RESEARCH Open Access

Generalized Weyl's theorem for algebraically quasi-paranormal operators

Il Ju An and Young Min Han*

* Correspondence: ymhan2004@khu.ac.kr Department Of Mathematics, College Of Sciences, Kyung Hee University, Seoul 130-701, Republic Of Korea

Abstract

Let T or T^* be an algebraically quasi-paranormal operator acting on a Hilbert space. We prove: (i) generalized Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$; (ii) generalized a-Browder's theorem holds for f(S) for every $S \prec T$ and $f \in H(\sigma(S))$; (iii) the spectral mapping theorem holds for the B-Weyl spectrum of T. Moreover, we show that if T is an algebraically quasi-paranormal operator, then T + F satisfies generalized Weyl's theorem for every algebraic operator F which commutes with T. **Mathematics Subject Classification (2010):** Primary 47A10, 47A53; Secondary 47B20.

Keywords: algebraically quasi-paranormal operator, generalized Weyl's theorem, single valued extension property

1. Introduction

Throughout this article, we assume that \mathcal{H} is an infinite dimensional separable Hilbert space. Let $B(\mathcal{H})$ and $B_0(\mathcal{H})$ denote, respectively, the algebra of bounded linear operators and the ideal of compact operators acting on \mathcal{H} . If $T \in B(\mathcal{H})$ we shall write N(T) and R(T) for the null space and range of T. Also, let $\alpha(T) := \dim N(T)$, $\beta(T) := \dim N(T^*)$, and let $\sigma(T)$, $\sigma_a(T)$, $\sigma_p(T)$, $\pi(T)$, E(T) denote the spectrum, approximate point spectrum, point spectrum of T, the set of poles of the resolvent of T, the set of all eigenvalues of T which are isolated in $\sigma(T)$, respectively. An operator $T \in B(\mathcal{H})$ is called *upper semi-Fredholm* if it has closed range and finite dimensional null space and is called *lower semi-Fredholm* if it has closed range and its range has finite co-dimension. If $T \in B(\mathcal{H})$ is either upper or lower semi-Fredholm, then T is called *semi-Fredholm*, and *index of a semi-Fredholm operator* $T \in B(\mathcal{H})$ is defined by

$$i(T) := \alpha(T) - \beta(T)$$
.

If both $\alpha(T)$ and $\beta(T)$ are finite, then T is called Fredholm. $T \in B(\mathcal{H})$ is called Weyl if it is Fredholm of index zero. For $T \in B(\mathcal{H})$ and a nonnegative integer n define T_n to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$ (in particular $T_0 = T$). If for some integer n the range $R(T^n)$ is closed and T_n is upper (resp. lower) semi-Fredholm, then T is called P is called P is called P if it is upper or lower semi-P is called P if it is upper or lower semi-P is called P if it is upper or lower semi-P is called P if it is upper or lower semi-P is called P if it is upper or lower semi-P is called P if it is upper or lower semi-P is called P if it is upper or lower semi-P is called P if it is upper or lower semi-P is called P if it is upper or lower semi-P is follows from [1, Proposition 2.1] that P is semi-P if it is upper or lower semi-P is the semi-P is semi-P is semi-P is semi-P is semi-P if it is upper or lower semi-P is semi-P if it is upper or lower semi-P if it is upper or lower semi-P is semi-P if it is upper or lower semi-P if it is upper or lower semi-P is semi-P if it is upper or lower semi-P is semi-P if it is upper or lower semi-P is semi-P if it is upper or lower semi-P is semi-P if it is upper or lower semi-P is semi-P if it is upper or lower semi-P if it is upper or lower semi-P is semi-P if it is upper or lower semi-P if it is upper or lower semi-P is semi-P in the lower semi-P is the

 $\geq d$. This enables us to define the *index of semi-B-Fredholm* T as the index of semi-Fredholm T_d . Let $BF(\mathcal{H})$ be the class of all B-Fredholm operators. In [2], they studied this class of operators and they proved [2, Theorem 2.7] that an operator $T \in B(\mathcal{H})$ is B-Fredholm if and only if $T = T_1 \oplus T_2$, where T_1 is Fredholm and T_2 is nilpotent. It appears that the concept of Drazin invertibility plays an important role for the class of B-Fredholm operators. Let \mathcal{A} be a unital algebra. We say that an element $x \in \mathcal{A}$ is D-razin invertible of degree k if there exists an element $a \in \mathcal{A}$ such that

$$x^k ax = x^k$$
, $axa = a$, and $xa = ax$.

Let $a \in A$. Then the *Drazin spectrum* is defined by

$$\sigma_D(a) := \{\lambda \in \mathbb{C} : a - \lambda \text{ is not Drazin invertible}\}.$$

For $T \in B(\mathcal{H})$, the smallest nonnegative integer p such that $N(T^p) = N(Tp+1)$ is called the *ascent* of T and denoted by p(T). If no such integer exists, we set $p(T) = \infty$. The smallest nonnegative integer q such that $R(T^q) = R(T^{q+1})$ is called the *descent* of T and denoted by q(T). If no such integer exists, we set $q(T) = \infty$. It is well known that T is Drazin invertible if and only if it has finite ascent and descent, which is also equivalent to the fact that

$$T = T_1 \oplus T_2$$
, where T_1 is invertible and T_2 is nilpotent.

