RESEARCH Open Access

A new version of the Gleason-Kahane-Żelazko theorem in complete random normed algebras

Yuehan Tang^{1,2}

Correspondence: tangjohn@126.com

¹LMIB and School of Mathematics and Systems Science, Beihang University, Beijing 100191, P. R. China

Full list of author information is available at the end of the article

Abstract

In this article we first present the notion of multiplicative L^0 -linear function. Moreover, we establish a new version of the Gleason-Kahane-Żelazko theorem in unital complete random normed algebras.

Mathematics Subject Classification 2000: 46H25; 46H05; 15A78.

Keywords: random normed module, random normed algebra, multiplicative L^0 -linear function, Gleason-Kahane-Żelazko theorem.

1 Introduction

Gleason [1] and, independently, Kahane and Żelazko [2] proved the so-called Gleason-Kahane-Żelazko theorem which is a famous theorem in classical Banach algebras. There are various extensions and generalizations of this theorem [3]. The Gleason-Kahane-Żelazko theorem in an unital complete random normed algebra as a random generalization of the classical Gleason-Kahane-Żelazko theorem is given in [4].

Based on the study of [5], we will establish a new version of the Gleason-Kahane-Żelazko theorem in an unital complete random normed algebra. In this article we first present the notion of multiplicative L^0 -functions. Then, we give the new version of the Gleason-Kahane-Żelazko theorem in an unital complete random normed algebra as another random generalization of the classical Gleason-Kahane-Żelazko theorem.

The remainder of this article is organized as follows: in Section 2 we give some necessary definitions and lemmas and in Section 3 we give the main results and proofs.

2 Preliminary

Throughout this article, N denotes the set of positive integers, K the scalar field R of real numbers or C of complex numbers, \bar{R} (or $[-\infty, +\infty]$) the set of extended real numbers, (Ω, \mathcal{F}, P) a probability space, $\bar{\mathcal{L}}^0(\mathcal{F}, R)$ the set of extended real-valued \mathscr{F} -random variables on Ω , $\bar{L}^0(\mathcal{F}, R)$ the set of equivalence classes of extended real-valued \mathscr{F} -random variables on Ω , $\mathcal{L}^0(\mathcal{F}, K)$ the algebra of K-valued \mathscr{F} -random variables on Ω under the ordinary pointwise addition, multiplication and scalar multiplication operations, $L^0(\mathcal{F}, K)$ the algebra of equivalence classes of K-valued \mathscr{F} -random variables on Ω , i.e., the quotient algebra of $\mathcal{L}^0(\mathcal{F}, K)$, and 0 and 1 the null and unit elements, respectively.

It is well known from [6] that $\bar{L}^0(\mathcal{F},R)$ is a complete lattice under the ordering \leq : \leq \leq η iff $\zeta^0(\omega) \leq \eta^0(\omega)$ for P-almost all ω in Ω (briefly, a.s.), where ζ^0 and η^0 are arbitrarily chosen representatives of ζ and η , respectively. Furthermore, every subset A of $\bar{L}^0(\mathcal{F},R)$ has a supremum, denoted by VA, and an infimum, denoted by ΛA , and there exist two sequences $\{a_n, n \in N\}$ and $\{b_n, n \in N\}$ in A such that $V_{n\geq 1}$ $a_n = VA$ and $\Lambda_{n\geq 1}$ $b_n = \Lambda A$. If, in addition, A is directed (accordingly, dually directed), then the above $\{a_n, n \in N\}$ (accordingly, $\{b_n, n \in N\}$) can be chosen as nondecreasing (accordingly, nonincreasing). Finally $L^0(\mathcal{F},R)$, as a sublattice of $\bar{L}^0(\mathcal{F},R)$, is complete in the sense that every subset with an upper bound has a supremum (equivalently, every subset with a lower bound has an infimum).

Specially, let
$$\bar{L}^0_+(\mathcal{F}) = \{ \xi \in \bar{L}^0(\mathcal{F}, R) | \xi \ge 0 \}$$
 and $L^0_+(\mathcal{F}) = \{ \xi \in L^0(\mathcal{F}, R) | \xi \ge 0 \}$.

The following notions of generalized inverse, absolute value, complex conjugate and sign of an element in $L^0(\mathcal{F}, K)$ bring much convenience to this article.

