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Abstract

In this article, we consider the solutions of the system of generalized variational
inequality problems in Banach spaces. By employing the generalized projection
operator, the well-known Fan’s KKM theorem and Kakutani-Fan-Glicksberg fixed point
theorem, we establish some new existence theorems of solutions for two classes of
generalized set-valued variational inequalities in reflexive Banach spaces under some
suitable conditions.
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1 Introduction
Let E be a Banach space, E* be the dual space of E, and let 〈·,·〉 denotes the duality

pairing of E* and E. If E is a Hilbert space and K is a nonempty, closed and convex

subset of E, then it is well known that the metric projection operator PK : E ® K plays

an important role in nonlinear functional analysis, optimization theory, fixed point the-

ory, nonlinear programming, game theory, variational inequality problem, and comple-

mentarity problems, etc. (see example, [1-32] and the references therein.)

Let K be a nonempty, closed and convex subset of a Hilbert space H and let A : K ®
H be a mapping. The classical variational inequality problem, denoted by VIP(A, K), is

to find x* Î K such that〈
Ax∗, z − x∗〉 ≥ 0

for all z Î K. The variational inequality has emerged as a fascinating and interesting

branch of mathematical and engineering sciences with a wide range of applications in

industry, finance, economics, social, ecology, regional, pure, and applied sciences; see,

e.g., [3,10,11,17,21-24,29] and the references therein. Related to the variational inequal-

ities, we have the problem of finding the fixed points of the nonexpansive mappings,

which is the current interest in functional analysis. It is natural to consider the unified

approach to these different problems; see e.g. [17,20,22].

The system of variational inequality problems are the model of several equilibrium

problems, namely, traffic equilibrium problem, the spatial equilibrium problem, the
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Nash equilibrium, the general equilibrium programming problem, etc. For further

detail see [2,6,12,13,18,33] and the references therein. In [6,18], some solution methods

are proposed. However, the existence of a solution of system of variational inequalities

is studied in [2,6,12,13,33].

On the other hand, Verma [23-26] introduced and studied a two step model for

some systems of variational inequalities which were difference from the sense of Pang

[18] and developed some iterative algorithms for approximating the solutions of these

systems in Hilbert spaces base on the convergence analysis of a two step projection

method. In 2011, Yao et al. [30] extended the main results of Verma [26] from the Hil-

bert spaces to the Banach spaces.

In 1994, Alber [34] introduced the generalized projection πK : E* ® K and ΠK : E ®
K from Hilbert spaces to uniformly convex and uniformly smooth Banach spaces and

studied their in detail. In [35], Alber presented some applications of the generalized

projections to approximately solve variational inequalities (1.1) and von Neumann

intersection problem in Banach spaces. Let A : K ® E* be a mapping and let us find

x* Î K such that〈
Ax∗ − ξ , z − x∗〉 ≥ 0, ∀z ∈ K, (1:1)

where ξ Î E*.

Recently, Li [16] extended the generalized projection operator πK : E* ® K from uni-

formly convex and uniformly smooth Banach spaces to reflexive Banach spaces and

studied some properties of generalized projection operator with applications to solve

the variational inequality (1.1) in Banach spaces. Very recently, the generalized varia-

tional inequality problem (GVIP(A,K)) has been studied by many authors (for example,

see [19,28,36,37]). It is the problem to find x* Î K such that there exists u* Î Ax*

satisfying〈
u∗, z − x∗〉 ≥ 0, ∀z ∈ K. (1:2)

where A : K ® 2E* is a multivalued mapping with nonempty values and 2E* denotes

the family of all subset of E*.

In 2009, Wong et al. [27] studied the generalized variational inequality problems

defined by a multivalued mapping T, a nonempty closed convex subset K of a Banach

space E and b Î E* is to find x̄ ∈ K such that there exists ū ∈ T(x̄) satisfying〈
ū − b, y − x̄

〉 ≤ 0, for all y ∈ K,

in reflexive and smooth Banach spaces by using generalized projection operator,

Fan’s KKM theorem and minimax theorem.