An operator $T \in B(\mathcal{H})$ is called *B-Weyl* if it is *B*-Fredholm of index 0. The *B-Fredholm* spectrum $\sigma_{BF}(T)$ and *B-Weyl spectrum* $\sigma_{BW}(T)$ of T are defined by

$$\sigma_{BF}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not } B - \text{Fredholm} \},$$

$$\sigma_{BW}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not } B - \text{Weyl} \}.$$

Now, we consider the following sets:

$$BF_+(\mathcal{H}) := \{T \in B(\mathcal{H}) : T \text{ is upper semi } -B \text{ - Ferdholm} \},$$

 $BF_+^-(\mathcal{H}) := \{T \in B(\mathcal{H}) : T \in BF_+(\mathcal{H}) \text{ and } i(T) \leq 0 \},$
 $LD(\mathcal{H}) := \{T \in B(\mathcal{H}) : p(T) < \infty \text{ and } R(T^{p(T)+1}) \text{ is closed} \}.$

By definition,

$$\sigma_{Bea}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \notin BF_+^-(\mathcal{H}) \},$$

is the upper semi-B-essential approximate point spectrum and

$$\sigma_{LD}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \notin LD(\mathcal{H}) \}$$

is the left Drazin spectrum. It is well known that

$$\sigma_{Bea}(T) \subseteq \sigma_{LD}(T) = \sigma_{Bea}(T) \cup \operatorname{acc} \sigma_a(T) \subseteq \sigma_D(T),$$

where we write acc K for the accumulation points of $K \subseteq \mathbb{C}$. If we write iso $K: = K \setminus acc K$ then we let

$$p_0^a(T) := \{ \lambda \in \sigma_\alpha(T) : T - \lambda \in LD(\mathcal{H}) \},$$

$$\pi_0^a(T) := \{ \lambda \in \text{ iso } \sigma_a(T) : \lambda \in \sigma_b(T) \}.$$

We say that an operator T has the *single valued extension property at* λ (abbreviated SVEP at λ) if for every open set U containing λ the only analytic function $f:U\to \mathcal{H}$ which satisfies the equation

$$(T - \lambda)f(\lambda) = 0$$

is the constant function $f \equiv 0$ on U. T has SVEP if T has SVEP at every point $\lambda \in \mathbb{C}$. **Definition 1.1**. Let $T \in B(\mathcal{H})$.

- (1) Generalized Weyl's theorem holds for T (in symbols, $T \in gW$) if $\sigma(T) \setminus \sigma_{BW}(T) = E(T)$.
- (2) Generalized Browder's theorem holds for T (in symbols, $T \in g\mathcal{B}$) if $\sigma(T) \setminus \sigma_{BW}(T) = \pi(T)$.
- (3) Generalized a-Weyl's theorem holds for T (in symbols, $T \in gaW$) if $\sigma_a(T) \setminus \sigma_{Bea}(T) = \pi_0^a(T)$.
- (4) Generalized a-Browder's theorem holds for T (in symbols, $T \in ga\mathcal{B}$) if $\sigma_a(T) \setminus \sigma_{Bea}(T) = p_0^a(T)$.

It is known ([3]) that the following set inclusions hold:

$$ga$$
 – Weyl's theorem $\Rightarrow ga$ – Browder's theorem $\downarrow \downarrow$ g – Weyl's theorem $\Rightarrow g$ – Browder's theorem

Recently, Han and Na introduced a new operator class which contains the classes of paranormal operators and quasi-class *A* operators [4]. In [5], it was shown that generalized Weyl's theorem holds for algebraically paranormal operators. In this article, we extend this result to algebraically quasi-paranormal operators using the local spectral theory

2. Generalized Weyl's theorem for algebraically quasi-paranormal operators

Definition 2.1. (1) An operator $T \in B(\mathcal{H})$ is said to be *class A* if

$$|T|^2 \le \left| T^2 \right|.$$

(2) T is called a *quasi-class* A operator if $T^*|T|^2T < T^*|T^2|T.$

(3) An operator $T \in B(\mathcal{H})$ is said to be *paranormal* if

$$||Tx||^2 \le ||T^2x|| ||x||$$
 for all $x \in \mathcal{H}$.

Recently, we introduced a new operator class which is a common generalization of paranormal operators and quasi-class A operators [4].

Definition 2.2. An operator $T \in B(\mathcal{H})$ is called quasi-paranormal if

$$||T^2x||^2 \le ||T^3x|| ||Tx||$$
 for all $x \in \mathcal{H}$.

We say that $T \in B(\mathcal{H})$ is an *algebraically quasi-paranormal* operator if there exists a non-constant complex polynomial h such that h(T) is quasi-paranormal.

In general, the following implications hold:

class $A \Rightarrow$ quasi-class $A \Rightarrow$ quasi-paranormal;

 $paranormal \Rightarrow quasi-paranormal \Rightarrow algebraically \ quasi-paranormal.$

In [4], it was observed that there are examples which are quasi-paranormal but not paranormal, as well as quasi-paranormal but not quasi-class A. We give a more simple example which is quasi-paranormal but not quasi-class A. To construct this example we recall the following lemma in [4].

Lemma 2.3. An operator $T \in B(\mathcal{H})$ is quasi-paranormal if and only if

$$T^*(T^{2^*}T^2 - 2\lambda T^*T + \lambda^2)T \ge 0 \text{ for all } \lambda > 0.$$

Example 2.4. $T = \begin{pmatrix} I & 0 \\ I & 0 \end{pmatrix} \in B(\ell_2 \oplus \ell_2)$. Then it is quasi-paranormal but not quasi-

class

Α.