Definition 2.1. [7] Let ξ be an element in $L^0(\mathcal{F}, K)$. For an arbitrarily chosen representative ξ^0 of ξ , define two \mathscr{F} -random variables $(\xi^0)^{-1}$ and $|\xi^0|$, respectively, by

$$(\xi^0)^{-1}(\omega) = \begin{cases} \frac{1}{\xi^0(\omega)} & \text{if } \xi^0(\omega) \neq 0, \\ 0, & \text{otherwise,} \end{cases}$$

and

$$|\xi^{0}|(\omega) = |\xi^{0}(\omega)|, \quad \forall \omega \in \Omega.$$

Then the equivalence class of $(\xi^0)^{-1}$, denoted by ξ^{-1} , is called the generalized inverse of ξ ; the equivalence class of $|\xi^0|$, denoted by $|\xi|$, is called the absolute value of ξ . When $\xi \in L^0(\mathcal{F}, C)$, set $\xi = u + iv$, where $u, v \in L^0(\mathcal{F}, R)$, $\bar{\xi} := u - iv$ is called the complex conjugate of ξ and $\mathrm{sgn}(\xi) := |\xi|^{-1} \cdot \xi$ is called the sign of ξ . It is obvious that $|\xi| = |\bar{\xi}|$, $\xi \cdot \mathrm{sgn}(\bar{\xi}) = |\xi|$, $|\mathrm{sgn}(\xi)| = \tilde{I}_A$, $\xi^{-1} \cdot \xi = \xi \cdot \xi^{-1} = \tilde{I}_A$, where $A = \{\omega \in \Omega : \xi^0(\omega) \neq 0\}$ and \tilde{I}_A denotes the equivalence class of the characteristic function I_A of A. Throughout this article, the symbol \tilde{I}_A is always understood as above unless stated otherwise.

Besides the equivalence classes of \mathscr{F} -random variables, we also use the equivalence classes of \mathscr{F} -measurable sets. Let $A \in \mathcal{F}$, then the equivalence class of A, denoted by \tilde{A} , is defined by $\tilde{A} = \{B \in \mathcal{F} : P(A\Delta B) = 0\}$, where $A\Delta B = (A \setminus B) \cup (B \setminus A)$ is the symmetric difference of A and B, and $P(\tilde{A})$ is defined to be P(A). For two \mathscr{F} -measurable sets G and D, $G \subseteq D$ a.s. means $P(G \setminus D) = 0$, in which case we also say $\tilde{G} \subset \tilde{D}$; $\tilde{G} \cap \tilde{D}$ denotes the equivalence class determined by $G \cap D$. Other similar notations are easily understood in an analogous manner.

As usual, we also make the following convention: for any ξ , $\eta \in L^0(\mathcal{F}, R)$, $\xi > \eta$ means $\xi \geq \eta$ and $\xi \neq \eta$; $[\xi > \eta]$ stands for the equivalence class of the \mathscr{F} -measurable set $\{\omega \in \Omega : \xi^0(\omega) > \eta^0(\omega)\}$ (briefly, $[\xi^0 > \eta^0]$), where ξ^0 and η^0 are arbitrarily selected representatives of ξ and η , respectively, and $I_{[\xi > \eta]}$ stands for $\tilde{I}_{[\xi^0 > \eta^0]}$. If $A \in \mathcal{F}$, then $\xi > \eta$ on \tilde{A} means $\xi^0(\omega) > \eta^0(\omega)$ a.s. on A, similarly $\xi \neq \eta$ on \tilde{A} means that $\xi^0(\omega) \neq \eta^0(\omega)$ a.s. on A, also denoted by $\tilde{A} \subset [\xi \neq \eta]$.

Definition 2.2. [7] An ordered pair $(S, ||\cdot||)$ is called a random normed module (briefly, an RN module) over K with base (Ω, \mathcal{F}, P) if S is a left module over the algebra $L^0(\mathcal{F}, K)$ and $||\cdot||$ is a mapping from S to $L^0_+(\mathcal{F})$ such that the following conditions are satisfied:

```
(RNM-1) ||\xi x|| = |\xi|||x||, \forall \xi \in L^0(\mathcal{F}, K), x \in S;

(RNM-2) ||x + y|| \le ||x|| + ||y||, \forall x, y \in S;

(RNM-3) ||x|| = 0 implies x = 0(the zero element in S).
```

Where ||x|| is called the L^0 -norm of the vector x in S.

