RESEARCH Open Access

Some properties of meromorphically multivalent functions

Yi-Hui Xu¹, Qing Yang² and Jin-Lin Liu^{2*}

Abstract

By using the method of differential subordinations, we derive certain properties of meromorphically multivalent functions.

2010 Mathematics Subject Classification: 30C45; 30C55.

Keywords: analytic function, meromorphically multivalent function, subordination

1 Introduction

Let $\Sigma(p)$ denotes the class of meromorphically multivalent functions f(z) of the form

$$f(z) = z^{-p} + \sum_{k=1}^{\infty} a_{k-p} z^{k-p} \quad (p \in N = \{1, 2, 3, \ldots\}),$$
(1.1)

which are analytic in the punctured unit disk

$$U^* = \{z : z \in C \text{ and } 0 < |z| < 1\} = U \setminus \{0\}.$$

Let f(z) and g(z) be analytic in U. Then, we say that f(z) is subordinate to g(z) in U, written $f(z) \prec g(z)$, if there exists an analytic function w(z) in U, such that $|w(z)| \leq |z|$ and f(z) = g(w(z)) ($z \in U$). If g(z) is univalent in U, then the subordination $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(U) \subseteq g(U)$.

Let $p(z) = 1 + p_1 z + ...$ be analytic in U. Then for $-1 \le B < A \le 1$, it is clear that

$$p(z) \prec \frac{1 + Az}{1 + Bz} \quad (z \in U) \tag{1.2}$$

if and only if

$$\left| p(z) - \frac{1 - AB}{1 - B^2} \right| < \frac{A - B}{1 - B^2} \quad (-1 < B < A \le 1; z \in U)$$
 (1.3)

and

$$\operatorname{Re} p(z) > \frac{1-A}{2} \quad (B = -1; z \in U).$$
 (1.4)

Recently, several authors (see, e.g., [1-7]) considered some interesting properties of meromorphically multivalent functions. In the present article, we aim at proving some subordination properties for the class $\Sigma(p)$.

To derive our results, we need the following lemmas.

^{*} Correspondence: jlliu@yzu.edu.cn ²Department of Mathematics, Yangzhou University, Yangzhou, 225002, PR China Full list of author information is available at the end of the article

Lemma 1 (see [8]. Let h(z) be analytic and starlike univalent in U with h(0) = 0. If g(z) is analytic in U and $zg'(z) \prec h(z)$, then

$$g(z) \prec g(0) + \int_{0}^{z} \frac{h(t)}{t} dt.$$

Lemma 2 (see [9]. Let p(z) be analytic and nonconstant in U with p(0) = 1. If $0 < |z_0| < 1$ and Re $p(z_0) = \min_{|z| \le |z_0|} \text{Re } p(z)$, then

$$z_0 p'(z_0) \le -\frac{\left|1 - p(z_0)\right|^2}{2\left(1 - \operatorname{Re} p(z_0)\right)}.$$

2 Main results

Our first result is contained in the following.

Theorem 1. Let $\alpha \in (0, \frac{1}{2}]$ and $\beta \in (0,1)$. If $f(z) \in \Sigma(p)$ satisfies $f(z) \neq 0$ ($z \in U^*$) and

$$\left| \frac{z^{-p}}{f(z)} \left(\frac{zf'(z)}{f(z)} + p \right) \right| < \delta \quad (z \in U), \tag{2.1}$$

where δ is the minimum positive root of the equation

$$\alpha \sin\left(\frac{\pi\beta}{2}\right) x^2 - x + (1 - \alpha) \sin\left(\frac{\pi\beta}{2}\right) = 0, \tag{2.2}$$

then

$$\left| \arg \left(\frac{f(z)}{z^{-p}} - \alpha \right) \right| < \frac{\pi}{2} \beta \quad (z \in U). \tag{2.3}$$

The bound β is the best possible for each $\alpha \in (0, \frac{1}{2}]$.

Proof. Let

$$g(x) = \alpha \sin\left(\frac{\pi\beta}{2}\right) x^2 - x + (1 - \alpha) \sin\left(\frac{\pi\beta}{2}\right). \tag{2.4}$$

