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Abstract

Let T or T* be an algebraically quasi-paranormal operator acting on a Hilbert space.
We prove: (i) generalized Weyl’s theorem holds for f(T) for every f Î H(s (T)); (ii)
generalized a-Browder’s theorem holds for f(S) for every S ≺ T and f Î H(s(S)); (iii)
the spectral mapping theorem holds for the B-Weyl spectrum of T. Moreover, we
show that if T is an algebraically quasi-paranormal operator, then T + F satisfies
generalized Weyl’s theorem for every algebraic operator F which commutes with T.
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1. Introduction
Throughout this article, we assume that H is an infinite dimensional separable Hilbert

space. Let B(H) and B0(H) denote, respectively, the algebra of bounded linear operators

and the ideal of compact operators acting on H. If T ∈ B(H)we shall write N(T) and R(T)

for the null space and range of T. Also, let a(T): = dimN(T), b(T): = dimN(T*), and let s
(T), sa(T), sp(T), π(T), E(T) denote the spectrum, approximate point spectrum, point

spectrum of T, the set of poles of the resolvent of T, the set of all eigenvalues of T which

are isolated in s(T), respectively. An operator T ∈ B(H) is called upper semi-Fredholm if it

has closed range and finite dimensional null space and is called lower semi-Fredholm if it

has closed range and its range has finite co-dimension. If T ∈ B(H) is either upper or

lower semi-Fredholm, then T is called semi-Fredholm, and index of a semi-Fredholm

operator T ∈ B(H) is defined by

i(T) := α(T) − β(T).

If both a(T) and b(T) are finite, then T is called Fredholm. T ∈ B(H) is called Weyl if it

is Fredholm of index zero. For T ∈ B(H) and a nonnegative integer n define Tn to be the

restriction of T to R(Tn) viewed as a map from R(Tn) into R(Tn) (in particular T0 = T). If

for some integer n the range R(Tn) is closed and Tn is upper (resp. lower) semi-Fred-

holm, then T is called upper (resp. lower) semi-B-Fredholm. Moreover, if Tn is Fredholm,

then T is called B-Fredholm. T is called semi-B-Fredholm if it is upper or lower semi-B-

Fredholm. Let T be semi-B-Fredholm and let d be the degree of stable iteration of T. It

follows from [1, Proposition 2.1] that Tm is semi-Fredholm and i(Tm) = i(Td) for each m
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≥ d. This enables us to define the index of semi-B-Fredholm T as the index of semi-

Fredholm Td. Let BF(H) be the class of all B-Fredholm operators. In [2], they studied

this class of operators and they proved [2, Theorem 2.7] that an operator T ∈ B(H) is

B-Fredholm if and only if T = T1 ⊕ T2, where T1 is Fredholm and T2 is nilpotent. It

appears that the concept of Drazin invertibility plays an important role for the class of

B-Fredholm operators. Let A be a unital algebra. We say that an element x ∈ A is

Drazin invertible of degree k if there exists an element a ∈ A such that

xkax = xk, axa = a, and xa = ax.

Let a ∈ A. Then the Drazin spectrum is defined by

σD(a) := {λ ∈ C : a − λ is not Drazin invertible}.

For T ∈ B(H), the smallest nonnegative integer p such that N (Tp) = N(Tp+1) is

called the ascent of T and denoted by p(T). If no such integer exists, we set p(T) = ∞.

The smallest nonnegative integer q such that R(Tq) = R(Tq+1) is called the descent of T

and denoted by q(T). If no such integer exists, we set q(T) = ∞. It is well known that

T is Drazin invertible if and only if it has finite ascent and descent, which is also

equivalent to the fact that

T = T1 ⊕ T2, where T1 is invertible and T2 is nilpotent.

An operator T ∈ B(H) is called B-Weyl if it is B-Fredholm of index 0. The B-Fredholm

spectrum sBF(T) and B-Weyl spectrum sBW(T) of T are defined by

σBF(T) := {λ ∈ C : T − λ is not B − Fredholm},

σBW(T) := {λ ∈ C : T − λ is not B − Weyl}.

Now, we consider the following sets:

BF+(H) := {T ∈ B(H) : T is upper semi - B - Ferdholm} ,
BF−

+ (H) := {T ∈ B(H) : T ∈ BF+(H) and i(T) ≤ 0} ,
LD(H) := {T ∈ B(H) : p(T) < ∞ and R(Tp(T)+1) is closed} .

