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Abstract

By using the method of differential subordinations, we derive certain properties of
meromorphically multivalent functions.
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1 Introduction

Let X(p) denotes the class of meromorphically multivalent functions flz) of the form
o.¢]
f@=2"+> ar @ (peN={1,23..1}), (1.1)
k=1
which are analytic in the punctured unit disk

U*={z:zeCand0<Iz|<1}=U\{0}.

Let flz) and g(z) be analytic in U. Then, we say that f{z) is subordinate to g(z) in U,
written flz) < g(z), if there exists an analytic function w(z) in U, such that |w(z)| < |z|
and flz) = g(w(z)) (z € U). If g(z) is univalent in U, then the subordination f(z) < g(z) is
equivalent to fl0) = g(0) and AU) < g(U).

Let p(z) = 1 + p1z + ... be analytic in U. Then for -1 < B <A < 1, it is clear that

po< " weu (12)

if and only if

1-AB) _A-B 1<B<A<1lzelU (1.3)
P(Z)—l_B2 < _p (-1<B<A<1lzel .
and
1—-A
Rep (2) > ) B=-1;zel). (1.4)

Recently, several authors (see, e.g., [1-7]) considered some interesting properties of
meromorphically multivalent functions. In the present article, we aim at proving some
subordination properties for the class X(p).

To derive our results, we need the following lemmas.
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Lemma 1 (see [8]. Let /(z) be analytic and starlike univalent in U with /(0) = 0. If g
(2) is analytic in U and zg'(z) < h(z), then

h(t)

g(z)<g(0)+/ . dt.

0

Lemma 2 (see [9]. Let p(z) be analytic and nonconstant in U with p(0) = 1. If 0 < |
Zo | < 1 and Re p(z9) = miny <, Re p (2), then

’1—i7(zo)|2

zop (z0) < T (1—Re p(z0))

2 Main results
Our first result is contained in the following.
Theorem 1. Let @ € (0, ;] and B e (0,1). If flz) € X(p) satisfies flz) = 0 (z e U*) and

zF (Zf'(Z) . )
fo\fe *7?

where ¢ is the minimum positive root of the equation

o sin <nzﬂ>x2—x+(l — o) sin <n2,8> =0, (2.2)

then
arg (J;(_zp) - oz)

The bound f is the best possible for each « € (0, ;]

<8 (zel, (2.1)

T
< 2/3 zel. (2.3)

Proof. Let

g (x) = asin (”2:3)x2_x+(1 — ) sin (nzﬁ)- (2.4)
We can see that the Equation (2.2) has two positive roots. Since g(0) > 0 and g(1) <

0, we have
o
0< §<d8<1. (2.5)
l—-«o

Put

f(zp) —a+(1-a)p@). (2.6)

-

Then from the assumption of the theorem, we see that p(z) is analytic in U with p(0)
=1land o + (1 - a)p(z) = 0 for all ze U. Taking the logarithmic differentiations in
both sides of (2.6), we get

7@, (1-07@

= 2.7
f@ o+ (1—a)p(z) 27
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and
z" (7' (@) ) (0 -a)z (2)
f@ (f @ )T wrd—wpe) 28)
for all ze U. Thus the inequality (2.1) is equivalent to
(1—-a)zp' () | <6z (2.9
(@+(1—a)p(2)
By using Lemma 1, (2.9) leads to
/ d=0p® ,dt < 8z
(a+ (1 —a)p®)
or to
1-— ! 1) 2.10
a+r(l—a)p@ ° (2.10)
In view of (2.5), (2.10) can be written as
1+ ,%, 6z
o 2.11
p@~< | 5 (2.11)

Now by taking A = |* 8 and B = -6 in (1.2) and (1.3), we have

(1) - o

§
< arcsin
(1 —a+ ot82>

=2,3

for all z e U because of g(d) = 0. This proves (2.3).
Next, we consider the function flz) defined by
—p

f@= "

1, (zeU).

It is easy to see that

zt (Zf @,

p)‘=|8z|<8 zel).

f@\ f@®
Since
1 “8
f(_Z)—Ol=(1—Ol) +1—oz z,
z7P 1—6z

it follows from (1.3) that

. 8
arg(i(? —oz) =arcsm<1 —a+a82) = Z,B.

Hence, we conclude that the bound f3 is the best possible for each « € (0, é]

sup
zel

Next, we derive the following.
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Theorem 2. If flz) € X(p) satisfies flz) = 0 (z € U*) and

Re {fz(:) (z]]:/(g) +p)} <y (zel), (2.12)
where
o<y~ ', (2.13)
2 log 2
then
z7P
Re f@ >1-2y log2 (zelU). (2.14)

The bound in (2.14) is sharp.
Proof. Let

p(z) = fz(_zp) (2.15)

Then p(z) is analytic in U with p(0) = 1 and p(z) = 0 for z € U. In view of (2.15) and
(2.12), we have

B zp’ (z) 1+z
P2 1-2Z

( 1 )’ 2yz
z < .
p () 1-z

Now by using Lemma 1, we obtain

ie.,

»(@) <1—-2y log(l—2). (2.16)

Since the function 1 - 2y log(1 - z) is convex univalent in U and
Re (1 -2y log(1—2)>1-2y log2 (zel),
from (2.16), we get the inequality (2.14).
To show that the bound in (2.14) cannot be increased, we consider
zfp

f@ = 1—2y log(1 —z)

(ze U").

It is easy to verify that the function f(z) satisfies the inequality (2.12). On the other
hand, we have

zP 1
Re — 1—2ylog2
f®@ Vo8

as z = -1. Now the proof of the theorem is complete.
Finally, we discuss the following theorem.
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Theorem 3. Let flz) € X(p) with flz) = 0 (z e U*). If

") (f &)
‘Im {ZJ]:(; (J;—ZI’ _X>H <\/x(x+2p) zel) (2.17)

for some A(A > 0), then

Re f@ >0 (zel). (2.18)
z P
Proof. Let us define the analytic function p(z) in U by

ATy
Z

Then p(0) = 1, p(z) = 0 (ze U) and

zf' @ (f (2) _ zp' (2)

Suppose that there exists a point zo(0 < | zo | < 1) such that
Re p(z) > 0 (Iz] <lzol) and p(zo) =iB, (2.20)

where f3 is real and 8 = 0. Then, applying Lemma 2, we get

2
zop' (20) < — ! +2ﬂ . (2.21)

Thus it follows from (2.19), (2.20), and (2.21) that

Iy = Im {Zof’ (z0) (f (z0)

L
f o) - X)} =—pB + ﬂZOP (20) - (2.22)

—p
20

In view of A > 0, from (2.21) and (2.22) we obtain

X+ (h+2p) B2
Iy > — +(2+,3 P)p z\/x(mzp) (B <0) (2.23)
and
L+ (h+2p) B2
Iy < — < —\/x (M +2p) (B>0). (2.24)

2p

But both (2.23) and (2.24) contradict the assumption (2.17). Therefore, we have Rep
(z) > 0 for all ze U. This shows that (2.18) holds true.
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