In this article, we consider the problem for finding the solution of the system of gen-

eralized variational inequality problem (1.3) in the sense of Verma [23]. Let K be a

nonempty, closed and convex subset of E and A, B : K ® 2E* be two multivalued map-

pings with nonempty values, where 2E* denotes the family of all subset of E*. The sys-

tem of generalized variational inequality problem (SGVIP(A,B,K)) is to find (x*,y*) Î K

× K such that there exist u* Î Ay*, v* Î Bx* satisfying{ 〈u∗, z − x∗〉 ≥ 0, ∀x ∈ K,〈
v∗, z − y∗

〉 ≥ 0, ∀x ∈ K.
(1:3)
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If A and B are single-valued, then the system of generalized variational inequality

problem is reduced to find (x*,y*) Î K × K such that{ 〈
Ay∗, z − x∗〉 ≥ 0, ∀z ∈ K,〈
Bx∗, z − y∗

〉 ≥ 0, ∀z ∈ K,
(1:4)

which is called a system of variational inequality problem (SVIP(A,B,K)).

Remark 1.1. (i) x* Î GVIP(A, K) if and only if (x*, x*) Î SGVIP(A, A, K).

(ii) x* Î VIP(A, K) if and only if (x*, x*) Î SVIP(A, A, K).

The purpose of this article is to establish some existence results of solutions for the

system variational inequalities (1.3) in reflexive Banach spaces by employing the prop-

erties of the generalized projection operator, the well-known Fan’s KKM theorem and

Kakutani-Fan-Glicksberg theorem.

2 Preliminaries
Let E be a real Banach space and let S = {x Î E : ∥x∥ = 1} be the unit sphere of E. A

Banach space E is said to be strictly convex if for any x, y Î S,

x 	= y implies
∥∥∥x + y

2

∥∥∥ < 1. (2:1)

It is also said to be uniformly convex if for each ε Î (0, 2], there exists δ > 0 such

that for any x, y Î S,

∥∥x − y
∥∥ ≥ ε implies

∥∥∥x + y
2

∥∥∥ < 1 − δ. (2:2)

It is known that a uniformly convex Banach space is reflexive and strictly convex;

and we define a function δ : [0, 2] ® [0,1] called the modulus of convexity of E as fol-

lows:

δ(ε) = inf
{
1 −

∥∥∥x + y
2

∥∥∥ : x, y ∈ E, ‖x‖ =
∥∥y∥∥ = 1,

∥∥x − y
∥∥ ≥ ε

}
. (2:3)

Then E is uniformly convex if and only if δ(ε) > 0 for all ε Î (0, 2].

A Banach space E is said to be locally uniformly convex if for each ε > 0 and x Î S,

there exists δ(ε, x) > 0 for y Î S,

∥∥x − y
∥∥ ≥ ε implies

∥∥∥x + y
2

∥∥∥ < 1 − δ(ε, x) (2:4)

From the above definition, it is easy to see that the following implications are valid: E

is uniformly convex ⇒ E is locally uniformly convex ⇒ E is strictly convex

A Banach space E is said to be smooth if the limit

lim
t→0

∥∥x + ty
∥∥ − ‖x‖
t

(9)

exists for all x, y Î S. It is also said to be uniformly smooth if the limit (2.5) is

attained uniformly for x, y Î S. We recall that E is uniformly convex if and only if E*

is uniformly smooth. It is well known that E is smooth if and only if E* is strictly con-

vex. The mapping J : E ® E* defined by

J(x) =
{
x∗ ∈ E : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2} , for all x ∈ E,
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is called the duality mapping of E. It is known that J(x) = ∂
( 1
2‖x‖2), where ∂j (x)

denotes the subdifferential of j at x. The following properties of duality mapping J

which are useful for the rest of this work.