By definition,

σBea(T) := {λ ∈ C : T − λ /∈ BF−
+ (H)},

is the upper semi-B-essential approximate point spectrum and

σLD(T) := {λ ∈ C : T − λ /∈ LD(H)}

is the left Drazin spectrum. It is well known that

σBea(T) ⊆ σLD(T) = σBea(T) ∪ acc σa(T) ⊆ σD(T),

where we write acc K for the accumulation points of K ⊆ C. If we write iso K: = K \

acc K then we let

pa0(T) := {λ ∈ σα(T) : T − λ ∈ LD(H)},
π a
0(T) := {λ ∈ iso σa(T) : λ ∈ σp(T)}.
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We say that an operator T has the single valued extension property at l (abbreviated

SVEP at l) if for every open set U containing l the only analytic function f : U → H
which satisfies the equation

(T − λ)f (λ) = 0

is the constant function f ≡ 0 on U. T has SVEP if T has SVEP at every point λ ∈ C.

Definition 1.1. Let T ∈ B(H).

(1) Generalized Weyl’s theorem holds for T (in symbols, T ∈ gW) if

σ (T)\σBW(T) = E(T).

(2) Generalized Browder’s theorem holds for T (in symbols, T ∈ gB) if
σ (T)\σBW(T) = π(T).

(3) Generalized a-Weyl’s theorem holds for T (in symbols, T ∈ gaW) if

σa(T)\σBea(T) = π a
0(T).

(4) Generalized a-Browder’s theorem holds for T (in symbols, T ∈ gaB) if
σa(T)\σBea(T) = pa0(T).

It is known ([3]) that the following set inclusions hold:

ga − Weyl’s theorem ⇒ ga − Browder′s theorem
⇓ ⇓

g − Weyl′s theorem ⇒ g − Browder′s theorem

Recently, Han and Na introduced a new operator class which contains the classes of

paranormal operators and quasi-class A operators [4]. In [5], it was shown that generalized

Weyl’s theorem holds for algebraically paranormal operators. In this article, we extend this

result to algebraically quasi-paranormal operators using the local spectral theory

2. Generalized Weyl’s theorem for algebraically quasi-paranormal operators
Definition 2.1. (1) An operator T ∈ B(H) is said to be class A if

|T|2 ≤ ∣∣T2
∣∣ .

(2) T is called a quasi-class A operator if

T∗|T|2T ≤ T∗ ∣∣T2
∣∣ T.

(3) An operator T ∈ B(H) is said to be paranormal if

‖Tx‖2 ≤ ∥∥T2x
∥∥ ‖x‖ for all x ∈ H.

Recently, we introduced a new operator class which is a common generalization of

paranormal operators and quasi-class A operators [4].

Definition 2.2. An operator T ∈ B(H) is called quasi-paranormal if∥∥T2x
∥∥2 ≤ ∥∥T3x

∥∥ ‖Tx‖ for all x ∈ H.
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We say that T ∈ B(H) is an algebraically quasi-paranormal operator if there exists a

non-constant complex polynomial h such that h(T) is quasi-paranormal.

In general, the following implications hold:

class A ⇒ quasi-class A ⇒ quasi-paranormal;

paranormal ⇒ quasi-paranormal ⇒ algebraically quasi-paranormal.

In [4], it was observed that there are examples which are quasi-paranormal but not

paranormal, as well as quasi-paranormal but not quasi-class A. We give a more simple

example which is quasi-paranormal but not quasi-class A. To construct this example

we recall the following lemma in [4].

Lemma 2.3. An operator T ∈ B(H) is quasi-paranormal if and only if

T∗(T2∗
T2 − 2λT∗T + λ2)T ≥ 0 for all λ > 0.

Example 2.4. T =
(
I 0
I 0

)
∈ B(�2 ⊕ �2). Then it is quasi-paranormal but not quasi-

class

A.

