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Abstract

Let ψ̃ : [0, 1] → R be a concave function with ψ̃(0) = ψ̃(1) = 1. There is a
corresponding map ‖.‖ψ̃ for which the inverse Minkowski inequality holds. Several
properties of that map are obtained. Also, we consider the Beckenbach-Dresher type
inequality connected with ψ-direct sums of Banach spaces and of ordered spaces. In
the last section we investigate the properties of functions ψω,q and ∥.∥ω,q, (0 <ω < 1,
q < 1) related to the Lorentz sequence space. Other posibilities for parameters ω and
q are considered, the inverse Holder inequalities and more variants of the
Beckenbach-Dresher inequalities are obtained.
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1 Preliminaries
In the fifties of the previous century the following result was obtained:

Let 1 ≤ p ≤ 2 and xi, yi > 0, i = 1, ..., n. Then∑n
i=1 (xi + yi)

p∑n
i=1 (xi + yi)

p−1 ≤
∑n

i=1 x
p
i∑n

i=1 x
p−1
i

+

∑n
i=1 y

p
i∑n

i=1 y
p−1
i

. (1)

The above-mentioned discrete inequality was given by Beckenbach [1], and the inte-

gral version is due to Dresher [2] (see also [3]). From that time, some generalizations

of the Beckenbach-Dresher inequality (1) have appeared. Here, we are pointing out

articles of Pečarić and Beesack [4], Petree and Persson [5], Persson [6] and Varošanec

[7], where the reader can find related literature about this inequality Here we consider

inequalities of Beckenbach-Dresher type in more general structures, namely in ψ-direct

sums.

In this article we follow definitions and notations from the paper [8]. Let Ψ denote

the family of all convex functions ψ on [0, 1] with ψ(0) = ψ(1) = 1 satisfying

max{1 − t, t} ≤ ψ(t) ≤ 1, (0 ≤ t ≤ 1).

It is known (see [9]), that Ψ is in one-to-one correspondence with the set Na of all

absolute and normalized norms on C2, i.e., such that∥∥(x, y)∥∥ =
∥∥(|x| , ∣∣y∣∣)∥∥ and ∥∥(1, 0)∥∥ =

∥∥(0, 1)∥∥ = 1.
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Namely, if ∥.∥ Î Na and ψ(t) = ∥(1 - t, t)∥, then ψ Î Ψ. Conversely, if ψ Î Ψ, then

∥∥(x, y)∥∥
ψ
=

⎧⎪⎨
⎪⎩
(|x| + ∣∣y∣∣)ψ

( ∣∣y∣∣
|x| + ∣∣y∣∣

)
, (x, y) �= (0, 0),

0, (x, y) = (0, 0),

is a norm and ∥.∥ψ Î Na.

Some examples of convex functions and the corresponding norms are the following:

Example 1. The convex functions ψp(t) = [(1 − t)p + tp]
1
p, 1 ≤ p < ∞, 0 ≤ t ≤ 1, corre-

spond to lp-norms of C2. For p = ∞, the function ψ∞(t) = max{t, 1 - t}, 0 ≤ t ≤ 1, corre-

sponds to the norm l∞.

Example 2. Let

∥∥(x, y)∥∥
ω,q = (x∗q + ωy∗q)

1
q ,

where {x*, y*} is the non-increasing rearrangement of {|x|, |y|}. If 0 <ω < 1, 1 ≤ q, then

∥.∥ω, q is a norm of the two-dimensional Lorentz sequence space d(2)(ω, q), it belongs to

Na and its dual norm was computed recently in [10]. The corresponding function from

Ψ is

ψω,q(t) =

⎧⎪⎨
⎪⎩
((1 − t)q + ωtq)

1
q , if0 ≤ t ≤ 1

2
,

(tq + ω(1 − t)q)
1
q , if

1
2

≤ t ≤ 1.

If
ω = 2

q
p−1, then we get a classical Lorentz lp,q-norm.