Proposition 2.1. [38]Let E be a reflexive Banach space and E* be strictly convex.

(i) The duality mapping J : E ® E* is single-valued, surjective and bounded.

(ii) If E and E* are locally uniformly convex, then J is a homeomorphism, that is, J

and J-1 are continuous single-valued mappings.

Next, we consider the functional V : E* × E ® ℝ defined as

V(ϕ, x) = ‖ϕ‖2 − 2 〈ϕ, x〉 + ‖x‖2, forall ϕ ∈ E∗, and x ∈ E.

It is clear that V(�, x) is continuous and the map x ↦ V(�, x) and � ↦ V(�, x) are

convex and (∥�∥ - ∥x∥)2 ≤ V(�, x) ≤ (∥�∥ + ∥x∥)2. We remark that the main Lyapunov

functional V was first introduced by Alber [35] and its properties were studied there.

By using this functional, Alber defined a generalized projection operator on uniformly

convex and uniformly smooth Banach spaces which was further extended by Li [16] on

reflexive Banach spaces.

Definition 2.2. [16] Let E be reflexive Banach space with its dual E* and K be a

nonempty, closed and convex subset of E. The operator πK : E* ® K defined by

πK(ϕ) =
{
x ∈ K : V(ϕ, x) = inf

y∈K
V(ϕ, y)

}
, for all ϕ ∈ E∗, (2:6)

is said to be a generalized projection operator. For each � Î E*, the set πK(�) is

called the generalized projection of � on K.

We mention the following useful properties of the operator πk(�).

Lemma 2.3. [16]Let E be a reflexive Banach space with its dual E* and K be a none-

mpty closed convex subset of E, then the following properties hold:

(i) The operator πK : E* ® 2K is single-valued if and only if E is strictly convex.

(ii) If E is smooth, then for any given � Î E*, x Î πK� if and only if 〈� - J(x), x - y〉

≥ 0, ∀y Î K.

(iii) If E is strictly convex, then the generalized projection operator πK : E* ® K is

continuous.

Lemma 2.4. [5]In every reflexive Banach space, an equivalent norm can be introduced

so that E and E* are locally uniformly convex and thus also strictly convex with respect

to the new norm on E and E*.

From Lemma 2.4, we can assume for the rest of this work that the norm ∥·∥ of the

reflexive Banach space E is such that E and E* are locally uniformly convex. In this

case, we note that the generalized metric projection operator πK and the duality map-

ping J are single-valued and continuous.

Lemma 2.5. [38]Let A and B be convex subsets of some real topological vector space

with B is compact and let p : A × B ® ℝ. If p(·, b) is lower semicontinuous and quasi-

convex on A for all b Î B and p(a, ·) is upper semicontinuous and quasiconcave on B

for all a Î A, then
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inf
a∈A

max
b∈B

p(a, b) = max
b∈B

inf
a∈A

p(a, b).

Definition 2.6 (KKM mapping). Let K be a nonempty subset of a linear space E. A

set-valued mapping G : K ® 2E is said to be a KKM mapping if for any finite subset

{y1,y2,...,yn} of K, we have

co
{
y1, y2, ..., yn

} ⊆
⋃n

i=1
G(yi)

where co{y1, y2, ..., yn} denotes the convex hull of {y1, y2,..., yn}.

Lemma 2.7 (FanKKM Theorem). Let K be a nonempty convex subset of a Hausdorff

topological vector space E and let G : K ® 2E be a KKM mapping with closed values. If

there exists a point y0 Î K such that G(y0) is a compact subset of K, then ∩y∈KG(y) 	= ∅.
Lemma 2.8. [9]Let K be a nonempty compact subset of a locally convex Hausdorff

vector topology space E. If S : K ® 2K is upper semicontinuous and for any x Î K, S(x)

is nonempty, convex and closed, then there exists an x* Î K such that x* Î S(x*).