Proof. Since
$$T^* = \begin{pmatrix} I & I \\ 0 & 0 \end{pmatrix}$$
, $|T^2| = \sqrt{(T^*)^2 T^2} = \sqrt{\begin{pmatrix} I & I \\ 0 & 0 \end{pmatrix}^2 \begin{pmatrix} I & 0 \\ I & 0 \end{pmatrix}^2 = \begin{pmatrix} \sqrt{2}I & 0 \\ 0 & 0 \end{pmatrix}}$

Therefore
$$T^* \mid T^2 \mid T = \begin{pmatrix} I & I \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{2}I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ I & 0 \end{pmatrix} = \begin{pmatrix} \sqrt{2}I & 0 \\ 0 & 0 \end{pmatrix}$$

On the other hand, since
$$|T^2| = T^*T = \begin{pmatrix} I & I \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ I & 0 \end{pmatrix} = \begin{pmatrix} 2I & 0 \\ 0 & 0 \end{pmatrix}$$
,

$$T^* \mid T^2 \mid T = \begin{pmatrix} I & I \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ I & 0 \end{pmatrix} = \begin{pmatrix} 2I & 0 \\ 0 & 0 \end{pmatrix}$$
. Hence T is not quasi-class A .

However, since

$$T^{2*}T^2-2\lambda T^*T+\lambda^2=\begin{pmatrix}(2-4\lambda+\lambda^2)I&0\\0&\lambda^2I\end{pmatrix},$$

we have

$$T^*(T^{2*}T^2 - 2\lambda T^*T + \lambda^2)T = \begin{pmatrix} 2(1-\lambda)^2 I & 0 \\ 0 & 0 \end{pmatrix} \ge 0$$

for all $\lambda > 0$. Therefore *T* is quasi-paranormal. \Box

The following example provides an operator which is algebraically quasi-paranormal but not quasi-paranormal.

Example 2.5 Let $T = \begin{pmatrix} I & 0 \\ I & I \end{pmatrix} \in B(\ell_2 \oplus \ell_2)$. Then it is algebraically quasi-paranormal but not quasi-paranormal.

Proof. Since
$$T^* = \begin{pmatrix} I & I \\ 0 & I \end{pmatrix}$$
, we have

$$T^{2*}T^2-2\lambda T^*T+\lambda^2=\left(\begin{matrix}(\lambda^2-4\lambda+5)I&(-2\lambda+2)I\\(-2\lambda+2)I&(\lambda^2-2\lambda+1)I\end{matrix}\right).$$

Therefore

$$T^*(T^{2*}T^2 - 2\lambda T^*T + \lambda^2)T = \begin{pmatrix} (2\lambda^2 - 10\lambda + 10)I(\lambda^2 - 4\lambda + 3)I\\ (\lambda^2 - 4\lambda + 3)I(\lambda^2 - 2\lambda + 1)I \end{pmatrix}.$$

Since $(2\lambda^2 - 10\lambda + 10)I$ is not a positive operator for $\lambda = 2$, $T^*(T^{2*}T^2 - 2\lambda T^*T + \lambda^2)T \not\geq 0$ for $\lambda > 0$. Therefore T is not quasi-paranormal. On the other hand, consider the complex polynomial $h(z) = (z - 1)^2$. Then h(T) = 0, and hence T is algebraically quasi-paranormal.

The following facts follow from the above definition and some well known facts about quasi-paranormal operators [4]:

- (i) If $T \in B(\mathcal{H})$ is algebraically quasi-paranormal, then so is $T-\lambda$ for each $\lambda \in \mathbb{C}$.
- (ii) If $T \in B(\mathcal{H})$ is algebraically quasi-paranormal and \mathcal{M} is a closed T-invariant subspace

of \mathcal{H} , then $T|\mathcal{M}$ is algebraically quasi-paranormal.

- (iii) If T is algebraically quasi-paranormal, then T has SVEP.
- (iv) Suppose T does not have dense range. Then we have:

$$T$$
 is quasi-paranormal $\Leftrightarrow T = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}$ on $\mathcal{H} = \overline{T(\mathcal{H})} \oplus N(T^*)$,

where $A = T|\overline{T(\mathcal{H})}$ is paranormal.

An operator $T \in B(\mathcal{H})$ is called *isoloid* if iso $\sigma(T) \subseteq \sigma_p(T)$ and an operator $T \in B(\mathcal{H})$ is called *polaroid* if iso $\sigma(T) \subseteq \pi(T)$.

In general, the following implications hold:

T polaroid $\Rightarrow T$ isoloid.

However, each converse is not true. Consider the following example: let $T \in B(\ell_2)$ be defined by

$$T(x_1, x_2, x_3, \ldots) = (\frac{1}{2}x_2, \frac{1}{3}x_3, \ldots).$$

Then T is a compact quasinilpotent operator with $\alpha(T) = 1$, and so T is isoloid. However, since $q(T) = \infty$, T is not polaroid.

An important subspace in local spectral theory is the *quasi-nilpotent part* of T defined by

$$H_0(T) := \left\{ x \in \mathcal{H} : \lim_{n \to \infty} \left\| T^n x \right\| \frac{1}{n} = 0 \right\}.$$

If $T \in B(\mathcal{H})$, then the *analytic core* K(T) is the set of all $x \in \mathcal{H}$ such that there exists a constant c > 0 and a sequence of elements $x_n \in \mathcal{H}$ such that $x_0 = x$, $Tx_n = x_{n-1}$, and $||x_n|| \le c^n ||x||$ for all $n \in \mathbb{N}$, see [6] for information on K(T).