Example 3. For a, 1/2 ≤ a ≤ 1, let us define the following function

ψα(t) =

{ α − 1
α

t + 1, 0 ≤ t ≤ α,

t, α ≤ t ≤ 1.

ψa Î Ψ and the corresponding norm is∥∥(z,w)∥∥
ψα

= max{‖z‖ + (2 − 1/α) ‖w‖ , ‖w‖}.

Example 4. Let 1 ≤ q <p ≤ ∞ and 2
1
p− 1

q < λ < 1 . Let ψp,q,l = max{ψp, lψq}. Then

the corresponding norm is ∥.∥p,q,l = max{∥.∥p, l∥.∥q}.
Example 5. Let 1/2 ≤ b ≤ 1 and let ψb(t) = max{1 - t, t, b} (note that neither ψb ≥ ψ2

nor ψb ≤ ψ2.). The corresponding norm is

∥∥(x, y)∥∥
ψβ

(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∣∣y∣∣ , |x|∣∣y∣∣ ≤ 1 − β

β
,

β ,
1 − β

β
≤ |x|∣∣y∣∣ ≤ β

1 − β
,

|x| , |x|∣∣y∣∣ ≥ β

1 − β
.

For ψ Î Ψ let ‖.‖∗
ψ denote the dual of the norm ∥.∥ψ. From [11] we have that ‖.‖∗

ψ is

an absolute normalized norm and the corresponding convex function ψ* Î Ψ is
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ψ ∗ (t) = sup
0≤s≤1

(1 − s)(1 − t) + st

ψ(s)

for t with 0 ≤ t ≤ 1. For the norms ∥.∥ψ and ‖.‖∗
ψ we have the following Hölder-type

inequality:∥∥(x1, y1)∥∥ψ

∥∥(x2, y2)∥∥ψ∗ ≥ |x1x2| +
∣∣y1y2∣∣ , (2)

where x1, x2, y1, y2 Î C.

Since the proof of Beckenbach-Dresher inequality can be obtained as an application

of the Minkowski inequality the Holder inequality and its inverse inequalities in differ-

ent cases, we are going to see what kind of such inequalities we could prove using

some ideas of ψ-direct sums. In the following section we consider a family of concave

functions �̃. We prove some properties of concave functions and the inverse Min-

kowski inequality Using these results and combining with the known results about the

family Ψ and normalized absolute norms we obtain a variant of the Beckenbach-

Dresher inequality related to those norms. In the third section we are considering Ψ-

direct sums of Banach and ordered spaces. Finally, the last section is devoted to the

two-dimensional Lorentz sequence space and its variants. There we obtain several

inequalites of the Hölder type.

2 A family �̃ of concave functions and a generalization of the Beckenbach-
Dresher inequality
Let �̃ denotes the family of all concave functions ψ̃ on [0, 1] with ψ̃(0) = ψ̃(1) = 1. Let

us define the map ‖.‖ψ̃ on C2 by

∥∥(z,w)∥∥
ψ̃
=

⎧⎨
⎩ (|z| + |w|)ψ̃

( |w|
|z| + |w|

)
, (z,w) �= (0, 0);

0 (z,w) = (0, 0).
(3)

As it is proved in the next proposition for this map ‖.‖ψ̃ the inverse Minkowski

inequality holds. For that reason we call it a pseudo-norm.