Lemma 2.9. [39]Let X and Y be two Hausdorff topological vector spaces and T : X ®
2Y be a set-valued mapping. Then the following properties hold:

(i) If T is closed and T(X)is compact, then T is upper semicontinuous, where T(X) =

∪xÎXT(x) and T(X)denotes the closure of the set T(X).

(ii) If T is upper semicontinuous and for any x Î X, T(x) is closed, then T is closed.

(iii) T is lower semicontinuous at x Î X if and only if for any y Î T(x) and any net

{xa}, xa ® x, there exists a net {ya} such that ya Î T(xa) and ya ® y.

3 Main result
Proposition 3.1. Let E be a reflexive and smooth Banach space and let K be a closed

convex subset of E. Assume that a, b > 0 and A : K ® 2E*, B : K ® 2E* are two multi-

valued mappings with nonempty values. Then (x*, y*) is a solution of (1.3) if and only if

there exist u* Î Ay*, v* Î Bx* such that{
x∗ = πK[J(x∗) − αu∗],
y∗ = πK[J(y∗) − βv∗]. (3:1)

Proof. It follows from the definition of SGVIP(A,B,K) and Lemma 2.3, that (x*, y*) is

a solution of (1.3) ⇔ ∃u* Î Ay*, v* Î Bx* such that{ 〈u∗, z − x∗〉 ≥ 0, ∀z ∈ K,〈
v∗, z − y∗

〉 ≥ 0, ∀z ∈ K.

⇔
{ 〈αu∗, z − x∗〉 ≥ 0, ∀z ∈ K,〈

βv∗, z − y∗
〉 ≥ 0, ∀z ∈ K.

⇔
{ 〈

J(x∗) − αu∗ − J(x∗), x∗ − z
〉 ≥ 0, ∀z ∈ K,〈

J(y∗) − βv∗ − J(y∗), y∗ − z
〉 ≥ 0, ∀z ∈ K.

⇔
{
x∗ = πK[J(x∗) − αu∗],
y∗ = πK[J(y∗) − βv∗].

Theorem 3.2. Let E be a reflexive and smooth Banach space such that E and E* are

locally uniformly convex. Let K be a compact convex subset of E. Let A : K ® 2E* and B

: K ® 2E* be two upper semicontinuous multivalued mappings with nonempty values
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such that A(x) and B(x) are weak* compact and convex for each x Î K. Then the pro-

blem (1.3) has a solution and the set of solutions (1.3) is closed.

Proof. Step 1. Let a, b > 0 and fixed x Î K, for each z Î K, the sets Gx(z) and Hx(z)

define as follow⎧⎨
⎩
Gx(z) :

{
y ∈ K : infu∈Ax

(〈
J(y) − αu, 2(z − y)

〉
+

∥∥y∥∥2) ≤ ‖z‖2
}
,

Hx(z) :
{
y ∈ K : infv∈Bx

(〈
J(y) − βv, 2(z − y)

〉
+

∥∥y∥∥2) ≤ ‖z‖2
}
.

(3:2)

(a1) For each z Î K, we have z Î Gx(z) and z Î Hx(z). Hence Gx(z) and Hx(z) are

nonempty subsets of K.

(a2) For any finite set {z1, z2,..., zn} ⊂ K we claim that co{z1, z2, ..., zn} ⊂ ⋃n
j=1 Gx

(
zj
)

and co{z1, z2, ..., zn} ⊂ ⋃n
j=1 Hx

(
zj
)
.

Let z Î co{z1, z2,..., zn}. Then z =
∑n

j=1 λjzj where lj Î [0, 1] and
∑n

j=1 λj = 1. We

observe that

n∑
j=1

inf
u∈Ax

〈
J(z) − αu, 2λj

(
zj − z

)〉 ≤ inf
u∈Ax

〈
J(z) − αu, 2

n∑
j=1

λj
(
zj − z

)〉
= 0.