Let $\mathcal{P}(\mathcal{H})$ denotes the class of all operators for which there exists $p := p(\lambda) \in \mathbb{N}$ for which

$$H_0(T-\lambda) = N(T-\lambda)^p$$
 for all $\lambda \in \mathbb{C}$,

and $\mathcal{P}_1(\mathcal{H})$ denotes the class of all operators for which there exists $p:=p(\lambda)\in\mathbb{N}$ for which

$$H_0(T - \lambda) = N(T - \lambda)^p$$
 for all $\lambda \in E(T)$.

Evidently, $\mathcal{P}(\mathcal{H}) \subseteq \mathcal{P}_1(\mathcal{H})$. Now we give a characterization of $\mathcal{P}_1(\mathcal{H})$.

Theorem 2.6. $T \in \mathcal{P}_1(\mathcal{H})$ if and only if $\pi(T) = E(T)$.

Proof. Suppose $T \in \mathcal{P}_1$ (\mathcal{H}) and let $\lambda \in E(T)$. Then there exists $p \in \mathbb{N}$ such that $H_0(T-\lambda) = N(T-\lambda)^p$. Since λ is an isolated point of $\sigma(T)$, it follows from [6, Theorem 3.74] that

$$\mathcal{H} = H_0 (T - \lambda) \oplus K (T - \lambda) = N(T - \lambda)^p \oplus K (T - \lambda).$$

Therefore, we have

$$(T - \lambda)^{p} (\mathcal{H}) = (T - \lambda)^{p} (K (T - \lambda)) = K (T - \lambda),$$

and hence $\mathcal{H} = N(T-\lambda)^p \oplus (T-\lambda)^p$ (\mathcal{H}), which implies, by [6, Theorem 3.6], that $p(T-\lambda) = q(T-\lambda) \le p$. But $\alpha(T-\lambda) > 0$, hence $\lambda \mid \pi(T)$. Therefore $E(T) \subseteq \pi(T)$. Since the opposite inclusion holds for every operator T, we then conclude that $\pi(T) = E(T)$. Conversely, suppose $\pi(T) = E(T)$. Let $\lambda \mid E(T)$. Then $p := p(T-\lambda) = q(T-\lambda) < \infty$. By [6, Theorem 3.74], $H_0(T-\lambda) = N(T-\lambda)^p$. Therefore $T \in \mathcal{P}_1(\mathcal{H})$. \square

From Theorem 2.6, we can give a simple example which belongs to $\mathcal{P}_1(\mathcal{H})$ but not $\mathcal{P}(\mathcal{H})$. Let U be the unilateral shift on ℓ_2 and let $T = U^*$. Then T does not have SVEP at 0, and so $H_0(T)$ is not closed. Therefore $T \notin \mathcal{P}(\mathcal{H})$. However, since $\sigma(T) = \bar{\mathbb{D}}, \pi(T) = E(T) = \emptyset$, where \mathbb{D} is an open unit disk in \mathbb{C} . Hence $T \in \mathcal{P}_1(\mathcal{H})$ by Theorem 2.6.

Before we state our main theorem (Theorem 2.9) in this section, we need some preliminary results.

Lemma 2.7. Let $T \in B(\mathcal{H})$ be a quasinilpotent algebraically quasi-paranormal operator. Then T is nilpotent.

Proof. We first assume that T is quasi-paranormal. We consider two cases:

Case I: Suppose T has dense range. Then clearly, it is paranormal. Therefore T is nilpotent by [7, Lemma 2.2].

Case II: Suppose T does not have dense range. Then we can represent T as the upper triangular matrix

$$T = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}$$
 on $\mathcal{H} = \overline{T(\mathcal{H})} \oplus N(T^*)$,

where $A := T | \overline{T(\mathcal{H})}$ is an paranormal operator. Since T is quasinilpotent, $\sigma(T) = \{0\}$. But $\sigma(T) = \sigma(A) \cup \{0\}$, hence $\sigma(A) = \{0\}$. Since A is paranormal, A = 0 and therefore T is nilpotent. Thus if T is a quasinilpotent quasi-paranormal operator, then it is nilpotent. Now, we suppose T is algebraically quasi-paranormal. Then there exists a nonconstant polynomial p such that p(T) is quasi-paranormal. If p(T) has dense range, then p(T) is paranormal. So T is algebraically paranormal, and hence T is nilpotent by [7, Lemma 2.2]. If p(T) does not have dense range, we can represent p(T) as the upper triangular matrix

$$p(T) = \begin{pmatrix} C D \\ 0 0 \end{pmatrix}$$
 on $\mathcal{H} = \overline{p(T)(\mathcal{H})} \oplus N(p(T)^*)$,

where $C := p(T) | \overline{p(T)(\mathcal{H})}$ is paranormal. Since T is quasinilpotent, $\sigma(p(T)) = p(\sigma(T)) = \{p(0)\}$. But $\sigma(p(T)) = \sigma(C) \cup \{0\}$ by [8, Corollary 8], hence $\sigma(C) \cup \{0\} = \{p(0)\}$. So $p(0) = \{0\}$, and hence p(T) is quasinilpotent. Since p(T) is quasi-paranormal, by the previous argument p(T) is nilpotent. On the other hand, since p(0) = 0, $p(z) = cz^m(z - \lambda_1)(z - \lambda_2) \dots (z - \lambda_n)$ for some natural number m. Therefore $p(T) = cT^m(T - \lambda_1)(T - \lambda_2) \dots (T - \lambda_n)$. Since p(T) is nilpotent and $T - \lambda_i$ is invertible for every $\lambda_i \neq 0$, T is nilpotent. This completes the proof. \square

Theorem 2.8. Let $T \in B(\mathcal{H})$ be algebraically quasi-paranormal. Then $T \in \mathcal{P}_1(\mathcal{H})$.