Proof. Since T∗ =
(
I I
0 0

)
,
∣∣T2

∣∣ = √
(T∗)2T2 =

√(
I I
0 0

)2(
I 0
I 0

)2

=
(√

2I 0
0 0

)

Therefore T∗ ∣∣T2
∣∣ T =

(
I I
0 0

)(√
2I 0
0 0

)(
I 0
I 0

)
=

(√
2I 0
0 0

)

On the other hand, since
∣∣T2

∣∣ = T∗T =
(
I I
0 0

)(
I 0
I 0

)
=

(
2I 0
0 0

)
,

T∗ ∣∣T2
∣∣ T =

(
I I
0 0

)(
2I 0
0 0

)(
I 0
I 0

)
=

(
2I 0
0 0

)
. Hence T is not quasi-class A.

However, since

T2∗T2 − 2λT∗T + λ2 =
(
(2 − 4λ + λ2)I 0

0 λ2I

)
,

we have

T∗(T2∗T2 − 2λT∗T + λ2)T =
(
2(1 − λ)2I 0

0 0

)
≥ 0

for all l >0. Therefore T is quasi-paranormal. □
The following example provides an operator which is algebraically quasi-paranormal

but not quasi-paranormal.

Example 2.5 Let T =
(
I 0
I I

)
∈ B(�2 ⊕ �2). Then it is algebraically quasi-paranormal

but not quasi-paranormal.

Proof. Since T∗ =
(
I I
0 I

)
, we have

T2∗T2 − 2λT∗T + λ2 =
(
(λ2 − 4λ + 5)I (−2λ + 2)I
(−2λ + 2)I (λ2 − 2λ + 1)I

)
.
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Therefore

T∗(T2∗T2 − 2λT∗T + λ2)T =
(
(2λ2 − 10λ + 10)I (λ2 − 4λ + 3)I
(λ2 − 4λ + 3)I (λ2 − 2λ + 1)I

)
.

Since (2l2 - 10l + 10)I is not a positive operator for l = 2,

T∗(T2∗T2 − 2λT∗T + λ2)T �≥ 0 for l >0. Therefore T is not quasi-paranormal. On the

other hand, consider the complex polynomial h(z) = (z - 1)2. Then h(T) = 0, and hence

T is algebraically quasi-paranormal.

□
The following facts follow from the above definition and some well known facts

about quasi-paranormal operators [4]:

(i) If T ∈ B(H) is algebraically quasi-paranormal, then so is T-l for each λ ∈ C.

(ii) If T ∈ B(H) is algebraically quasi-paranormal and M is a closed T-invariant

subspace

of H, then T|M is algebraically quasi-paranormal.

(iii) If T is algebraically quasi-paranormal, then T has SVEP.

(iv) Suppose T does not have dense range. Then we have:

T is quasi-paranormal ⇔ T =
(
A B
0 0

)
on H = T (H) ⊕ N(T∗),

where A = T|T (H) is paranormal.

An operator T ∈ B(H) is called isoloid if iso s(T) ⊆ sp(T) and an operator T ∈ B(H)

is called polaroid if iso s(T) ⊆ π(T).

In general, the following implications hold:

T polaroid ⇒ T isoloid.

However, each converse is not true. Consider the following example: let T ∈ B(�2) be

defined by

T (x1, x2, x3, . . .) = (
1
2
x2,

1
3
x3, . . .).

Then T is a compact quasinilpotent operator with a(T) = 1, and so T is isoloid.

However, since q(T) = ∞, T is not polaroid.

An important subspace in local spectral theory is the quasi-nilpotent part of T

defined by

H0 (T) :=

⎧⎨
⎩x ∈ H : lim

n→∞
∥∥Tnx

∥∥1n = 0

⎫⎬
⎭ .

If T ∈ B(H), then the analytic core K(T) is the set of all x ∈ H such that there exists

a constant c >0 and a sequence of elements xn ∈ H such that x0 = x, Txn = xn-1, and

║xn║≤ cn║x║ for all n ∈ N, see [6] for information on K(T).

Let P (H) denotes the class of all operators for which there exists p := p (λ) ∈ N for

which
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H0 (T − λ) = N(T − λ)p for all λ ∈ C,

and P1(H) denotes the class of all operators for which there exists p := p (λ) ∈ N for

which

H0 (T − λ) = N(T − λ)p for all λ ∈ E (T) .

Evidently, P (H) ⊆ P1 (H). Now we give a characterization of P1(H).

Theorem 2.6. T ∈ P1 (H) if and only if π(T) = E(T).