Thus,

n∑
j=1

inf
u∈Ax

(〈
J(z) − αu, 2λj

(
zj − z

)〉
+ λj‖z‖2

) ≤ ‖z‖2 ≤
n∑
j=1

λj
∥∥zj∥∥2.

This implies that

n∑
j=1

inf
u∈Ax

(〈
J(z) − αu, 2λj

(
zj − z

)〉
+ λj‖z‖2 − λj

∥∥zj∥∥2) ≤ 0.

So there exists j > 0 such that

inf
u∈Ax

(〈
J(z) − αu, 2λj

(
zj − z

)〉
+ λj‖z‖2 − λj

∥∥zj∥∥2) ≤ 0.

Hence,

inf
u∈Ax

(〈
J(z) − αu, 2

(
zj − z

)〉
+ ‖z‖2) ≤ ∥∥zj∥∥2.

Therefore z ∈ Gx
(
zj
) ⊂

⋃n

j=1
Gx

(
zj
)
. Similarly, we obtain that there exists k > 0 such

that z ∈ Hx (zk) ⊂ ⋃n
j=1 Hx

(
zj
)
. Hence we have the claim. This implies that Gx(·) and

Hx(·) are KKM-mappings.

Step 2. Show that Gx(z) and Hx(z) are closed for all z Î K.

Let {xn} be a sequence in Gx(z) such that xn ® x0 in a norm topology. Then there

exists un Î Ax such that〈
J(xn) − αun, 2 (z − xn)

〉
+ ‖xn‖2 = inf

u∈Ax
(〈
J(xn) − αu, 2 (z − xn)

〉
+ ‖xn‖2

) ≤ ‖z‖2. (3:3)

Since A(x) is compact, there exists a subsequence
{
unj

}
of {un} such that

unj → u0 ∈ A(x). Thus without loss of generality, we may assume that un ® u0 and

observe that
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〈J (xn) − αun, 2 (z − xn)〉 + ‖xn‖2 → 〈J (x0) − αu0, 2 (z − x0)〉 + ‖x0‖2. (3:4)

Therefore

inf
u∈Ax

〈J (x0) − αu, 2 (z − x0)〉 + ‖x0‖2
) ≤ 〈J (x0) − αu0, 2 (z − x0)〉 + ‖x0‖2 ≤ ‖z‖2. (3:5)

This implies that x0 Î Gx(z) and so Gx(z) is closed for all z Î K. Similarly, we obtain

that Hx(z) is closed for all z Î K. Then ∩z Î KGy(z) and ∩z Î KHx(z) are also closed.

Step 3. Show that
⋂

z∈K Gx(z) 	= ∅ 	=
⋂

z∈K Hz(z).

Since Gx(z) and Hx(z) are closed subsets of K and K is compact, Gx(z) and Hx(z) are

compact subsets of K. It follows from Steps 1, 2, and Lemma 2.7 that⋂
z∈K Gx(z) 	= ∅ 	=

⋂
z∈K Hz(z).

Step 4. Show that the problem (1.3) has a solution.

For any x, y Î K, we may choose x̄ ∈ ⋂
z∈K Gy(z) and ȳ ∈ ⋂

z∈K Hx(z) by Step 3. We

define the set-valued mapping S : K × K ® 2K×K by

S(x, y) =
({x̄}, {ȳ}) where x̄ ∈

⋂
z∈K Gy(z) and ȳ ∈

⋂
z∈K Hx(z), ∀(x, y) ∈ K × K. (3:6)