Proof. Suppose T is algebraically quasi-paranormal. Then h(T) is a quasi-paranormal operator for some nonconstant complex polynomial h. Let $\lambda \in E(T)$. Then λ is an isolated point of $\sigma(T)$ and $\alpha(T-\lambda)>0$. Using the spectral projection $P:=\frac{1}{2\pi i}\int_{\partial D}(\mu-T)^{-1}d\mu$, where D is a closed disk of center λ which contains no other points of $\sigma(T)$, we can represent T as the direct sum

$$T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}, \text{ where } \sigma\left(T_1\right) = \{\lambda\} \text{ and } \sigma\left(T_2\right) = \sigma\left(T\right) \setminus \{\lambda\}.$$

Since T_1 is algebraically quasi-paranormal, so is T_1 - λ . But $\sigma(T_1$ - $\lambda) = \{0\}$, it follows from Lemma 2.7 that T_1 - λ is nilpotent. Therefore T_1 - λ has finite ascent and descent. On the other hand, since T_2 - λ is invertible, clearly it has finite ascent and descent. Therefore λ is a pole of the resolvent of T, and hence $\lambda \in \pi(T)$. Hence $E(T) \subseteq \pi(T)$. Since $\pi(T) \subseteq E(T)$ holds for any operator T, we have $\pi(T) = E(T)$. It follows from Theorem 2.6 that $T \in \mathcal{P}_1(\mathcal{H})$. \square

We now show that generalized Weyl's theorem holds for algebraically quasi-paranormal operators. In the following theorem, recall that $H(\sigma(T))$ is the space of functions analytic in an open neighborhood of $\sigma(T)$.

Theorem 2.9. Suppose that T or T^* is an algebraically quasi-paranormal operator. Then $f(T) \in gW$ for each $f \in H(\sigma(T))$.

Proof. Suppose T is algebraically quasi-paranormal. We first show that $T \in gW$. Suppose that $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Then $T - \lambda$ is B-Weyl but not invertible. It follows from [9, Lemma 4.1] that we can represent $T - \lambda$ as the direct sum

$$T - \lambda = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$$
, where T_1 is Weyl and T_2 is nilpotent.

Since T is algebraically quasi-paranormal, it has SVEP. So T_1 and T_2 have both finite ascent. But T_1 is Weyl, hence T_1 has finite descent. Therefore T- λ has finite ascent and descent, and so $\lambda \in E(T)$. Conversely, suppose that $\lambda \in E(T)$. Since T is algebraically quasi-paranormal, it follows from Theorem 2.8 that $T \in \mathcal{P}_1(\mathcal{H})$. Since $\pi(T) = E(T)$ by Theorem 2.6, $\lambda \in E(T)$. Therefore $T - \lambda$ has finite ascent and descent, and so we can represent $T - \lambda$ as the direct sum

$$T - \lambda = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$$
, where T_1 is invertible and T_2 is nilpotent.

Therefore $T - \lambda$ is B-Weyl, and so $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Thus $\sigma(T) \setminus \sigma_{BW}(T) = E(T)$, and hence $T \in gW$.

Next, we claim that $\sigma_{BW}(f(T)) = f(\sigma_{BW}(T))$ for each $f \in H(\sigma(T))$. Since $T \in gW$, $T \in g\mathcal{B}$. It follows from [5, Theorem 2.1] that $\sigma_{BW}(T) = \sigma_D(T)$. Since T is algebraically quasi-paranormal, f(T) has SVEP for each $f \in H(\sigma(T))$. Hence $f(T) \in g\mathcal{B}$ by [5, Theorem 2.9], and so $\sigma_{BW}(f(T)) = \sigma_D(f(T))$. Therefore we have

$$\sigma_{BW}(f(T)) = \sigma_D(f(T)) = f(\sigma_D(T)) = f(\sigma_{BW}(T)).$$

Since T is algebraically quasi-paranormal, it follows from the proof of Theorem 2.8 that it is isoloid. Hence for any $f \in H(\sigma(T))$ we have

$$\sigma\left(f\left(T\right)\right)\backslash E\left(f\left(T\right)\right)=f\left(\sigma\left(T\right)\backslash E\left(T\right)\right).$$

Since $T \in gW$, we have

$$\sigma\left(f\left(T\right)\right)\backslash E\left(f\left(T\right)\right)=f\left(\sigma\left(T\right)\backslash E\left(T\right)\right)=f\left(\sigma_{BW}\left(T\right)\right)=\sigma_{BW}\left(f\left(T\right)\right),$$

which implies that $f(T) \in gW$.