We can see that the Equation (2.2) has two positive roots. Since g(0) > 0 and g(1) < 0, we have

$$0 < \frac{\alpha}{1 - \alpha} \delta \le \delta < 1. \tag{2.5}$$

Put

$$\frac{f(z)}{z^{-p}} = \alpha + (1 - \alpha) p(z). \tag{2.6}$$

Then from the assumption of the theorem, we see that p(z) is analytic in U with p(0) = 1 and $\alpha + (1 - \alpha)p(z) \neq 0$ for all $z \in U$. Taking the logarithmic differentiations in both sides of (2.6), we get

$$\frac{zf'(z)}{f(z)} + p = \frac{(1-\alpha)zp'(z)}{\alpha + (1-\alpha)p(z)}$$
(2.7)

and

$$\frac{z^{-p}}{f(z)} \left(\frac{zf'(z)}{f(z)} + p \right) = \frac{(1 - \alpha)zp'(z)}{\left(\alpha + (1 - \alpha)p(z)\right)^2}$$

$$(2.8)$$

for all $z \in U$. Thus the inequality (2.1) is equivalent to

$$\frac{(1-\alpha)zp'(z)}{\left(\alpha+(1-\alpha)p(z)\right)^2} \prec \delta z. \tag{2.9}$$

By using Lemma 1, (2.9) leads to

$$\int_{0}^{z} \frac{(1-\alpha) p'(t)}{\left(\alpha + (1-\alpha) p(t)\right)^{2}} dt < \delta z$$

or to

$$1 - \frac{1}{\alpha + (1 - a)p(z)} \prec \delta z. \tag{2.10}$$

In view of (2.5), (2.10) can be written as

$$p(z) \prec \frac{1 + \frac{\alpha}{1 - \alpha} \delta z}{1 - \delta z}$$
 (2.11)

Now by taking $A = \frac{\alpha}{1-\alpha}\delta$ and $B = -\delta$ in (1.2) and (1.3), we have

$$\left| \arg \left(\frac{f(z)}{z^{-p}} - \alpha \right) \right| = \left| \arg p(z) \right|$$

$$< \arcsin \left(\frac{\delta}{1 - \alpha + \alpha \delta^2} \right)$$

$$= \frac{\pi}{2} \beta$$

for all $z \in U$ because of $g(\delta) = 0$. This proves (2.3).

Next, we consider the function f(z) defined by

$$f(z) = \frac{z^{-p}}{1 - \delta_z} \left(z \in U^* \right).$$

It is easy to see that

$$\left|\frac{z^{-p}}{f(z)}\left(\frac{zf'(z)}{f(z)}+p\right)\right|=|\delta z|<\delta\quad (z\in U)\;.$$

Since

$$\frac{f(z)}{z^{-p}} - \alpha = (1 - \alpha) \frac{1 + \frac{\alpha}{1 - \alpha} \delta z}{1 - \delta z},$$

it follows from (1.3) that

$$\sup_{z \in U} \left| \arg \left(\frac{f(z)}{z^{-p}} - \alpha \right) \right| = \arcsin \left(\frac{\delta}{1 - \alpha + \alpha \delta^2} \right) = \frac{\pi}{2} \beta.$$

Hence, we conclude that the bound β is the best possible for each $\alpha \in (0, \frac{1}{2}]$. Next, we derive the following.

Theorem 2. If $f(z) \in \Sigma(p)$ satisfies $f(z) \neq 0$ $(z \in U^*)$ and

$$\operatorname{Re} \left\{ \frac{z^{-p}}{f(z)} \left(\frac{zf'(z)}{f(z)} + p \right) \right\} < \gamma \quad (z \in U), \tag{2.12}$$

where

$$0 < \gamma < \frac{1}{2 \log 2},\tag{2.13}$$

then

Re
$$\frac{z^{-p}}{f(z)} > 1 - 2\gamma \log 2$$
 $(z \in U)$. (2.14)

The bound in (2.14) is sharp.

Proof. Let

$$p(z) = \frac{f(z)}{z^{-p}}.$$
 (2.15)

Then p(z) is analytic in U with p(0) = 1 and $p(z) \neq 0$ for $z \in U$. In view of (2.15) and (2.12), we have

$$1 - \frac{zp'(z)}{\gamma p^2(z)} \prec \frac{1+z}{1-z'}$$

i.e.,

$$z\left(\frac{1}{p(z)}\right)' \prec \frac{2\gamma z}{1-z}.$$

Now by using Lemma 1, we obtain

$$\frac{1}{p(z)} < 1 - 2\gamma \log(1 - z). \tag{2.16}$$

Since the function 1 - $2\gamma \log(1 - z)$ is convex univalent in U and

Re
$$(1-2\gamma \log (1-z)) > 1-2\gamma \log 2$$
 $(z \in U)$,

from (2.16), we get the inequality (2.14).

To show that the bound in (2.14) cannot be increased, we consider

$$f(z) = \frac{z^{-p}}{1-2\gamma \, \log{(1-z)}} \quad \left(z \in U^*\right).$$

It is easy to verify that the function f(z) satisfies the inequality (2.12). On the other hand, we have

Re
$$\frac{z^{-p}}{f(z)} \rightarrow 1 - 2\gamma \log 2$$

as $z \rightarrow$ -1. Now the proof of the theorem is complete.

