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Abstract

In this article, we investigate a priori error estimates for the optimal control problems
governed by elliptic equations using higher order variational discretization and
mixed finite element methods. The state and the co-state are approximated by the
order k Raviart-Thomas mixed finite element spaces and the control is not discreted.
A priori error estimates for the higher order variational discretization and mixed finite
element approximation of control problems are obtained. Finally, we present some
numerical examples which confirm our theoretical results.
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1. Introduction
Optimal control problems governed by elliptic equations are important problems in

engineering applications. Efficient numerical methods are critical for successful applica-

tions of optimal control problems in such cases. Recently, the finite element method of

optimal control problems plays an important role in numerical methods for these pro-

blems. Systematic introduction of the finite element method for optimal control pro-

blems can be found in, for example, [1]. The finite element approximation of optimal

control problem by piecewise constant functions is well investigated by Falk [2] and

Geveci [3]. Arada et al. [4] discussed the discretization for semilinear elliptic optimal

control problems. In [5], Malanowski discussed a constrained parabolic optimal control

problems.

In many control problems, the objective functional contains gradient of the state

variables. Thus accuracy of gradient is important in numerical approximation of the

state equations. In the finite element community, mixed finite element methods should

be used for discretization of the state equations in such cases. In computational opti-

mal control problems, mixed finite element methods are not widely used in engineer-

ing simulations. In particular there doesn’t seem to exist much work on theoretical

analysis of mixed finite element approximation of optimal control problems in the lit-

erature. More recently, we have done some preliminary work on sharp a posteriori

error estimates, error estimates and superconvergence of mixed finite element methods

for optimal control problems (see, for example, [6-13]).
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In [14], the author first presents the variational discretization concept for optimal

control problems with control constraints, which implicitly utilizes the first order

optimality conditions and the discretization of the state and adjoint equations for the

discretization of the control instead of discretizing the space of admissible controls.

For 1 ≤ p < ∞ and m, any nonnegative integer, let Wm,p(Ω) = {v Î Lp(Ω); Dbv Î Lp

(Ω) if |b| ≤ m} denote the Sobolev spaces endowed with the norm

‖v‖pm,p =
∑

|β|≤m

∥∥Dβv
∥∥p
Lp(�) , and the semi-norm |v|pm,p =

∑
|β|=m

∥∥Dβv
∥∥p
Lp(�) . We set

Wm,p
0 (�) = {v ∈ Wm,p(�) : v |∂� = 0 } . For p = 2, we denote

Hm(�) = Wm,2(�), Hm
0 (�) = Wm,2

0 (�) , and ∥ · ∥m = ∥ · ∥m,2, ∥ · ∥ = ∥ · ∥0,2.

In this article we derive a priori error estimates for higher order variational discreti-

zation and mixed finite element methods of quadratic optimal control problems.

We consider the following quadratic optimal control problems:

min
u∈K⊂U

{
1
2

∥∥p − pd
∥∥2 + 1

2

∥∥y − yd
∥∥2 + 1

2
‖u‖2

}
(1:1)

subject to the state equation

divp = f + Bu, x ∈ �, (1:2)

p = −A∇y, x ∈ �, (1:3)

y = 0, x ∈ ∂�, (1:4)

where the bounded open set Ω ⊂ ℝ2, is a convex domain with the boundary ∂Ω. We

shall assume that pd Î L2(Ω)2, yd Î L2(Ω), f Î H1(Ω), and B is a continuous linear

operator from U = L2(Ω) to H1(Ω). Furthermore, we assume the coefficient matrix A

(x) = (ai,j(x))2 × 2 Î (W1,∞ (Ω))2 × 2 is a symmetric 2 × 2-matrix and there is a constant

c > 0 satisfying for any vector X ∈ R2, X′AX ≥ c ‖X‖2R2 . Here, K denotes the admissible

set of the control variable, defined by

K =

⎧⎨
⎩u ∈ U = L2(�) :

∫
�

u ≥ 0

⎫⎬
⎭ . (1:5)

Optimal control problems have been so widely met in all kinds of practical problems.