Now suppose that T^* is algebraically quasi-paranormal. We first show that $T \in gW$. Let $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Observe that $\sigma(T^*) = \overline{\sigma(T)}$ and $\sigma_{BW}(T^*) = \overline{\sigma_{BW}(T)}$. So $\overline{\lambda} \in \sigma(T^*) \setminus \sigma_{BW}(T^*)$, and so $\overline{\lambda} \in E(T^*)$ because $T^* \in gW$. Since T^* is algebraically quasi-paranormal, it follows from Theorem 2.8 that $\overline{\lambda} \in \pi(T^*)$. Hence $T - \lambda$ has finite ascent and descent, and so $\lambda \in E(T)$. Conversely, suppose $\lambda \in E(T)$. Then λ is an isolated point of $\sigma(T)$ and $\sigma(T^*) = \overline{\sigma(T)}$. Since $\sigma(T^*) = \overline{\sigma(T)}$, $\overline{\lambda}$ is an isolated point of $\sigma(T^*)$. Since T^* is isoloid, $\overline{\lambda} \in E(T^*)$. But $E(T^*) = \pi(T^*)$ by Theorem 2.8, hence we have $T - \lambda$ has finite ascent and descent. Therefore we can represent $T - \lambda$ as the direct sum

$$T - \lambda = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$$
, where T_1 is invertible and T_2 is nilpotent.

Therefore $T - \lambda$ is B-Weyl, and so $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Thus $\sigma(T) \setminus \sigma_{BW}(T) = E(T)$, and hence $T \in gW$. If T^* is algebraically quasi-paranormal then T is isoloid. It follows from the first part of the proof that $f(T) \in gW$. This completes the proof. \Box

From the proof of Theorem 2.9 and [10, Theorem 3.4], we obtain the following useful consequence.

Corollary 2.10. Suppose T or T^* is algebraically quasi-paranormal. Then

$$\sigma_{BW}(f(T)) = f(\sigma_{BW}(T))$$
 for every $f \in H(\sigma(T))$.

An operator $X \in B(\mathcal{H})$ is called a *quasiaffinity* if it has trivial kernel and dense range. $S \in B(\mathcal{H})$ is said to be a *quasiaffine transform of* $T \in B(\mathcal{H})$ (notation: $S \prec T$) if there is a quasiaffinity $X \in B(\mathcal{H})$ such that XS = TX. If both $S \prec T$ and $T \prec S$, then we say that S and T are *quasisimilar*.

Corollary 2.11. Suppose T is algebraically quasi-paranormal and $S \prec T$. Then $f(S) \in ga\mathcal{B}$ for each $f \in H(\sigma(S))$.

Proof. Suppose T is algebraically quasi-paranormal. Then T has SVEP. Since $S \prec T$, f(S) has SVEP by [7, Lemma 3.1]. It follows from [11, Theorem 3.3.6] that f(S) has SVEP. Therefore $f(S) \in ga\mathcal{B}$ by [12, Corollary 2.5]. \square

3. Generalized Weyl's theorem for perturbations of algebraically quasiparanormal operators

An operator T is said to be *algebraic* if there exists a nontrivial polynomial h such that h(T) = 0. From the spectral mapping theorem it easily follows that the spectrum of an algebraic operator is a finite set. It is known that generalized Weyl's theorem is not generally transmitted to perturbation of operators satisfying generalized Weyl's theorem. In [13], they proved that if T is paranormal and F is an algebraic operator commuting with T, then Weyl's theorem holds for T + F. We now extend this result to generalized Weyl's theorem for algebraically quasi-paranormal operators. We begin with the following lemma.

Lemma 3.1. Let $T \in B(\mathcal{H})$. Then the following statements are equivalent:

- (1) $T \in gW$;
- (2) *T* has SVEP at every $\lambda \in \mathbb{C} \setminus \sigma_{BW}(T)$ and $\pi(T) = E(T)$.

Proof. Observe that $T \in g\mathcal{B}$ if and only if $\sigma_{BW}(T) = \sigma_D(T)$. So $T \in g\mathcal{B}$ if and only if T has SVEP at every $\lambda \in \mathbb{C} \backslash \sigma_{BW}(T)$. Therefore we obtain the desired conclusion. \square

From this lemma, we obtain the following corollary

Corollary 3.2. Let $T \in B(\mathcal{H})$. Suppose T has SVEP. Then

 $T \in gW$ if and only if $T \in \mathcal{P}_1(\mathcal{H})$.

Proof. Since T has SVEP, $T \in g\mathcal{B}by$ Lemma 3.1. So $\sigma(T) \setminus \sigma_{BW}(T) = \pi(T)$. Therefore $T \in g\mathcal{W}$ if and only if $T \in \mathcal{P}_1(\mathcal{H})$ by Theorem 2.6. \square

Lemma 3.3. Suppose $T \in B(\mathcal{H})$ and N is nilpotent such that TN = NT. Then $T \in \mathcal{P}_1(\mathcal{H})$ if and only if $T + N \in \mathcal{P}_1(\mathcal{H})$.

Proof. Suppose $N^p = 0$ for some $p \in \mathbb{N}$. Observe that without any assumption on T we have

$$N(T) \subseteq N(T+N)^p \text{ and } N(T+N) \subseteq N(T^p).$$
 (3.3.1)

