; and

wild diffeomor-phisms, which have an infinite number of homoclinic classes and whose

nonwandering sets admit no such partitions. It is easy to show that if a diffeomorph-

ism has a finite number of chain components, then every chain component is locally

maximal, and therefore, every chain component of a tame diffeomorphism is locally

maximal. Hence, we can get the following result.

Theorem 1.1 For C1 generic f, if f is tame then the following two conditions are

equivalent:

(a) R(f ) is hyperbolic,

(b) R(f ) is shadowable.

We say that a closed f-invariant set Λ is basic , if Λ is isolated, f|Λ is transitive and

the periodic orbits are dense in Λ. The main result of this article is the following.

Theorem 1.2 For C1 generic f, the isolated homoclinic class Hf(p) of f containing a

hy-perbolic periodic point p is shadowable if and only if it is a hyperbolic basic set.
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A similar result for locally maximal chain transitive sets was proved in [3]. More pre-

cisely, it is proved that C1-generically, every locally maximal chain transitive set is

hyperbolic if it is shadowable.

2 Proof of Theorem 1.2
Let M and f Î Diff(M) be as before. In this section, to prove Theorem 1.2, we use the

techniques developed by Mañé [4]. Let Λj(f) be the closure of the set of hyperbolic per-

iodic points of f with index j(0 ≤ j ≤ dimM). If there is a C1-neighborhood U(f ) of f

such that for any g ∈ U(f ) , any periodic points of g are hyperbolic, then f satisfies

both Axiom A and the no-cycle condition. To prove our result, we first note that if p

is homoclinically related to q, then Hf(p) = Hf(q).

Lemma 2.1 Suppose that f has the shadowing property on Hf(p). Then for any hyper-

bolic periodic point q ∈ Hf (p),Ws(p) ∩ Wu(q) �= ∅ , and Wu(p) ∩ Ws(q) �= ∅ .
Proof. We will only show that Ws(p) ∩ Wu(q) �= ∅. Since p and q are hyperbolic sad-

dles, there are �(p) > 0 and �(q) > 0 such that

• both Ws
ε(p)(p) and Wu

ε(q)(q) are C1-embedded disks,

• if d(fn(x), fn(p)) < �(p) for n ≥ 0, then x ∈ Ws
ε(p1)(p) ,

• if d(fn(x), fn(q)) < �(q) for n ≤ 0 then x ∈ Wu
ε(q)(q) .

Set � = min{�(p), �(q)}, and let 0 <δ = δ(�) < � be a number which satisfies the sha-

dowing property of f |Hf (p) with respect to �. To simplify, we assume that f(p) = p and

f(q) = q. Since Hf (p) =
{
q ∈ P(f ) : q ∼ p

}
, we can choose a hyperbolic periodic point g

such that g is homoclinically related to p, and d(q, g) <δ/2. For x Î Ws(p) ⋔ Wu(g),
choose n1 > 0 and n2 > 0 such that

d
(
f n1(x), p

)
< δ/4 and d

(
f−n2 (x), γ

)
< δ/4.

Thus

d
(
f−n2(x), q

)
< d

(
f−n2(x), γ

)
+ d

(
γ , q

)
< δ/2.

Therefore, we can construct a δ-pseudo orbit;

ξ =
{
..., q, f−n2+1(x), ..., f−1(x), x, f (x), ..., f n1−1(x), p, ...,

}
.

Then we have ξ ⊂ Hf(p). Since f has the shadowing property on Hf(p), there is a

point y Î M such that d(fi(y),xi) < �, for i Î ℤ. Thus

f n1+l(y) ∈ Ws
ε(p) and f−n2−l(y) ∈ Wu

ε (q), for l > 0.

Therefore, y ∈ f−n1−l
(
Ws

ε(p)
) ∩ f n2+l

(
Wu

ε (q)
)
. This means y Î Ws(p) ∩ Wu(q), and

so Ws(p) ∩ Wu(q) �= ∅ .
Lemma 2.2 There is a residual set G1 ⊂ Diff(M) such that f ∈ G1 satisfies the

following properties:
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(a) Every periodic point of f is hyperbolic and all their invariant manifolds are

intersect transversely (Kupka-Smale).

(b) Cf(p) = Hf(p), where p is a hyperbolic periodic point ([5]).

Lemma 2.3 There is a residual set G2 ⊂ Diff(M) such that if f ∈ G2 , and f has the

shadowing property on Hf(p), then for any hyperbolic periodic point q Î Hf(p),

Ws(p) � Wu(q) �= ∅, and Wu(p) � Ws(q) �= ∅.

Proof. Let G2 be as in Lemma 2.2(a), and let f ∈ G2 . Take a hyperbolic saddle point

q Î Hf(p) ∩P(f). Since f has the shadowing property on Hf(p), we know that

Ws(p) ∩ Wu(q) �= ∅ and Wu(p) ∩ Ws(q) �= ∅ by Lemma 2.1. Since f ∈ G2 , we know

that

Ws(p) � Wu(q) �= ∅, and Wu(p) � Ws(q) �= ∅.

Proposition 2.4 For C1 generic f, if the homoclinic class Hf(p) is isolated and shadow-

able, then there exist constants m > 0 and 0 <l < 1 such that for any periodic point q

Î Hf(p), index(q) = dimWs(q),

π(q)−1∏
i=0

∥∥∥Dfm|
Es(f im(q))

∥∥∥ < λπ(q),
π(q)−1∏
i=0

∥∥∥Dfm|
Es (f im(q))

∥∥∥ < λπ(q)

and
∥∥Dfm|Es(q)

∥∥ · ∥∥Df−m|Eu(f m(q))
∥∥ < λ2,

where π(q) denotes the period of q.