Now we mention their application of the optimal control problems (1.1)-(1.4). Let us

recall the static temperature control problem. Let y be the temperature distribution in

the body Ω, which satisfies the elliptic Equations (1.2) and (1.3), where A is conductiv-

ity matrix and Bu represents heat resource density inside the body, which can be con-

trolled by u. For example, often (Bu)(x) = c(x)u(x), where c(x) is the density factor.

Assume that the body’s surface temperature is fixed, say, zero. The aim of the control

is to make the temperature distribution y as close as to the desirable distribution yd, e.

g., yd = 10. Of course there could be many controls to achieve this objective, but we

wish to achieve this using as small as possible energy, which can be represented by the

formula ∫Ω u2. Then we give the temperature control model for the problem (1.1)-

(1.4).
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Now, we introduce the co-state elliptic equation

−div(A(∇z + p − pd)) = y − yd, x ∈ �, (1:6)

with the boundary condition

z = 0, x ∈ ∂�. (1:7)

The outline of this article is as follows. In Section 2, we construct the higher order

variational discretization and mixed finite element approximation for optimal control

problems governed by elliptic equations. Furthermore, we briefly state the definitions

and properties of some interpolation operators. In Section 3, we derive a priori error

estimates for the higher order variational discretization and mixed finite element solu-

tions of the optimal control problems. Numerical examples are presented in Section 4.

Finally, we analyze the conclusion and the future studies in Section 5.

2. Variational discretization and mixed finite element methods
We shall now describe the variational discretization and mixed finite element approxi-

mation of the optimal control problems (1.1)-(1.4). Let

V = H(div;�) = {v ∈ (L2(�))2, divv ∈ L2(�)}, W = L2(�).

The Hilbert space V is equipped with the following norm:

‖v‖div = ‖v‖H(div;�) =
(
‖v‖20,� +

∥∥divv∥∥20,�
)1/2

.

We recast (1.1)-(1.4) as the following weak form: find (p, y, u) Î V × W × U such

that

min
u∈K⊂U

{
1
2

∥∥p − pd
∥∥2 + 1

2

∥∥y − yd
∥∥2 + 1

2
‖u‖2

}
(2:1)

(A−1p, v) − (y, divv) = 0, ∀v ∈ V , (2:2)

(divp,w) = (f + Bu,w), ∀w ∈ W. (2:3)

It is well known (see e.g., [15,16]) that the optimal control problem (2.1)-(2.3) has a

solution (p, y, u), and that a triplet (p, y, u) is the solution of (2.1)-(2.3) if and only if

there is a co-state (q, z) Î V × W such that (p, y, q, z, u) satisfies the following optim-

ality conditions:

(A−1p, v) − (y, divv) = 0, ∀v ∈ V , (2:4)

(divp,w) = (f + Bu,w), ∀w ∈ W, (2:5)

(A−1q, v) − (z, divv) = −(p − pd, v), ∀v ∈ V , (2:6)

(divq,w) = (y − yd,w), ∀w ∈ W, (2:7)

(u + B∗z, ũ − u)U ≥ 0, ∀ũ ∈ K, (2:8)
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where (·, ·)U is the inner product of U, B* is the adjoint operator of B. In the rest of

the article, we shall simply write the product as (·, ·) whenever no confusion should be

caused.

Now, we will show that the control variable of the optimal control problem (2.4)-

(2.8) can be infinitely smooth if the special constraint set K defined as (1.5).

Lemma 2.1. Let (p, y, q, z, u) Î (V × W)2 × K be the solution of (2.4)-(2.8). Then we

have

u = max
(
0,B∗z

) − B∗z, (2:9)

where B∗z =
∫
�
B∗z/ |�|denotes the integral average on Ω of the function z.