Proof. Suppose T ∈ P1 (H) and let l Î E(T). Then there exists p ∈ N such that H0(T-

l) = N(T - l)p. Since l is an isolated point of s(T), it follows from [6, Theorem 3.74]

that

H = H0 (T − λ) ⊕ K (T − λ) = N(T − λ)p ⊕ K (T − λ) .

Therefore, we have

(T − λ)p (H) = (T − λ)p (K (T − λ)) = K (T − λ) ,

and hence H = N(T − λ)p ⊕ (T − λ)p (H), which implies, by [6, Theorem 3.6], that p

(T - l) = q(T - l) ≤ p. But a(T - l) >0, hence l Î π(T). Therefore E(T) ⊆ π(T). Since

the opposite inclusion holds for every operator T, we then conclude that π(T) = E(T).

Conversely, suppose π(T) = E(T). Let l Î E(T). Then p : = p(T - l) = q(T - l) <∞. By
[6, Theorem 3.74], H0(T - l) = N(T - l)p. Therefore T ∈ P1 (H). □
From Theorem 2.6, we can give a simple example which belongs to P1(H) but not

P (H). Let U be the unilateral shift on �2 and let T = U*. Then T does not have SVEP

at 0, and so H0(T) is not closed. Therefore T /∈ P (H). However, since

σ (T) = D̄,π (T) = E (T) = � 0, where D is an open unit disk in C. Hence T ∈ P1 (H) by

Theorem 2.6.

Before we state our main theorem (Theorem 2.9) in this section, we need some preli-

minary results.

Lemma 2.7. Let T ∈ B(H) be a quasinilpotent algebraically quasi-paranormal opera-

tor. Then T is nilpotent.

Proof. We first assume that T is quasi-paranormal. We consider two cases:

Case I: Suppose T has dense range. Then clearly, it is paranormal. Therefore T is nil-

potent by [7, Lemma 2.2].

Case II: Suppose T does not have dense range. Then we can represent T as the

upper triangular matrix

T =
(
A B
0 0

)
on H = T (H) ⊕ N

(
T∗) ,

where A := T|T (H) is an paranormal operator. Since T is quasinilpotent, s(T) = {0}.

But s(T) = s(A) ∪ {0}, hence s(A) = {0}. Since A is paranormal, A = 0 and therefore T

is nilpotent. Thus if T is a quasinilpotent quasi-paranormal operator, then it is nilpo-

tent. Now, we suppose T is algebraically quasi-paranormal. Then there exists a non-

constant polynomial p such that p(T) is quasi-paranormal. If p(T) has dense range,

then p(T) is paranormal. So T is algebraically paranormal, and hence T is nilpotent by

[7, Lemma 2.2]. If p(T) does not have dense range, we can represent p(T) as the upper

triangular matrix
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p (T) =
(
C D
0 0

)
on H = p (T) (H) ⊕ N

(
p(T)∗

)
,

where C := p (T) |p (T) (H) is paranormal. Since T is quasinilpotent, s(p(T)) = p(s(T))
= {p(0)}. But s(p(T)) = s(C)∪{0} by [8, Corollary 8], hence s(C)∪{0} = {p(0)}. So p(0) =

0, and hence p(T) is quasinilpotent. Since p(T) is quasi-paranormal, by the previous

argument p(T) is nilpotent. On the other hand, since p(0) = 0, p(z) = czm(z - l1)(z -

l2) ... (z - ln) for some natural number m. Therefore p(T) = cTm(T - l1)(T - l2) ... (T
- ln). Since p(T) is nilpotent and T - li is invertible for every li ≠ 0, T is nilpotent.

This completes the proof. □
Theorem 2.8. Let T ∈ B(H) be algebraically quasi-paranormal. Then T ∈ P1 (H).

Proof. Suppose T is algebraically quasi-paranormal. Then h(T) is a quasi-paranormal

operator for some nonconstant complex polynomial h. Let l Î E(T). Then l is an iso-

lated point of s(T) and a(T - l) >0. Using the spectral projection

P :=
1
2π i

∫
∂D (μ − T)−1dμ, where D is a closed disk of center l which contains no

other points of s(T), we can represent T as the direct sum

T =
(
T1 0
0 T2

)
, where σ (T1) = {λ} and σ (T2) = σ (T) \ {λ} .