In this article, given an RN module $(S, ||\cdot||)$ over K with base (Ω, \mathcal{F}, P) it is always assumed that $(S, ||\cdot||)$ is endowed with its (ϵ, λ) -topology: for any $\epsilon > 0$, $0 < \lambda < 1$, let $N(\epsilon, \lambda) = \{x \in S \mid P\{\omega \in \Omega : ||x||(\omega) < \epsilon\} > 1 - \lambda\}$, then the family $\mathcal{U}_0 = \{N(\epsilon, \lambda)|\epsilon > 0, 0 < \lambda < 1\}$ forms a local base at the null element 0 of some metrizable linear topology for S, called the (ϵ, λ) -topology for S. It is well known that a sequence $\{x_n, n \geq 1\}$ in S converges in the (ϵ, λ) -topology to some x in S if $\{||x_n - x||, n \geq 1\}$ converges in probability P to P0, and that P0 is a topological module over the topological algebra P1 for details). Besides, let P2 be the RN module of equivalence classes of P3-valued P3-random variables on P3, where P4 is an ordinary normed space, then it is easy to see that the P3-topology on P4 is complete, in particular P4 is complete.

Definition 2.3. [5] An ordered pair $(S, ||\cdot||)$ is called a random normed algebra (briefly, an RN algebra) over K with base (Ω, \mathcal{F}, P) if $(S, ||\cdot||)$ is an RN module over K with base (Ω, \mathcal{F}, P) and also a ring such that the following two conditions are satisfied:

```
(1) (\xi \cdot x)y = x(\xi \cdot y) = \xi \cdot (xy), for all \xi \in L^0(\mathcal{F}, K) and all x, y \in S;
(2) the L^0-norm ||\cdot|| is submultiplicative, that is, ||xy|| \le ||x||||y||, for all x, y \in S.
```

Furthermore, the RN algebra is said to be unital if it has the identity element e and ||e|| = 1. As usual, the RN algebra $(S, ||\cdot||)$ is said to be complete if the RN module $(S, ||\cdot||)$ is complete.

Example 2.1. [5] Let $(X, ||\cdot||)$ be a normed algebra over C and $L^0(\mathcal{F}, X)$ be the RN module of equivalence classes of X-valued \mathscr{F} -random variables on (Ω, \mathcal{F}, P) . Define a multiplication $\cdot : L^0(\mathcal{F}, X) \times L^0(\mathcal{F}, X) \to L^0(\mathcal{F}, X)$ by $x \cdot y =$ the equivalence class determined by the \mathscr{F} -random variable x^0y^0 , which is defined by $(x^0y^0)(\omega) = (x^0(\omega)) \cdot (y^0(\omega))$, $\forall \omega \in \Omega$, where x^0 and y^0 are arbitrarily chosen representatives of x and y in $L^0(\mathcal{F}, X)$, respectively. Then $(L^0(\mathcal{F}, X), \|\cdot\|)$ is an RN algebra, in particular $L^0(\mathcal{F}, C)$ is a unital RN algebra with identity 1.

Example 2.2. [5] It is easy to see that $L^{\infty}_{\mathcal{F}}(\varepsilon, C)$ is a unital RN algebra with identity 1 (see [8,9] for the construction of $L^{\infty}_{\mathcal{F}}(\varepsilon, C)$.

Definition 2.4. [5] Let $(S, ||\cdot||)$ be an RN algebra with identity e over C with base (Ω, \mathcal{F}, P) , and A be any given element in \mathscr{F} such that P(A) > 0. An element $x \in S$ is invertible on A if there exists $y \in S$ such that $\tilde{I}_A \cdot xy = \tilde{I}_A \cdot yx = \tilde{I}_A \cdot e$. Clearly, $\tilde{I}_A \cdot y$ is unique and called the inverse on A of x, denoted by x_A^{-1} . Let G(S, A) denote the set of elements of S which are invertible on A. Then $\tilde{I}_A \cdot G(S, A)$ is also a group, and $(xy)_A^{-1} = y_A^{-1}x_A^{-1}$ for any x and y in $\tilde{I}_A \cdot G(S, A)$. For any $x \in S$, the sets

$$\sigma(x, S, A) = \left\{ \xi \in L^0(\mathcal{F}, C) : \tilde{I}_A \cdot (\xi \cdot e - x) \notin \tilde{I}_A \cdot G(S, A) \right\},$$

$$\sigma(x, S) = \bigcap_{A \in \mathcal{F}} \sigma(x, S, A)$$

are called the random spectrum on A of x in S and the random spectrum of x in S, respectively, and further their complements $\rho(x, S, A) = L^0(\mathcal{F}, C) \setminus \sigma(x, S, A)$ and $\rho(x, S) = L^0(\mathcal{F}, C) \setminus \sigma(x, S)$ are called the random resolvent set on A of x and the random resolvent set of x, respectively.