Proof. If B∗z > 0 , then u = B∗z − B∗z and for any v Î K

(u + B∗z, v − u) =
∫
�

(u + B∗z)(v − u)

=
∫
�

B∗z
(
v − B∗z + B∗z

)

= B∗z
∫
�

v ≥ 0.

If B∗z ≤ 0 , then u = -B* z and (u + B* z, v - u) = 0. Now, for the costate solution z,

since the solution of (2.8) is unique, then we have proved the Lemma.

From Lemma 3.1, we obtain the following regularity result for the control variable.

Lemma 2.2. Let (p, y, q, z, u) Î (V × W)2 × K be the solution of (2.4)-(2.8). Assume

that the data functions f, yd, pd, and the domain Ω are infinitely smooth. Then the con-

trol function u ∈ C∞(�̄) .

Proof. By applying the regularity argument of elliptic problem (1.2)-(1.3), it is clear

that y Î H2(Ω), so that p Î H1(Ω). It follows from the costate Equation (1.6) and the

assumption of yd, pd, we can obtain that z Î H2(Ω). Using the relationship between

the control and the costate u = max
(
0,B∗z

) − B∗z , then u Î H2(Ω). Thus y Î H4(Ω),

p Î H3(Ω). By repeating the above process, we can conclude that u ∈ C∞(�̄) .

Let Th be regular triangulation of Ω. They are assumed to satisassociated with the

triangulationfy the angle condition which means that there is a positive constant C

such that for all T ∈ Th,C−1h2T ≤ |T| ≤ Ch2T , where |T| is the area of T, hT is the dia-

meter of T and h = max hT. In addition C or c denotes a general positive constant

independent of h.

Let Vh × Wh ⊂ V × W denotes the Raviart-Thomas space [17] of the lowest order

associated with the triangulation Th of Ω. Pk denotes the space of polynomials of total

degree at most k. Let V(T) = {v ∈ P2
k (T) + x · Pk(T)}, W(T) = Pk(T) . We define

Vh := {vh ∈ V : ∀T ∈ Th, vh
∣∣T ∈ V(T) },

Wh := {wh ∈ W : ∀T ∈ Th,wh
∣∣T ∈ W(T) }.

By the definition of finite element subspace, the mixed finite element discretization

of (2.1)-(2.3) is as follows: compute (ph, yh, uh) Î Vh × Wh × K such that
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min
uh∈K

{
1
2

∥∥ph − pd
∥∥2 + 1

2

∥∥yh − yd
∥∥2 + 1

2
‖uh‖2

}
(2:10)

(A−1ph, vh) − (yh, divvh) = 0, ∀vh ∈ Vh, (2:11)

(divph,wh) = (f + Buh,wh), ∀wh ∈ Wh. (2:12)

It is well known that the optimal control problem (2.10)-(2.12) again has a solution

(ph, yh, uh), and that a triplet (ph, yh, uh) is the solution of (2.10)-(2.12) if and only if

there is a co-state (qh, zh) Î Vh × Wh such that (ph, yh, qh, zh, uh) satisfies the follow-

ing optimality conditions:

(A−1ph, vh) − (yh, divvh) = 0, ∀vh ∈ Vh, (2:13)

(divph,wh) = (f + Buh,wh), ∀wh ∈ Wh, (2:14)

(A−1qh, vh) − (zh, divvh) = −(ph − pd, vh) ∀vh ∈ Vh, (2:15)

(divqh,wh) = (yh − yd,wh), ∀wh ∈ Wh, (2:16)

(uh + B∗zh, ũ − uh) ≥ 0, ∀ũ ∈ K. (2:17)

Let Ph : W ® Wh be the orthogonal L2(Ω)-projection into Wh define by [18]:

(Phw − w,X ) = 0, w ∈ W, X ∈ Wh, (2:18)

which satisfies

‖Phw − w‖0,q ≤ C‖w‖t,qht, 0 ≤ t ≤ k + 1, if w ∈ W ∩ Wt,q(�), (2:19)