Since T1 is algebraically quasi-paranormal, so is T1 - l. But s(T1 - l) = {0}, it follows

from Lemma 2.7 that T1 - l is nilpotent. Therefore T1 - l has finite ascent and des-

cent. On the other hand, since T2 - l is invertible, clearly it has finite ascent and des-

cent. Therefore l is a pole of the resolvent of T, and hence l Î π(T). Hence E(T) ⊆
π(T). Since π(T) ⊆ E(T) holds for any operator T, we have π(T) = E(T). It follows from

Theorem 2.6 that T ∈ P1 (H). □
We now show that generalized Weyl’s theorem holds for algebraically quasi-paranor-

mal operators. In the following theorem, recall that H(s(T)) is the space of functions

analytic in an open neighborhood of s(T).
Theorem 2.9. Suppose that T or T* is an algebraically quasi-paranormal operator.

Then f (T) ∈ gW for each f Î H(s(T)).
Proof. Suppose T is algebraically quasi-paranormal. We first show that T ∈ gW. Sup-

pose that l Î s(T)\sBW(T). Then T - l is B-Weyl but not invertible. It follows from

[9, Lemma 4.1] that we can represent T - l as the direct sum

T − λ =
(
T1 0
0 T2

)
, whereT1 is Weyl andT2 is nilpotent.

Since T is algebraically quasi-paranormal, it has SVEP. So T1 and T2 have both finite

ascent. But T1 is Weyl, hence T1 has finite descent. Therefore T-l has finite ascent

and descent, and so l Î E(T). Conversely, suppose that l Î E(T). Since T is algebrai-

cally quasi-paranormal, it follows from Theorem 2.8 that T ∈ P1 (H). Since π(T) = E

(T) by Theorem 2.6, l Î E(T). Therefore T - l has finite ascent and descent, and so

we can represent T - l as the direct sum

T − λ =
(
T1 0
0 T2

)
, whereT1 is invertible andT2 is nilpotent.
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Therefore T - l is B-Weyl, and so l Î s(T) \ sBW(T). Thus s(T) \ sBW (T) = E(T),

and hence T ∈ gW.

Next, we claim that sBW(f(T)) = f(sBW(T)) for each f Î H(s(T)). Since

T ∈ gW , T ∈ gB. It follows from [5, Theorem 2.1] that sBW(T) = sD(T). Since T is

algebraically quasi-paranormal, f(T) has SVEP for each f Î H(s(T)). Hence f (T) ∈ gB
by [5, Theorem 2.9], and so sBW(f(T)) = sD(f(T)). Therefore we have

σBW
(
f (T)

)
= σD

(
f (T)

)
= f (σD (T)) = f (σBW (T)) .

Since T is algebraically quasi-paranormal, it follows from the proof of Theorem 2.8

that it is isoloid. Hence for any f Î H(s(T)) we have

σ
(
f (T)

) \E (
f (T)

)
= f (σ (T) \E (T)) .

Since T ∈ gW, we have

σ
(
f (T)

) \E (
f (T)

)
= f (σ (T) \E (T)) = f (σBW (T)) = σBW

(
f (T)

)
,

which implies that f (T) ∈ gW.

Now suppose that T* is algebraically quasi-paranormal. We first show that T ∈ gW.

Let l Î s(T) \ sBW(T). Observe that σ (T∗) = σ (T) and σBW (T∗) = σBW (T). So

λ ∈ σ
(
T∗) \σBW

(
T∗), and so λ ∈ E

(
T∗) because T∗ ∈ gW. Since T* is algebraically

quasi-paranormal, it follows from Theorem 2.8 that λ ∈ π (T∗). Hence T - l has finite

ascent and descent, and so l Î E(T). Conversely, suppose l Î E(T). Then l is an iso-

lated point of s(T) and a(T - l) >0. Since σ (T∗) = σ (T), λ̄ is an isolated point of s
(T*). Since T* is isoloid, λ ∈ E (T∗). But E(T*) = π(T*) by Theorem 2.8, hence we have

T - l has finite ascent and descent. Therefore we can represent T - l as the direct sum

T − λ =
(
T1 0
0 T2

)
, whereT1 is invertible andT2 is nilpotent.