Suppose now that $T \in \mathcal{P}_1(\mathcal{H})$, or equivalently $\pi(T) = E(T)$. We show first E(T) = E(T+N). Let $\lambda \in E(T)$. Without loss of generality, we may assume that $\lambda = 0$. From $\sigma(T+N) = \sigma(T)$, we see that 0 is an isolated point of $\sigma(T+N)$. Since $0 \in E(T)$, $\alpha(T) > 0$ and hence by the first inclusion in (3.3.1) we have $\alpha(T+N)^p > 0$. Therefore $\alpha(T+N) > 0$, and hence $0 \in E(T+N)$. Thus the inclusion $E(T) \subseteq E(T+N)$ is proved. To show the opposite inclusion, assume that $0 \in E(T+N)$. Then 0 is an isolated point of $\sigma(T)$ because $\sigma(T+N) = \sigma(T)$. Since $\alpha(T+N) > 0$, the second inclusion in (3.3.1) entails that $\alpha(T^p) > 0$. Therefore $\alpha(T) > 0$, and hence $0 \in E(T)$. So the equality E(T) = E(T+N) is proved. Suppose $T \in \mathcal{P}_1(\mathcal{H})$. Then $\pi(T) = E(T)$ by Theorem 2.6, and so $\pi(T+N) = \pi(T) = E(T) = E(T+N)$. Therefore $T+N \in \mathcal{P}_1(\mathcal{H})$. Conversely, if $T+N \in \mathcal{P}_1(\mathcal{H})$ by symmetry we have $\pi(T) = \pi(T+N) = E(T+N) = E(T+N) = E(T+N) = E(T)$, so the proof is complete.

The following theorem is a generalization of [13, Theorem 2.5]. The proof of the following theorem is strongly inspired to that of it.

Theorem 3.4. Suppose T is algebraically quasi-paranormal. If F is algebraic with TF = FT, then $T + F \in gW$.

Proof. Since F is algebraic, $\sigma(F)$ is finite. Let $\sigma(F) = \{\mu_1, \mu_2, ..., \mu_n\}$. Denote by P_i the spectral projection associated with F and the spectral set $\{\mu_i\}$. Let $Y_i := R(P_i)$ and $Z_i := N(P_i)$. Then $H = Y_i \oplus Z_i$ and the closed subspaces Y_i and Z_i are invariant under T and T. Moreover, $\sigma(F|Y_i) = \{\mu_i\}$. Define $F_i := F|Y_i$ and $T_i := T|Y_i$. Then clearly, the restrictions T_i and F_i commute for every i = 1, 2,...,n and

$$\sigma\left(T+F\right)=\sigma\left(\left(T+F\right)\left|Y_{i}\right.\right)\cup\sigma\left(\left(T+F\right)\left|Z_{i}\right.\right).$$

Let h be a nontrivial complex polynomial such that h(F) = 0. Then $h(F_i) = h(F|Y_i) = h(F)|Y_i = 0$, and from $\{0\} = \sigma(h(F_i)) = h(\sigma(F_i)) = h(\{\mu_i\})$, we obtain that $h(\mu_i) = 0$. Write $h(\mu) = (\mu - \mu_i)^m g(\mu)$ with $g(\mu_i) = 0$. Then $0 = h(F_i) = (F - \mu_i)^m g(F_i)$, where $g(F_i)$ is invertible. Hence $N_i := F_i - \mu_i$ are nilpotent for all i = 1, 2,...,n. Observe that

$$T_i + F_i = (T_i + \mu_i) + (F_i - \mu_i) = T_i + N_i + \mu_i. \tag{3.4.1}$$

Since $T_i + \mu_i$ is algebraically quasi-paranormal for all i = 1, 2,...,n, $T_i + \mu_i$ has SVEP. Moreover, since N_i is nilpotent with $T_iN_i = N_iT_i$, it follows from [6, Corollary 2.12] that $T_i + N_i + \mu_i$ has SVEP, and hence $T_i + F_i$ has SVEP. From [6, Theorem 2.9] we obtain that

$$T + F = \bigoplus_{i=1}^{n} (T_i + F_i)$$
 has SVEP.

Now, we show that $T+F \in \mathcal{P}_1(\mathcal{H})$. Since $T_i + \mu_i$ is algebraically quasi-paranormal, $T_i + \mu_i \in \mathcal{P}_1(Y_i)$ by Theorem 2.8. By Lemma 3.3 and (3.4.1), $T_i + F_i \in \mathcal{P}_1(Y_i)$ for every i = 1, 2,...,n. Now assume that $\lambda_0 \in E(T+F)$. Fix $i \in \mathbb{N}$ such that $1 \le i \le n$. Since the equality $T_i + N_i - \lambda_0 + \mu_i = T_i + F_i - \lambda_0$ holds, we consider two cases:

Case I: Suppose that $T_i - \lambda_0 + \mu_i$ is invertible. Since N_i is quasi-nilpotent commuting with $T_i - \lambda_0 + \mu_i$, it is clear that $T_i + F_i - \lambda_0$ is also invertible. Hence $H_0(T_i + F_i - \lambda_0) = N(T_i + F_i - \lambda_0) = \{0\}$.

Case II: Suppose that $T_i - \lambda_0 + \mu_i$ is not invertible. Then $\lambda_0 - \mu_i \in \sigma(T_i)$. We claim that $\lambda_0 \in E(T_i + F_i)$. Note that $\lambda_0 \in \sigma(T_i + \mu_i) = \sigma(T_i + F_i)$. Since $\sigma(T_i + F_i) \in \sigma(T + F_i)$ and $\lambda_0 \in \operatorname{iso} \sigma(T + F_i)$, $\lambda_0 \in \operatorname{iso} \sigma(T_i + N_i + \mu_i)$. Therefore $\lambda_0 - \mu_i \in \operatorname{iso} \sigma(T_i + N_i) = \operatorname{iso} \sigma(T_i)$. Since $T_i - \lambda_0 + \mu_i$ is algebraically quasi-paranormal, $\lambda_0 - \mu_i \in \pi(T_i)$. Since $\pi(T_i) = E(T_i)$ by Theorem 2.6 and $T_i \in \mathcal{BW}$ by Theorem 2.9, $\lambda_0 - \mu_i \in E(T_i) = \sigma(T_i) \setminus \sigma_{BW}(T_i)$. But N_i is nilpotent with $T_iN_i = N_iT_i$, hence $\sigma_D(T_i) = \sigma_D(T_i + N_i)$ and $T_i + N_i \in \mathcal{BB}$. Therefore we have $\sigma_{BW}(T_i + N_i) = \sigma_D(T_i + N_i)$. Hence