Definition 2.5. [5] Let $(S, ||\cdot||)$ be an RN algebra with identity e over C with base (Ω, \mathcal{F}, P) . For any $x \in S$, $r(x) = V\{|\xi| : \xi \in \sigma(x, S)\}$ is called the random spectral radius of x.

Besides, $\wedge \left\{ \|x^n\|^{\frac{1}{n}} | n \in N \right\}$ is denoted by $r_p(x)$, for any x in an RN algebra over K with base (Ω, \mathcal{F}, P) .

Lemma 2.1. [5] Let $(S, ||\cdot||)$ be a unital complete RN algebra with identity e over C with base (Ω, \mathcal{F}, P) . Then for any $x \in S$, $\sigma(x, S)$ is nonempty and $r(x) = r_p(x)$.

3 Main results and proofs

Definition 3.1. Let S be a random normed algebra, $A \in \mathcal{F}$ and f be an L^0 -linear function on S, i.e., a mapping from S to $L^0(\mathcal{F}, C)$ such that $f(\xi \cdot x + \eta \cdot y) = \xi f(x) + \eta f(y)$ for all $\xi, \eta \in L^0(\mathcal{F}, C)$ and $x, y \in S$. Then f is called multiplicative if f(xy) = f(x)f(y) for all $x, y \in S$ and is called nonzero if there exists $x \in S$ such that $[f(x) \neq 0] = \tilde{\Omega}$.

Lemma 3.1. Let *S* be a random normed algebra with identity *e*, and let *f* be an L^0 -function on *S* satisfying f(e) = 1 and $f(x^2) = f(x)^2$ for all $x \in S$. Then *f* is multiplicative.

Proof. By assumption we obtain

$$f(x^{2}) + f(xy + yx) + f(y^{2}) = f(x^{2} + xy + yx + y^{2})$$

$$= f((x + y)^{2})$$

$$= f(x + y)^{2}$$

$$= f(x)^{2} + 2f(x)f(y) + f(y)^{2},$$

and hence

$$f(xy + yx) = 2f(x)f(y)$$

for all $x, y \in S$. So it remains to verify that f(xy) = f(yx). For $a, b \in S$, the identity

$$(ab - ba)^2 + (ab + ba)^2 = 2[a(bab) + (bab)a]$$

implies

$$f(ab - ba)^{2} + 4f(a)^{2}f(b)^{2} = f((ab - ba)^{2}) + f(ab + ba)^{2}$$

$$= f((ab - ba)^{2} + (ab + ba)^{2})$$

$$= f((ab - ba)^{2} + (ab + ba)^{2})$$

$$= 2f(a(bab) + (bab)a)$$

$$= 4f(a)f(bab).$$

Taking $a = x - f(x) \cdot e$, so that f(a) = 0, and b = y we get f(ay) = f(ya) and hence f(xy) = f(yx). This completes the proof of Lemma 3.1.

The following theorem is a new version of the Gleason-Kahane-Żelazko theorem.

Theorem 3.1 Let S be an unital complete random normed algebra with identity e, and let f be an L^0 -linear function on S. Then the following conditions are equivalent.

- (1) *f* is nonzero and multiplicative.
- (2) f(e) = 1 and $f(x) \neq 0$ on \tilde{A} for any $A \in \mathcal{F}$ with P(A) > 0 and $x \in G(S, A)$.
- (3) $f(x) \in \sigma(x, S)$ for every $x \in S$.