Therefore T - l is B-Weyl, and so l Î s(T) \ sBW(T). Thus s(T) \ sBW(T) = E(T),

and hence T ∈ gW. If T* is algebraically quasi-paranormal then T is isoloid. It follows

from the first part of the proof that f (T) ∈ gW. This completes the proof. □
From the proof of Theorem 2.9 and [10, Theorem 3.4], we obtain the following use-

ful consequence.

Corollary 2.10. Suppose T or T* is algebraically quasi-paranormal. Then

σBW
(
f (T)

)
= f (σBW (T)) for every f ∈ H (σ (T)) .

An operator X ∈ B (H) is called a quasiaffinity if it has trivial kernel and dense range.

S ∈ B (H) is said to be a quasiaffine transform of T ∈ B(H)(notation: S ≺ T) if there is a

quasiaffinity X ∈ B (H) such that XS = TX. If both S ≺ T and T ≺ S, then we say that S

and T are quasisimilar.

Corollary 2.11. Suppose T is algebraically quasi-paranormal and S ≺ T. Then

f (S) ∈ gaB for each f Î H(s(S)).
Proof. Suppose T is algebraically quasi-paranormal. Then T has SVEP. Since S ≺ T, f

(S) has SVEP by [7, Lemma 3.1]. It follows from [11, Theorem 3.3.6] that f(S) has

SVEP. Therefore f (S) ∈ gaB by [12, Corollary 2.5]. □
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3. Generalized Weyl’s theorem for perturbations of algebraically quasi-
paranormal operators
An operator T is said to be algebraic if there exists a nontrivial polynomial h such that

h(T) = 0. From the spectral mapping theorem it easily follows that the spectrum of an

algebraic operator is a finite set. It is known that generalized Weyl’s theorem is not

generally transmitted to perturbation of operators satisfying generalized Weyl’s theo-

rem. In [13], they proved that if T is paranormal and F is an algebraic operator com-

muting with T, then Weyl’s theorem holds for T + F. We now extend this result to

generalized Weyl’s theorem for algebraically quasi-paranormal operators. We begin

with the following lemma.

Lemma 3.1. Let T ∈ B(H). Then the following statements are equivalent:

(1) T ∈ gW;

(2) T has SVEP at every λ ∈ C\σBW (T) and π(T) = E(T).

Proof. Observe that T ∈ gB if and only if sBW(T) = sD(T). So T ∈ gBif and only if T

has SVEP at every λ ∈ C\σBW (T). Therefore we obtain the desired conclusion. □
From this lemma, we obtain the following corollary

Corollary 3.2. Let T ∈ B(H). Suppose T has SVEP. Then

T ∈ gW if and only if T ∈ P1 (H) .

Proof. Since T has SVEP, T ∈ gBby Lemma 3.1. So s(T) \ sBW(T) = π(T). Therefore

T ∈ gW if and only if T ∈ P1 (H) by Theorem 2.6. □
Lemma 3.3. Suppose T ∈ B(H) and N is nilpotent such that TN = NT. Then

T ∈ P1 (H) if and only if T +N ∈ P1(H).

Proof. Suppose Np = 0 for some p ∈ N. Observe that without any assumption on T

we have

N (T) ⊆ N(T +N)pand N (T +N) ⊆ N
(
Tp) . (3:3:1)

Suppose now that T ∈ P1 (H), or equivalently π(T) = E(T). We show first E(T) = E(T

+N). Let l Î E(T). Without loss of generality, we may assume that l = 0. From s(T
+N) = s(T), we see that 0 is an isolated point of s(T+N). Since 0 Î E(T), a(T) >0 and

hence by the first inclusion in (3.3.1) we have a(T+N)p > 0. Therefore a(T+N) >0, and
hence 0 Î E(T+N). Thus the inclusion E(T) ⊆ E(T + N) is proved. To show the oppo-

site inclusion, assume that 0 Î E(T + N). Then 0 is an isolated point of s(T) because
s(T + N) = s(T). Since a(T + N) >0, the second inclusion in (3.3.1) entails that a(Tp)

>0. Therefore a(T) >0, and hence 0 Î E(T). So the equality E(T) = E(T + N) is proved.