‖Phw − w‖−r ≤ C‖w‖thr+t , 0 ≤ r, t ≤ k + 1, if w ∈ Ht(�), (2:20)

(divvh,w − Phw) = 0, w ∈ W, vh ∈ Vh. (2:21)

Let πh : V ® Vh be the Raviart-Thomas projection [19], which satisfies

(div(πhv − v),wh) = 0, v ∈ V , w ∈ Wh, (2:22)

‖πhv − v‖0,q ≤ C‖v‖t,qht, 1/q < t ≤ k + 1, if v ∈ V ∩ Wt,q(�)2, (2:23)

∥∥div(πhv − v)
∥∥
0 ≤ C

∥∥divv∥∥tht, 0 ≤ t ≤ k + 1, if v ∈ V ∩ Ht(div;�). (2:24)

We have the commuting diagram property [20]

div ◦ πh = Ph ◦ div : V → Wh and div(I − πh)V⊥Wh, (2:25)

where and after, I denotes identity matrix.
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3. A priori error estimates
In the rest of the article, we shall use some intermediate variables. For any control

function ũ Î K, we first define the state solution (p(ũ), y(ũ), q(ũ), z(ũ)) associated with

ũ that satisfies

(A−1p(ũ), v) − (y(ũ), divv) = 0, ∀v ∈ V , (3:1)

(divp(ũ),w) = (f + Bũ,w), ∀w ∈ W, (3:2)

(A−1q(ũ), v) − (z(ũ), divv) = −(p(ũ) − pd, v), ∀v ∈ V , (3:3)

(divq(ũ),w) = (y(ũ) − yd,w), ∀w ∈ W. (3:4)

Correspondingly, we define the discrete state solution (ph(ũ), yh(ũ), qh(ũ), zh(ũ)) asso-

ciated with ũ Î K that satisfies

(A−1ph(ũ), vh) − (yh(ũ), divvh) = 0, ∀vh ∈ Vh, (3:5)

(divph(ũ),wh) = (f + Bũ,wh), ∀wh ∈ Wh, (3:6)

(A−1qh(ũ), vh) − (zh(ũ), divvh) = −(ph(ũ) − pd, vh), ∀vh ∈ Vh, (3:7)

(divqh(ũ),wh) = (yh(ũ) − yd,wh), ∀wh ∈ Wh. (3:8)

We define another discrete state solution (p̂h(u), ẑh(u)) that satisfies

(A−1q̂h(ũ), vh) − (ẑh(ũ), divvh) = −(p − pd, vh), ∀vh ∈ Vh, (3:9)

(divq̂h(ũ),wh) = (y − yd,wh), ∀wh ∈ Wh. (3:10)

Thus, as we defined, the exact solution and its approximation can be written in the

following way:

(p, y, q, z) = (p(u), y(u), q(u), z(u)),

(ph, yh, qh, zh) = (ph(uh), yh(uh), qh(uh), zh(uh)).

Combining Lemma 2.1 in [19] and (2.19), we obtain the following technical results:

Lemma 3.1. Let ω Î V, � Î L2(Ω)2, and ψ Î L2(Ω). If τ Î Wh satisfies
{
(A−1ω, vh) − (τ , divvh) = (ϕ, vh), ∀vh ∈ Vh,
(divω,wh) = (ψ ,wh), ∀wh ∈ Wh,

then, there exists a constant C such that

‖τ‖0 ≤ C
(
h‖ω‖0 + h

∥∥divω∥∥
0 + ‖ϕ‖0 + ‖ψ‖0

)
, (3:11)

for h sufficiently small.