We introduce the following notion which was introduced in [6]. For h > 0 and f Î
Diff(M), a C1 curve g is called an h-simply periodic curve of f if

• g is diffeomorphic to [0,1] and its two end points are hyperbolic periodic points

of f,

• g is periodic with period π(g), i.e., fπ(g)(g) = g, and l(fi (g)) <h for any 0 ≤ i ≤ π (g)
- 1, where l(g) denotes the length of g.
• g is normally hyperbolic.

Let p be a periodic point of f. For δ Î (0,1), we say p has a δ-weak eigenvalue if D

fπ(p)(p) has an eigenvalue μ such that (1 - δ)π(p) <μ < (1 + δ)π(p).

Lemma 2.5 [6]There is a residual set G3 ⊂ Diff(M) such that for any f ∈ G3 , any

hyper-bolic periodic point p of f, and

(a) for any h > 0, if for any C1 neighborhood U(f ) of f, some g ∈ U(f ) has an h-
simply periodic curve g such that two endpoints of g are homoclinic related with pg,

then f has an 2h-simply periodic curve a such that two endpoints of a are homocli-

nically related with p;

(b) for any δ > 0, if f has a periodic point q ~ p with δ-weak eigenvalue, then f has a

periodic point q’ ~ p with δ-weak eigenvalue, whose eigenvalues are all real.
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The following lemma shows that the map f ↦ Cf(p) is upper semi-continuous.

Lemma 2.6 For any � > 0, there is δ > 0 such that if d1 (f,g) <δ then Cg(pg) ⊂ B�(Cf

(p)), where d1 denotes the C
1-metric on Diff(M).

Proof. See [[7], Lemma].

Let Hf(p) be the homoclinic class of f associated to p. It is known that the map f ↦

Hf(p) is lower semi-continuous. Thus by Lemma 2.3(b), there is a residual set R in

Diff(M) such that for any f in R , the map f ↦ Hf(p)(= Cf(p)) is semi-continuous.

Remark 2.7 There is a residual set G4 ⊂ Diff(M) such that for any f ∈ G4 , we have

the following property. Let Cf(p) be the isolated chain component of f containing p in an

open set U in M. If Cf(p) is semi-continuous, then for any � > 0, there is δ > 0 such that

if d1(f,g) <δ then Cg(pg) ⊂ B� (Cf(p)) and Cf(p) ⊂ B� (Cg(pg)), where d1 is the C1 metric

on M.

Let p be a hyperbolic periodic point f Î Diff(M).

Remark 2.8 [6]There is a residual set G5 ⊂ Diff(M) such that for any f ∈ G5 and

any δ > 0, if every periodic point q ~ p has no 2δ-weak eigenvalue, then there is a C1

neighborhood U(f ) of f such that for any g ∈ U(f ) every periodic point q which is

homoclinically related to pg has no δ-weak eigenvalue, where pg is the continuation of p.

Lemma 2.9 There is a residual set G6 ⊂ Diff(M) such that if f ∈ G6 , and the iso-

lated homoclinic class Hf(p) is shadowable, then there is a δ > 0 such that every peri-

odic point q Î Hf(p) has no δ-weak eigenvalue.

Proof. Let G6 =
⋂5

i=1 Gi and let f ∈ G6 . Assume that f has the shadowing property

on the homoclinic class Hf(p). Note that Hf(p) = Cf(p). Suppose that for any δ > 0

there is a hyperbolic periodic point q Î Cf(p) such that q has a δ-weak eigenvalue.

Since f has the shadowing property on Cf(p), for the point q Î Cf(p) ∩ P(f), we see that

q ~ p by Lemma 2.3. Let U be an isolated neighborhood of Cf(p), and let h > 0 be a

sufficiently small constant such that B2h(Cf(p)) ⊂ U. Then for any C1-neighborhood

U(f ) of f, there is g ∈ U(f ) such that g has an h/2-simply periodic curve Iq , whose
endpoints are homoclinically related to pg, and h/2-simply periodic curve

Iq ⊂ Cg(pg) ⊂ B2η(Cf (p)) (for more details, see Theorem B in [8]). Then we know

that for some l > 0,Iq is a gl -invariant small curve containing pg (q is the center of

Iq ), where q ~ pg. By Lemma 2.5(a), for the above h > 0 f has a h-simply periodic

curve Jq such that the endpoints of Jq are homoclinically related to p. Then we see

that

Jq ⊂ B2η

(
Cf (p)

) ⊂ U.

Then for some l′ > 0,Jp is a fl’-invariant small curve center at q. To simplify, we

denote fl’ by f. Since Cf(p) is an isolated in U, we have

Jq ⊂
⋂
n∈Z

f n
(
B2η

(
Cf (p)

)) ⊆
⋂
n∈Z

f n(U) = Cf (p).

Since Jq is a simple periodic curve of f, f |Jq is the identity map. Since f has the sha-

dowing property on Cf(p), f must have the shadowing property on Jq . But it is a con-

tradiction. Thus every periodic point q Î Hf(p) has no δ-weak eigenvalue.
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Proof of Proposition 2.4. Let f ∈ G6 , and suppose that there is a nonhyperbolic

periodic point q Î Hf(p). Then q has a δ-weak eigenvalue. This contradicts Lemma 2.9,

and com-pletes the proof of Proposition 2.4 by Mañé [4].

Proof of Theorem 1.2. Let f ∈ G6 , and let Cf(p) be isolated in an open set U.

Assume that f has the shadowing property on Cf(p). Then Cf(p) satisfy the assumptions

of Propo-sition 2.4. Since f has the shadowing property on Cf(p), Cf(p) is hyperbolic by

the main result in [9]. Consequently, we have proved that C1-generically, Hf(p) is a

hyperbolic basic set.
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