Proof If f is multiplicative, then $f(e) = f(e^2) = f(e)f(e)$. Since f is nonzero, we have f(e) = 1 and hence $\tilde{I}_A = \tilde{I}_A f(e) = f(xx_A^{-1}) = f(x)f(x_A^{-1})$ for any $A \in \mathcal{F}$ with P(A) > 0 and $x \in G(S, A)$. Thus $(1)\Rightarrow(2)$. $(2)\Rightarrow(3)$ is clear since if $\xi \in \rho(x, S)$, then there exists $A \in \mathcal{F}$ with P(A) > 0 such that $\tilde{I}_A(\xi - f(x)) = f[\tilde{I}_A \cdot (\xi \cdot e - x)] \neq 0$ on \tilde{A} and hence $f(x) \in \sigma(x, S)$. Assume (3), then f(e) = 1 since $f(e) \in \sigma(e, S)$. Now, let f(e) = 1 and consider the random polynomial

$$p(\lambda) = f((\lambda \cdot e - x)^n)$$

of degree *n*. Therefore we can find $\lambda_i \in L^0(\mathcal{F}, C)$ ($i = 1, 2 \dots n$) such that

$$0 = p(\lambda_i) = f((\lambda_i \cdot e - x)^n) \in \sigma((\lambda_i \cdot e - x)^n, S)$$

for each λ_i . This implies that $\lambda_i \in \sigma(x, S)$ and hence $|\lambda_i| < r_p(x)$ by Lemma 2.1. Note that

$$\prod_{i=1}^{n} (\lambda - \lambda_i) = p(\lambda) = \lambda^n - nf(x)\lambda^{n-1} + C_n^2 f(x^2)\lambda^{n-2} + \dots + (-1)^n f(x^n).$$

Comparing coefficients we can see that

$$\sum_{i=1}^n \lambda_i = nf(x), \qquad \sum_{1 \le i < j \le n} \lambda_i \lambda_j = C_n^2 f(x^2).$$

On the other hand, by the second equation,

$$\left(\sum_{i=1}^{n} \lambda_{i}\right)^{2} = \sum_{i=1}^{n} \lambda_{i}^{2} + 2 \sum_{1 < i < j < n} \lambda_{i} \lambda_{j} = \sum_{i=1}^{n} \lambda_{i}^{2} + n(n-1)f(x^{2}).$$

Combining these equalities yields

$$n^{2} |f(x)^{2} - f(x^{2})| = \left| -nf(x^{2}) + \sum_{i=1}^{n} \lambda_{i}^{2} \right| \leq n |f(x)^{2}| + nr_{p}(x)^{2}.$$

Hence

$$|f(x)^2 - f(x^2)| \le \frac{1}{n} [|f(x^2)| + r_p(x)^2].$$

Letting $n \to \infty$, we then obtain $f(x^2) = f(x)^2$ for all $x \in S$. It follows from Lemma 3.1 that f is multiplicative. Clearly, f is nonzero. Thus (3) \Rightarrow (1). This completes the proof of Theorem 3.1.

Remark 3.1. When the base space (Ω, \mathcal{F}, P) of the RN module is a trivial probability space, i.e., $\mathcal{F} = \{\Omega, \emptyset\}$, the new version of the Gleason-Kahane-Żelazko theorem automatically degenerates to the classical case.

Acknowledgements

This work was supported by the NSF of China under Grant No. 10871016.

Author details

¹LMIB and School of Mathematics and Systems Science, Beihang University, Beijing 100191, P. R. China ²College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001, P. R. China

Competing interests

The author declares that they have no competing interests.

Received: 21 December 2011 Accepted: 13 April 2012 Published: 13 April 2012

References

- Gleason, AM: A characterization of maximal ideals. J Anal Math. 19, 171–172 (1967)
- Kahane, JP, Żelazko, W: A characterization of maximal ideals in commutative Banach algebras. Studia Math. 29, 339–343 (1968)
- 3. Jarosz, K: Generalizations of the Gleason-Kahane-Żelazko theorem. Rocky Mount J Math. 21(3):915–921 (1991)
- 4. Tang, YH: The Gleason-Kahane-Żelazko theorem in a complete random normed algebra. Acta Anal Funct Appl. (2011)
- 5. Tang, YH, Guo, TX: Complete random normed algebras. to appear
- 6. Dunford, N, Schwartz, JT: Linear Operators 1. Interscience. New York (1957)
- Guo, TX: Some basic theories of random normed linear spaces and random inner product spaces. Acta Anal Funct Appl. 1, 160–184 (1999)
- Guo, TX: Recent progress in random metric theory and its applications to conditional risk measures. Sci China Ser A. 54, 633–660 (2011)
- Guo, TX: Relations between some basic results derived from two kinds of topologies for a random locally convex module. J Funct Anal. 258, 3024–3047 (2010)

doi:10.1186/1029-242X-2012-85

Cite this article as: Tang: A new version of the Gleason-Kahane-Żelazko theorem in complete random normed algebras. Journal of Inequalities and Applications 2012 2012:85.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com