Now we chose ũ = u in (3.5)-(3.8), then we set some intermediate errors:

ε1 := p − ph(u) and e1 := y − yh(u). (3:12)
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To analyze the intermediate errors, let us first note the following error equations

from (2.4), (2.5), (3.5) and (3.6) with the choice ũ = u:

(A−1ε1, vh) − (e1, divvh) = 0, ∀vh ∈ Vh, (3:13)

(divε1,wh) = 0, ∀wh ∈ Wh. (3:14)

By (2.18)-(2.24) and Lemma 3.1, we can establish the following error estimates:

Theorem 3.1. Assume that y Î Hk+3(Ω). If h is sufficiently small, there is a positive

constant C independent of h such that
∥∥y − yh(u)

∥∥
0 ≤ Chk+1, (3:15)

∥∥p − ph(u)
∥∥
0 ≤ Chk+1, (3:16)

∥∥p − ph(u)
∥∥
div ≤ Chk+1. (3:17)

Proof. Let τ = Phy - yh(u) and s = πhp - ph(u). Rewrite (3.13) and (3.14) in the form

(A−1ε1, vh) − (τ , divvh) = 0, ∀vh ∈ Vh, (3:18)

(divε1,wh) = 0, ∀wh ∈ Wh. (3:19)

It follows from Lemma 3.1 that

‖τ‖0 ≤ C
(
h‖ε1‖0 + h

∥∥divε1∥∥0) . (3:20)

By using (2.19) that

‖e1‖0 =
∥∥y − yh(u)

∥∥
0

=
∥∥Phy − y

∥∥
0 + ‖τ‖0

≤ C
(
h‖ε1‖0 + h

∥∥divε1∥∥0 + hk+1
∥∥y∥∥k+1

)
.

(3:21)

If we now again rewrite (3.13) and (3.14) as

(A−1σ , vh) − (τ , divvh) = (A−1(πhp − p), vh), ∀vh ∈ Vh, (3:22)

(divσ ,wh) = 0, ∀wh ∈ Wh. (3:23)

Using the standard stability results of mixed finite element methods in [21], we

establish the following results:

‖σ‖div ≤ C
(∥∥πhp − p

∥∥
0 + ‖e1‖0

)
≤ C

(
hk+1

∥∥y∥∥k+2 + ‖e1‖0
)
.

(3:24)

From (3.24), (2.23), and the commuting diagram property (2.25) we now obtain the

bounds
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‖ε1‖0 ≤ C
(∥∥πhp − p

∥∥
0 + ‖σ‖0

)
≤ C

(
hk+1

∥∥y∥∥k+2 + ‖e1‖0
)
,

(3:25)

and
∥∥divε1∥∥0 ≤ C

(∥∥div(πhp − p)
∥∥
0 +

∥∥divσ∥∥
0

)
= C

(∥∥Ph ◦ divp − divp
∥∥
0 +

∥∥divσ∥∥
0

)
≤ C

(
hk+1

∥∥y∥∥k+3 + ‖e1‖ 0
)
,

(3:26)

when substituted into (3.21), which yields the estimate

‖e1‖0 ≤ C
(
h‖e1‖0 + hk+1

∥∥y∥∥k+1
)
. (3:27)

Then (3.27) implies (3.15) holds if h is small enough. Applying (3.27) to (3.25) and

(3.26) shows that (3.16) and (3.17) also hold.

With the intermediate errors, we decompose the errors as follows

p − ph = p − ph(u) + ph(u) − ph := ε1 + ε1, (3:28)

y − yh = y − yh(u) + yh(u) − yh := e1 + r1. (3:29)

From (2.13), (2.14), (3.5) and (3.6), we have

(A−1ε1, vh) − (r1, divvh) = 0, ∀vh ∈ Vh, (3:30)

(divε1,wh) = (B(u − uh),wh), ∀wh ∈ Wh. (3:31)

The assumption that A Î L∞ (Ω;ℝ2 × 2) implies that it is bounded that the inverse

operator of the map {�1, r1}: ℝ
3 ® V × W defined by the above saddle-point problem

[21]:

‖ε1‖div + ‖r1‖0 ≤ C‖u − uh‖0, (3:32)

where the continuity of the linear operator B has been used.