Finally, we discuss the following theorem.

Theorem 3. Let $f(z) \in \Sigma(p)$ with $f(z) \neq 0$ ($z \in U^*$). If

$$\left| \operatorname{Im} \left\{ \frac{zf'(z)}{f(z)} \left(\frac{f(z)}{z^{-p}} - \lambda \right) \right\} \right| < \sqrt{\lambda \left(\lambda + 2p \right)} \quad (z \in U)$$
 (2.17)

for some $\lambda(\lambda > 0)$, then

Re
$$\frac{f(z)}{z^{-p}} > 0 \quad (z \in U)$$
. (2.18)

Proof. Let us define the analytic function p(z) in U by

$$\frac{f(z)}{z^{-p}} = p(z).$$

Then p(0) = 1, $p(z) \neq 0$ ($z \in U$) and

$$\frac{zf'(z)}{f(z)} \left(\frac{f(z)}{z^{-p}} - \lambda \right) = \left(p(z) - \lambda \right) \left(\frac{zp'(z)}{p(z)} - p \right) \quad (z \in U). \tag{2.19}$$

Suppose that there exists a point $z_0(0 < |z_0| < 1)$ such that

Re
$$p(z) > 0 \ (|z| < |z_0|)$$
 and $p(z_0) = i\beta$, (2.20)

where β is real and $\beta \neq 0$. Then, applying Lemma 2, we get

$$z_0 p'(z_0) \le -\frac{1+\beta^2}{2}. (2.21)$$

Thus it follows from (2.19), (2.20), and (2.21) that

$$I_{0} = \operatorname{Im} \left\{ \frac{z_{0} f'(z_{0})}{f(z_{0})} \left(\frac{f(z_{0})}{z_{0}^{-p}} - \lambda \right) \right\} = -p\beta + \frac{\lambda}{\beta} z_{0} p'(z_{0}). \tag{2.22}$$

In view of $\lambda > 0$, from (2.21) and (2.22) we obtain

$$I_0 \ge -\frac{\lambda + (\lambda + 2p)\beta^2}{2\beta} \ge \sqrt{\lambda (\lambda + 2p)} \quad (\beta < 0)$$
 (2.23)

and

$$I_0 \le -\frac{\lambda + (\lambda + 2p)\beta^2}{2\beta} \le -\sqrt{\lambda (\lambda + 2p)} (\beta > 0).$$
 (2.24)

But both (2.23) and (2.24) contradict the assumption (2.17). Therefore, we have $\operatorname{Re} p(z) > 0$ for all $z \in U$. This shows that (2.18) holds true.

Author details

¹Department of Mathematics, Suqian College, Suqian 223800, PR China ²Department of Mathematics, Yangzhou University, Yangzhou, 225002, PR China

Authors' contributions

All authors read and approved the final manuscript

Competing interests

The authors declare that they have no competing interests.

Received: 18 October 2011 Accepted: 16 April 2012 Published: 16 April 2012

References

- Ali, RM, Ravichandran, V, Seenivasagan, N: Subordination and superordination of the Liu-Srivastava linear operator on meromorphically functions. Bull Malays Math Sci Soc. 31, 193–207 (2008)
- Aouf, MK: Certain subclasses of meromprphically multivalent functions associated with generalized hypergeometric function. Comput Math Appl. 55, 494–509 (2008)
- Cho, NE, Kwon, OS, Srivastava, HM: A class of integral operators preserving subordination and superordination for meromorphic functions. Appl Math Comput. 193, 463–474 (2007)
- Liu, J-L, Srivastava, HM: A linear operator and associated families of meromorphically multivalent functions J. Math Anal Appl. 259, 566–581 (2001)
- Liu, J-L, Srivastava, HM: Classes of meromorphically multivalent functions associated with the generalized hypergeometric function. Math Comput Model. 39, 21–34 (2004)
- 6. Wang, Z-G, Jiang, Y-P, Srivastava, HM: Some subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function Comput. Math Appl. **57**, 571–586 (2009)
- Wang, Z-G, Sun, Y, Zhang, Z-H: Certain classes of meromorphically multivalent functions. Comput Math Appl. 58, 1408–1417 (2009)
- 8. Suffridge, TJ: Some remarks on convex maps of the unit disk. Duke Math J. 37, 775–777 (1970)
- 9. Miller, SS, Mocanu, PT: Second order differential inequalities in the complex plane. J Math Anal Appl. **65**, 289–305 (1978)

doi:10.1186/1029-242X-2012-86

Cite this article as: Xu et al.: Some properties of meromorphically multivalent functions. Journal of Inequalities and Applications 2012 2012:86.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com