$$E\left(T_{i}\right)=\sigma\left(T_{i}\right)\backslash\sigma_{BW}\left(T_{i}\right)=\sigma\left(T_{i}+N_{i}\right)\backslash\sigma_{BW}\left(T_{i}+N_{i}\right).$$

Hence $T_i + F_i - \lambda_0$ is B-Weyl. Assume to the contrary that $T_i + F_i - \lambda_0$ is injective. Then $\beta(T_i + F_i - \lambda_0) = \alpha(T_i + F_i - \lambda_0) = 0$. Therefore $T_i + F_i - \lambda_0$ is invertible, and so $\lambda_0 \notin \sigma(T_i + F_i)$. This is a contradiction. Hence $\lambda_0 \in E(T_i + F_i)$. Since $T_i + F_i \in \mathcal{P}_1(Y_i)$ by Theorem 2.6, there exists a positive integer m_i such that $H_0(T_i + F_i - \lambda_0) = N(T_i + F_i - \lambda_0)^{m_i}$.

From Cases I and II we have

$$H_0 (T + F - \lambda_0) = \bigoplus_{i=1}^n H_0 (T_i + F_i - \lambda_0)$$
$$= \bigoplus_{i=1}^n N(T_i + F_i - \lambda_0)^{m_i}$$
$$= N(T + F - \lambda_0)^m.$$

where $m := \max\{m_1, m_2, ..., m_n\}$. Since the last equality holds for every $\lambda_0 \in E(T + F)$, $T + F \in \mathcal{P}_1(\mathcal{H})$. Therefore $T + F \in gWby$ Corollary 3.2. \square

It is well known that if for an operator $F \in B(\mathcal{H})$ there exists a natural number n for which F' is finite-dimensional, then F is algebraic.

Corollary 3.5. Suppose $T \in B(\mathcal{H})$ is algebraically quasi-paranormal and F is an operator commuting with T such that F^n is a finite-dimensional operator for some $n \in \mathbb{N}$. Then $T + F \in gW$.

Acknowledgements

The authors would like to express their thanks to the referee for several extremely valuable suggestions concerning the article.

Authors' contributions

All authors contributed equally to the writing of the present article. And they also read and approved the final

Competing interests

The authors declare that they have no competing interests.

Received: 1 December 2011 Accepted: 17 April 2012 Published: 17 April 2012

References

- 1. Berkani, M, Sarih, M: On semi B-Fredholm operators. Glasgow Math J. 43, 457–465 (2001)
- 2. Berkani, M: On a class of quasi-Fredholm operators. Int Equ Oper Theory. 34, 244–249 (1999). doi:10.1007/BF01236475
- 3. Berkani, M, Koliha, JJ: Weyl type theorems for bounded linear operators. Acta Sci Math (Szeged). 69, 359–376 (2003)
- 4. Han, YM, Na, WH: A note on guasi-paranormal operator. Mediterr J Math. (in press)
- Curto, RE, Han, YM: Generalized Browder's and Weyl's theorems for Banach space operators. J Math Anal Appl. 336, 1424–1442 (2007). doi:10.1016/j.jmaa.2007.03.060
- Aiena, P: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht (2004)
- Curto, RE, Han, YM: Weyl's theorem holds for algebraically paranormal operators. Int Equ Oper Theory. 47, 307–314 (2003). doi:10.1007/s00020-002-1164-1
- 8. Han, JK, Lee, HY, Lee, WY., et al: Invertible completions of 2×2 upper triangular operator matrices. Proc Am Math Soc. 128, 119–123 (2000). doi:10.1090/S0002-9939-99-04965-5
- Berkani, M: Index of B-Fredholm operators and generalization of a Weyl theorem. Proc Am Math Soc. 130, 1717–1723 (2002). doi:10.1090/S0002-9939-01-06291-8
- Aiena, P, Garcia, O: Generalized Browder's theorem and SVEP. Mediterr J Math. 4, 215–228 (2007). doi:10.1007/s00009-007-0113-2
- 11. Laursen, KB, Neumann, MM: An Introduction to Local Spectral Theory. London Mathematical Society Monographs New Series 20, Clarendon Press, Oxford (2000)
- 12. Aiena, P, Miller, TL: On generalized a-Browder's theorem. Studia Math. 180, 285–300 (2007). doi:10.4064/sm180-3-7
- Aiena, P, Guillen, JR: Weyl's theorem for perturbations of paranormal operators. Proc Am Math Soc. 135, 2443–2451 (2007). doi:10.1090/S0002-9939-07-08582-6

doi:10.1186/1029-242X-2012-89

Cite this article as: An and Han: Generalized Weyl's theorem for algebraically quasi-paranormal operators. Journal of Inequalities and Applications 2012 2012:89.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Immediate publication on acceptance
- ► Open access: articles freely available online
- \blacktriangleright High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com