Now we are able to derive our main results.

Theorem 3.2. Let (p, y, q, z, u) Î (V × W)2 × K and (ph, yh, qh, zh, uh) Î (Vh × Wh)
2

× K be the solutions of(2.4)-(2.8) and (2.13)-(2.17), respectively. We assume thaty, z Î
Hk+3(Ω).

Then, we have

‖u − uh‖ 0 ≤ Chk+1, (3:33)

∥∥p − ph
∥∥
div +

∥∥y − yh
∥∥
0 ≤ Chk+1, (3:34)

∥∥q − qh
∥∥
div + ‖z − zh‖0 ≤ Chk+1. (3:35)

Proof. We choose ũ = uh in (2.8) and ũ = u in (2.17) to get that

(u + B∗z, uh − u) ≥ 0, (3:36)
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and

(uh + B∗zh, u − uh) ≥ 0. (3:37)

Then we have

‖u − uh‖2 ≤ (B∗zh − B∗z, u − uh)

= (B∗ẑh(u) − B∗z, u − uh) + (B∗zh − B∗ẑh(u), u − uh).
(3:38)

Moreover, the δ-Caunchy inequality leads that

(B∗ẑh(u) − B∗z, u − uh) ≤ C
∥∥ẑh(u) − z

∥∥ · ‖u − uh‖
≤ C

∥∥ẑh(u) − z
∥∥2 + Cδ‖u − uh‖2,

(3:39)

where δ is an arbitrary positive number. From (3.30)-(3.31), (2.15)-(2.16) and (3.9)-

(3.10), we obtain the following equations:

(A−1(ph − ph(u)), vh) − (yh − yh(u), divvh) = 0, ∀vh ∈ Vh, (3:40)

(div(ph − ph(u)),wh) = (B(u − uh),wh), ∀wh ∈ Wh, (3:41)

(A−1(q̂h(u) − qh), vh) − (ẑh(u) − zh, divvh) = −(p − ph, vh), ∀vh ∈ Vh, (3:42)

(div(q̂h(u) − qh),wh) = (y − yh,wh), ∀wh ∈ Wh. (3:43)

By applying the above error equations, we obtain

(B∗zh − B∗ẑh(u), u − uh)

= (zh − ẑh(u),B(u − uh))

= (div(ph − ph(u)), zh − ẑh(u))

= (A−1(q̂h(u) − qh), ph − ph(u)) + (p − ph, ph − ph(u))

= (yh − yh(u), div(q̂h(u) − qh) + (p − ph, ph − ph(u))

= (y − yh, yh − yh(u)) + (p − ph, ph − ph(u))

= (y − yh, y − yh(u)) + (p − ph, p − ph(u)) − ∥∥y − yh
∥∥2 − ∥∥p − ph

∥∥2
=

∥∥y − yh
∥∥ · ∥∥y − yh(u)

∥∥ +
∥∥p − ph

∥∥ · ∥∥p − ph(u)
∥∥ − ∥∥y − yh

∥∥2 − ∥∥p − ph
∥∥2

≤ C
∥∥y − yh(u)

∥∥2 + C
∥∥p − ph(u)

∥∥2 − 1
2

∥∥y − yh
∥∥2 − 1

2

∥∥p − ph
∥∥2.