By Definition of S(x, y) and Step 3, we obtain that S(x, y) is a nonempty closed con-

vex subset of K × K for all (x, y) Î K × K. Since
⋂

z∈K Gy(z),
⋂

z∈K Hx(z) ⊂ K and K is

compact,
⋂

z∈K Gy(z) and
⋂

z∈K Hy(z) are compact. We only show that S is a closed

mapping. Indeed, let {(xn, yn)} be a net in K × K such that (xn, yn) ® (x0, y0) in the

norm topology and let (un, vn) Î S(xn, yn) such that (un, vn) ® (u0, v0). By definition of

a mapping S, we have (un, vn) ∈ ({x̄n} , {ȳn}) where x̄n ∈ ⋂
z∈K Gyn(z) and

ȳn ∈ ⋂
z∈K Hxn(z). That is for each z ∈ K, un = x̄n ∈ Gyn(z) and vn = ȳn ∈ Hxn(z). It fol-

lows from (3.2) that there exist an Î Ayn and bn Î Bxn such that
{ 〈J (un) − αan, 2 (z − un)〉 + ‖un‖2 = infu∈Ayn

(〈J (un) − αu, 2 (z − un)〉 + ‖un‖2
) ≤ ‖z‖2,

〈J (vn) − βbn, 2 (z − vn)〉 + ‖vn‖2 = infv∈Bxn
(〈J (vn) − βv, 2 (z − vn)〉 + ‖vn‖2

) ≤ ‖z‖2. (3:7)

Now, we define two sets T1 := {x1, x2,..., xn,...} ∪ {x0} and

T2 := {y1, y2,...,yn,...} ∪ {y0}.

It follows from our assumption that A(T2) and B(T1) are compact. Thus there exist

two subsequences
{
anj

}
of {an} and

{
bnk

}
of {bn} such that anj → a0 ∈ A (T2) and

bnk → b0 ∈ B (T2). Since A and B are upper semicontinuous, a0 Î Ay0 and b0 Î Bx0.

Taking j, k ® ∞ in (3.7), we obtain that{
infu∈Ay0

(〈J (u0) − αu, 2 (z − u0)〉 + ‖u0‖2
) ≤ 〈J (u0) − αa0, 2 (z − u0)〉 + ‖u0‖2 ≤ ‖z‖2,

infu∈Bx0
(〈J (v0) − βv, 2 (z − v0)〉 + ‖v0‖2

) ≤ 〈J (v0) − βb0, 2 (z − v0)〉 + ‖v0‖2 ≤ ‖z‖2.

Hence u0 Î Gy0(z) and v0 ∈ Hx0(z) for all z Î K. This implies that (u0, v0) Î ({u0},

{v0}) = S(x0, y0). Thus, S is a closed mapping. It follows from Lemma 2.9 that S is

upper semicontinuous. By Lemma 2.8, there exists a point(
x∗, y∗

) ∈ S
(
x∗, y∗

)
=

({x̄}, {ȳ}) where x̄ ∈ ⋂
z∈K Gy∗(z) and ȳ ∈ ⋂

z∈K Hx∗(z). That is

x∗ = x̄ ∈ Gy∗(z) and y∗ = ȳ ∈ Hx∗(z) for all z Î K. By definition of Gy*(z) and Hx*.(z), we

get {
infu∈Ay∗

(〈
J(x∗) − αu, 2 (z − x∗)

〉
+ ‖x‖2) ≤ ‖z‖2, ∀z ∈ K,

infv∈Bx∗
(〈
J(y∗) − βv, 2

(
z − y∗

)〉
+

∥∥y∥∥2
)

≤ ‖z‖2, ∀z ∈ K.
(3:8)
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This implies that{
supz∈Kinfu∈Ay∗

(〈
J(x∗) − αu, 2 (z − x∗)

〉
+ ‖x‖2 − ‖z‖2) ≤ 0,

supz∈K infv∈Bx∗
(〈
J(y∗) − βv, 2

(
z − y∗

)〉
+

∥∥y∗∥∥2 − ‖z‖2
)

≤ 0.
(3:9)

Put {
p1(u, z) =

〈
J(x∗) − αu, 2 (z − x∗)

〉
+ ‖x∗‖2 − ‖z‖2,

p2(v, z) =
〈
J(y∗) − βv, 2

(
z − y∗

)〉
+

∥∥y∗∥∥2 − ‖z‖2. (3:10)