Suppose T ∈ P1 (H). Then π(T) = E(T) by Theorem 2.6, and so π(T + N) = π(T) = E

(T) = E(T + N). Therefore T +N ∈ P1(H). Conversely, if T +N ∈ P1(H) by symmetry

we have π(T) = π(T + N) = E(T + N) = E((T + N)-N) = E(T), so the proof is complete.

□
The following theorem is a generalization of [13, Theorem 2.5]. The proof of the fol-

lowing theorem is strongly inspired to that of it.

Theorem 3.4. Suppose T is algebraically quasi-paranormal. If F is algebraic with TF

= FT, then T + F ∈ gW.
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Proof. Since F is algebraic, s(F) is finite. Let s(F) = {μ1,μ2,...,μn}. Denote by Pi the

spectral projection associated with F and the spectral set {μi}. Let Yi : = R(Pi) and Zi :

= N(Pi). Then H = Yi ⊕ Zi and the closed subspaces Yi and Zi are invariant under T

and F. Moreover, s(F|Yi) = {μi}. Define Fi : = F|Yi and Ti : = T|Yi. Then clearly, the

restrictions Ti and Fi commute for every i = 1, 2,...,n and

σ (T + F) = σ ((T + F) |Yi) ∪ σ ((T + F) |Zi) .

Let h be a nontrivial complex polynomial such that h(F) = 0. Then h(Fi) = h(F|Yi) =

h(F)|Yi = 0, and from {0} = s(h(Fi)) = h(s(Fi)) = h({μi}), we obtain that h(μi) = 0. Write

h(μ) = (μ - μi)
mg(μ) with g(μi) = 0. Then 0 = h(Fi) = (F - μi)

mg(Fi), where g(Fi) is inver-

tible. Hence Ni : = Fi - μi are nilpotent for all i = 1, 2,...,n. Observe that

Ti + Fi = (Ti + μi) + (Fi − μi) = Ti +Ni + μi. (3:4:1)

Since Ti + μi is algebraically quasi-paranormal for all i = 1, 2,...,n, Ti + μi has SVEP.

Moreover, since Ni is nilpotent with TiNi = NiTi, it follows from [6, Corollary 2.12]

that Ti + Ni + μi has SVEP, and hence Ti + Fi has SVEP. From [6, Theorem 2.9] we

obtain that

T + F =
n⊕
i=1

(Ti + Fi) has SVEP.

Now, we show that T + F ∈ P1(H). Since Ti + μi is algebraically quasi-paranormal,

Ti + μi ∈ P1 (Yi) by Theorem 2.8. By Lemma 3.3 and (3.4.1), Ti + Fi ∈ P1 (Yi) for every i

= 1, 2,...,n. Now assume that l0 Î E(T + F). Fix i ∈ N such that 1 ≤ i ≤ n. Since the

equality Ti + Ni - l0 + μi = Ti + Fi - l0 holds, we consider two cases:

Case I: Suppose that Ti - l0 + μi is invertible. Since Ni is quasi-nilpotent commuting

with Ti - l0 + μi, it is clear that Ti + Fi - l0 is also invertible. Hence H0(Ti + Fi - l0) =
N(Ti + Fi - l0) = {0}.

Case II: Suppose that Ti - l0 + μi is not invertible. Then l0 - μi Î s(Ti). We claim

that l0 Î E(Ti + Fi). Note that l0 Î s(Ti + μi) = s(Ti + Fi). Since s(Ti + Fi) Î s(T +

F) and l0 Î iso s(T + F), l0 Î iso s(Ti + Ni + μi). Therefore l0 -μi Î iso s(Ti + Ni) =

iso s(Ti). Since Ti - l0 + μi is algebraically quasi-paranormal, l0 - μi Î π(Ti). Since

π(Ti) = E(Ti) by Theorem 2.6 and Ti ∈ gW by Theorem 2.9, l0 - μi Î E(Ti) = s(Ti) \

sBW(Ti). But Ni is nilpotent with TiNi = NiTi, hence sD(Ti) = sD(Ti + Ni) and

Ti +Ni ∈ gB. Therefore we have sBW(Ti + Ni) = sD(Ti + Ni). Hence

E (Ti) = σ (Ti) \σBW (Ti) = σ (Ti +Ni) \σBW (Ti +Ni) .