(3:44)

From (3.38), (3.39), and (3.44), we derive that

‖u − uh‖2 +
∥∥y − yh

∥∥2 +
∥∥p − ph

∥∥2

≤ C
∥∥y − yh(u)

∥∥2 + C
∥∥p − ph(u)

∥∥2 + C
∥∥z − ẑh(u)

∥∥2. (3:45)

Note that ẑh(u), q̂h(u) are the mixed finite element approximation of z, q, using the

results of [22], we have
∥∥q − q̂h(u)

∥∥
div +

∥∥z − ẑh(u)
∥∥ ≤ Chk+1. (3:46)
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From the Theorem 3.1, (3.45), and (3.46), we obtain

‖u − uh‖ +
∥∥y − yh

∥∥ +
∥∥p − ph

∥∥ ≤ Chk+1, (3:47)

then we derive (3.33). By using (3.42) and (3.43) and the stability results of mixed

finite element methods [21], we have
∥∥q̂h(u) − qh

∥∥
div +

∥∥ẑh(u) − zh
∥∥ ≤ C

∥∥p − ph
∥∥ + C

∥∥y − yh
∥∥ . (3:48)

Combining (3.46)-(3.48), we derive the following result
∥∥q − qh

∥∥
div + ‖z − zh‖ ≤ Chk+1. (3:49)

From (3.17), (3.32), and (3.47), it is easy to see that
∥∥p − ph

∥∥
div ≤ Chk+1. (3:50)

Then we derive the results (3.34) and (3.35).

4. Numerical tests
In this section, we are going to validate the a priori error estimates for the error in the

control, state, and co-state numerically. The optimization problems were dealt numeri-

cally with codes developed based on AFEPACK. The package is freely available and the

details can be found at [23].

In our numerical examples, we consider the following optimal control problems:

min
u∈K

{
1
2

∥∥p − pd
∥∥2 +

1
2

∥∥y − yd
∥∥2 + 1

2
‖u‖2

}
(4:1)

divp = Bu + f , p = −A∇y, x ∈ �, y |∂� = 0, (4:2)

divq = y − yd, q = −A(∇z + p − pd), x ∈ �, z |∂� = 0. (4:3)

In our examples, we choose the domain Ω = [0, 1] × [0, 1] and A = B = I. We pre-

sent below two examples to illustrate the theoretical results of the optimal control pro-

blems. The convergence order is computed by the following formula: order

� log(Ei/Ei+1)
log(hi/hi+1)

, where i responds to the spatial partition, and Ei denotes the for the

state, costate and control approximation.

Example 1. In this example we set the other known functions as follows:

y = 2 sin πx1 sinπx2,

z = − sin πx1 sinπx2,

q = (π cosπx1 sinπx2,π cosπx2 sinπx1),

yd = (1 + π2)y, p = pd = −2q,

f = 2π2y − u,

u = max(z̄, 0) − z.

In this numerical implementation, the error ∥u - uh∥0, ∥ p - ph∥div, ∥y - yh∥0, ∥ q -

qh∥div, and ∥z - zh∥0 obtained on RT0 mixed finite element approximation and RT1

mixed finite element approximation for state function are presented in Tables 1, 2, 3
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and 4. The theoretical results can be observed clearly from the data. The profile of the

numerical solution is plotted in Figures 1 and 2.

Example 2. In this example we set the other known functions as follows:

y = (x1 + x2) sinπx1 sinπx2,

z = −(x1 + x2) sinπx1 sinπx2,

u = max(z̄, 0) − z, p = pd = −q,

f = 2π2 sinπx1 sinπx2(x1 + x2) + cosπx1 sinπx2 − u,

q = (π cosπx1 sinπx2 + sinπx1 sinπx2,π cosπx2 sinπx1 + sinπx1 sinπx2),

yd = y + 2π2 sinπx1 cosπx2(x1 + x2) − 2π cosπx1 sinπx2 − 2π sinπx1 cosπx2.

The example obviously indicates that the error estimates remains in output data.

From the error data in the two examples, it can be seen that the priori error estimates

that we have mentioned is exact.