Then the functional p1(·, z), p2(·, z) are lower semicontinuous and convex. Also the

function p1(u, ·), p2(v, ·) are upper semicontinuous and concave. Apply minimax theo-

rem, we have{
supz∈K infu∈Ay∗p1(u, z) = infu,∈Ay∗supz∈Kp1(u, z) ≤ 0,
supz∈K infv∈Bx∗p2(v, z) = infv,∈Bx∗supz∈Kp2(v, z) ≤ 0.

(3:11)

Since the functional u ↦ supzÎ K p1(u, z) and v ↦ supzÎ K p2(v, z) are lower semicon-

tinuous and A(y*),B(x*) are compact, there exist u* Î A(y*) and v* Î B(x*) such that{
supz∈Kp1 (u∗, z) = infu∈Ay∗supz∈Kp1(u, z) ≤ 0,
supz∈Kp2 (v∗, z) = infv∈Bx∗supz∈Kp2(v, z) ≤ 0.

(3:12)

This implies that{
p1 (u∗, z) ≤ 0, ∀z ∈ K,
p2 (v∗, z) ≤ 0, ∀z ∈ K.

(3:13)

That is{〈
J(x∗) − αu∗, 2 (z − x∗)

〉
+ ‖x∗‖2 − ‖z‖2 ≤ 0, ∀z ∈ K,〈

J(y∗) − βv∗, 2
(
z − y∗

)〉
+

∥∥y∗∥∥2 − ‖z‖2 ≤ 0, ∀z ∈ K.
(3:14)

So, we obtain that{
V

(
J(x∗) − αu∗, x∗) ≤ V

(
J(x∗) − αu∗, z

)
, ∀z ∈ K,

V
(
J(y∗) − βv∗, y∗

) ≤ V
(
J(y∗) − βv∗, z

)
, ∀z ∈ K.

(3:15)

By definition of generalized projection operator, we get x* = πK(J(x*) - au*) and y* =

πK(J(y*) - bv*). It follows from Proposition 3.1 that (x*, y*) is the solutions of problem

(1.3).

Step 5. Show that the set of solutions (1.3) is closed.

Put T := {(x, y) Î K × K : (x, y) is a solution of (1.3)}. Let {(xn, yn)} be a net in T such

that (xn, yn) ® (x0, y0) in the norm topology. By definition (1.3) we obtain that there

exist un Î A(yn) and vn Î B(xn) such that{ 〈un, z − xn〉 ≥ 0, ∀z ∈ K,〈
vn, z − yn

〉 ≥ 0, ∀z ∈ K.
(3:16)

We define two sets T1 := {x1, x2, ..., xn,...} ∪ {x0} and T2 := {y1, y2, ..., yn,...} ∪ {y0}.

It follows from our assumption that A(T2) and B(T1) are compact. Thus there exist

two subsequences
{
unj

}
of {un} and

{
vnk

}
of {vn} such that unj → u0 ∈ A (T2) and

vnk → v0 ∈ B (T2). Since A and B are upper semicontinuous, u0 Î Ay0 and v0 Î Bx0.
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Taking j, k ® ∞ in (3.16), we obtain that{ 〈u0, z − x0〉 ≥ 0, ∀z ∈ K,〈
v0, z − y0

〉 ≥ 0, ∀z ∈ K.
(3:17)

Thus (x0, y0) Î T and so T is closed. This completes the proof.

If A and B are two single-valued mappings, then from Theorem 3.2, we derive the

following result.

Corollary 3.3. Let E be a reflexive and smooth Banach space such that E and E* are

locally uniformly convex. Let K be a compact convex subset of E. Let A : K ® E* and B:

K ® E* be two continuous single-valued mappings. Then the problem (1.4) has a solu-

tion and the set of solutions (1.4) is closed.
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