Hence Ti + Fi - l0 is B-Weyl. Assume to the contrary that Ti + Fi - l0 is injective. Then
b(Ti + Fi - l0) = a(Ti + Fi - l0) = 0. Therefore Ti + Fi - l0 is invertible, and so l0 ∉ s(Ti

+Fi). This is a contradiction. Hence l0 Î E(Ti + Fi). Since Ti + Fi ∈ P1 (Yi) by Theorem

2.6, there exists a positive integer mi such that H0(Ti + Fi - l0) = N(Ti + Fi - l0)
mi.

From Cases I and II we have

H0 (T + F − λ0) =
n⊕
i=1

H0 (Ti + Fi − λ0)

=
n⊕
i=1

N(Ti + Fi − λ0)
mi

= N(T + F − λ0)
m,
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where m : = max{m1,m2,...,mn}. Since the last equality holds for every l0 Î E(T + F),

T + F ∈ P1(H). Therefore T + F ∈ gWby Corollary 3.2. □
It is well known that if for an operator F ∈ B(H) there exists a natural number n for

which Fn is finite-dimensional, then F is algebraic.

Corollary 3.5. Suppose T ∈ B(H) is algebraically quasi-paranormal and F is an

operator commuting with T such that Fn is a finite-dimensional operator for some

n ∈ N. Then T + F ∈ gW.

Acknowledgements
The authors would like to express their thanks to the referee for several extremely valuable suggestions concerning
the article.

Authors’ contributions
All authors contributed equally to the writing of the present article. And they also read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 1 December 2011 Accepted: 17 April 2012 Published: 17 April 2012

References
1. Berkani, M, Sarih, M: On semi B-Fredholm operators. Glasgow Math J. 43, 457–465 (2001)
2. Berkani, M: On a class of quasi-Fredholm operators. Int Equ Oper Theory. 34, 244–249 (1999). doi:10.1007/BF01236475
3. Berkani, M, Koliha, JJ: Weyl type theorems for bounded linear operators. Acta Sci Math (Szeged). 69, 359–376 (2003)
4. Han, YM, Na, WH: A note on quasi-paranormal operator. Mediterr J Math. (in press)
5. Curto, RE, Han, YM: Generalized Browder’s and Weyl’s theorems for Banach space operators. J Math Anal Appl. 336,

1424–1442 (2007). doi:10.1016/j.jmaa.2007.03.060
6. Aiena, P: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht

(2004)
7. Curto, RE, Han, YM: Weyl’s theorem holds for algebraically paranormal operators. Int Equ Oper Theory. 47, 307–314

(2003). doi:10.1007/s00020-002-1164-1
8. Han, JK, Lee, HY, Lee, WY., et al: Invertible completions of 2 × 2 upper triangular operator matrices. Proc Am Math Soc.

128, 119–123 (2000). doi:10.1090/S0002-9939-99-04965-5
9. Berkani, M: Index of B-Fredholm operators and generalization of a Weyl theorem. Proc Am Math Soc. 130, 1717–1723

(2002). doi:10.1090/S0002-9939-01-06291-8
10. Aiena, P, Garcia, O: Generalized Browder’s theorem and SVEP. Mediterr J Math. 4, 215–228 (2007). doi:10.1007/s00009-

007-0113-2
11. Laursen, KB, Neumann, MM: An Introduction to Local Spectral Theory. London Mathematical Society Monographs New

Series 20, Clarendon Press, Oxford (2000)
12. Aiena, P, Miller, TL: On generalized a-Browder’s theorem. Studia Math. 180, 285–300 (2007). doi:10.4064/sm180-3-7
13. Aiena, P, Guillen, JR: Weyl’s theorem for perturbations of paranormal operators. Proc Am Math Soc. 135, 2443–2451

(2007). doi:10.1090/S0002-9939-07-08582-6

doi:10.1186/1029-242X-2012-89
Cite this article as: An and Han: Generalized Weyl’s theorem for algebraically quasi-paranormal operators. Journal
of Inequalities and Applications 2012 2012:89.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

An and Han Journal of Inequalities and Applications 2012, 2012:89
http://www.journalofinequalitiesandapplications.com/content/2012/1/89

Page 11 of 11

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	2. Generalized Weyl’s theorem for algebraically quasi-paranormal operators
	3. Generalized Weyl’s theorem for perturbations of algebraically quasi-paranormal operators
	Acknowledgements
	Authors' contributions
	Competing interests
	References