Table 1 The numerical errors on RT0 mixed finite element for state function

h Errors

∥u - uh∥ Rate ∥p - ph∥ Rate ∥y - yh∥ Rate ∥q - qh∥ Rate ∥z - zh∥ Rate

1/16 3.63e - 02 - 3.25e - 01 - 7.24e - 02 - 1.63e - 01 - 3.63e - 02 -

1/32 1.80e - 02 1.01 1.62e - 01 1.00 3.63e - 02 0.99 8.12e - 02 1.01 1.80e - 02 1.01

1/64 9.06e - 03 0.99 8.13e - 02 0.99 1.78e - 02 1.03 4.07e - 02 1.00 9.06e - 03 0.99

1/128 4.48e - 03 1.01 4.03e - 02 1.01 8.87e - 03 1.01 2.05e - 02 0.99 4.48e - 03 1.01

Table 2 The numerical errors on RT1 mixed finite element for state function

h Errors

∥u - uh∥ Rate ∥p - ph∥ Rate ∥y - yh∥ Rate ∥q - qh∥ Rate ∥z - zh∥ Rate

1/16 1.25e - 03 - 7.13e - 03 - 2.50e - 03 - 3.53e - 03 - 1.25e - 03 -

1/32 3.13e - 04 2.00 1.76e - 03 2.02 6.24e - 04 2.00 8.82e - 04 2.00 3.13e - 04 2.00

1/64 7.68e - 05 2.02 4.43e - 04 1.99 1.56e - 04 2.00 2.23e - 04 1.98 7.68e - 05 2.02

1/128 1.90e - 05 2.01 1.12e - 04 1.98 3.89e - 05 2.00 5.52e - 05 2.01 1.90e - 05 2.01

Table 3 The numerical error on RT0 mixed finite element for state function

h Errors

∥u - uh∥ Rate ∥p - ph∥ Rate ∥y - yh∥ Rate ∥q - qh∥ Rate ∥z - zh∥ Rate

1/16 3.66e - 02 - 1.63e - 01 - 3.67e - 02 - 1.63e - 01 - 3.66e - 02 -

1/32 1.79e - 02 1.03 8.14e - 02 1.00 1.79e - 02 1.04 8.14e - 02 1.00 1.79e - 02 1.03

1/64 8.94e - 03 0.99 4.09e - 02 0.99 8.94e - 03 0.99 4.09e - 02 0.99 8.94e - 03 0.99

1/128 4.50e - 03 0.99 2.04e - 02 1.00 4.46e - 03 1.00 2.04e - 02 1.00 4.50e - 03 0.99

Table 4 The numerical error on RT1 mixed finite element for state function

h Errors

∥u - uh∥ Rate ∥p - ph∥ Rate ∥y - yh∥ Rate ∥q - qh∥ Rate ∥z - zh∥ Rate

1/16 1.55e - 03 - 5.68e - 03 - 1.55e - 03 - 5.68e - 03 - 1.55e - 03 -

1/32 3.88e - 04 2.00 1.43e - 03 2.00 3.88e - 04 2.00 1.43e - 03 2.00 3.88e - 04 2.00

1/64 9.69e - 05 2.00 3.58e - 04 1.99 9.69e - 05 2.00 3.58e - 04 1.99 9.66e - 05 2.00

1/128 2.43e - 05 1.99 8.96e - 05 2.00 2.43e - 05 1.99 8.97e - 05 2.00 2.42e - 05 1.99
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5. Conclusion and future works
The present article discussed the higher order variational discretization and mixed

finite element methods for the optimal control problems governed by elliptic equa-

tions. We have obtained some error estimate results for both the state, the co-state

and the control approximation with convergence order hk+1. The priori error estimates
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Figure 1 The profile of the control solution u on the 64 × 64 mesh grids.
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Figure 2 The profile of the control solution u on the 64 × 64 mesh grids.
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for the elliptic optimal control problems by variational discretization and mixed finite

element methods seem to be new.

In our future study, we shall use the variational discretization and mixed finite ele-

ment method to deal with the optimal control problems governed by nonlinear para-

bolic equations and convex boundary control problems. Furthermore, we shall

consider a priori error estimates and superconvergence of optimal control problems

governed by nonlinear parabolic equations or convex boundary control problems.
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