Proposition 6. Let ψ̃ be a concave function on [0, 1]. Then the inverse Minkowski

inequality holds, i.e. for u, v, z, w Î C the following is valid:∥∥(|u| + |z| , |v| + |w|)∥∥
ψ̃

≥ ∥∥(|u| , |v|)∥∥
ψ̃
+

∥∥(|z| , |w|)∥∥
ψ̃
. (4)

Proof. Using concavity of the function ψ̃ and the equality

|v| + |w|
|u| + |z| + |v| + |w| =

|u| + |v|
|u| + |z| + |v| + |w|

|v|
|u| + |v| +

|z| + |w|
|u| + |z| + |v| + |w|

|w|
|z| + |w|

we get that

∥∥(|u| + |z| , |v| + |w|)∥∥
ψ̃
= (|u| + |z| + |v| + |w|)ψ̃

( |v| + |w|
|u| + |z| + |v| + |w|

)

≥ (|u| + |v|)ψ̃
( |v|

|u| + |v|
)
+ (|z| + |w|)ψ̃

( |w|
|z| + |w|

)
=

∥∥(|u| , |v|)∥∥
ψ̃
+

∥∥(|z| , |w|)∥∥
ψ̃
.

The proof is complete.
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Our next result reads:

Proposition 7. Let ψ̃ be a concave function on [0, 1], ψ̃(t) ≥ 0. Then
ψ̃(t)
t

is non-

increasing on (0, 1] and ψ̃(t)
1 − t

is non-decreasing on [0, 1). If ψ̃(t) > 0 then the words

non-increasing and non-decreasing are replaced by decreasing and increasing,

correspondingly.

Moreover, if 0 ≤ p ≤ r, 0 ≤ q ≤ s, we have that∥∥(p, q)∥∥
ψ̃

≤ ‖r, s‖ψ̃ .

Proof. Let 0 <s <t < 1.

(1) Put p = t/s and write s =
1
p
t +

1
p′ 0 where

1
p
+
1
p′ = 1. Then, by concavity of ψ̃, we

get that

ψ̃(s) ≥ 1
p
ψ̃(t) +

1
p′ ψ̃(0) ≥ 1

p
ψ(t).

Hence ψ̃(s) ≥ s

t
ψ̃(t), i.e. ψ̃(s)

s
≥ ψ̃(t)

t
. If ψ̃(0) > 0, then the inequality is strict.

(2) Let now p =
1 − s
1 − t

. Then t =
p − 1
p

+
s
p
=

1
p′ · 1 +

1
p

· s. By concavity of ψ̃ we find

that

ψ̃(t) ≥ 1
p
ψ̃(s) +

1
p′ ψ̃(1) ≥ 1

p
ψ̃(s).

Hence ψ̃(t) ≥ 1 − t
1 − s

ψ̃(s) i.e. ψ̃(t)
1 − t

≥ ψ̃(s)
1 − s

. If ψ̃(1) > 0, then the inequality is strict.

To prove the monotonity property we proceed like in [8]. Firstly if 0 ≤ p ≤ r, 0 ≤ q ≤ s,

then

q
p + q

≥ q
r + q

and
q

r + q
≤ s

r + s
.

Using the fact that ψ̃(t)
t

is non-increasing and ψ̃(t)
1 − t

is non-decreasing we obtain that

∥∥(p, q)∥∥
ψ̃
= (p + q)ψ̃

(
q

p + q

)
= q ·

ψ̃

(
q

p + q

)
q

p + q

≤ q ·
ψ̃

(
q

r + q

)
q

r + q

= (r + q)ψ̃
(

q

r + q

)

= r ·
ψ̃

(
q

r + q

)
r

r + q

≤ r ·
ψ̃

( s

s + r

)
r

s + r

= (r + s)ψ̃
( s

r + s

)
=

∥∥(r, s)∥∥
ψ̃
.

The proof is complete.

Let ψ ∈ �̃. Denote

ψ∗(t) = inf
0≤s≤1

(1 − s)(1 − t) + st

ψ(s)
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for 0 ≤ t ≤ 1. The corresponding map ‖.‖ψ∗ is defined by (3). Using similar arguments

as in [10] we can prove the following:

Proposition 8. Let ψ ∈ �̃ be symmetric with respect to t = 1/2. Then ψ* is symmetric

with respect to t =
1
2
. Moreover,

ψ∗(t) = inf
0≤s≤ 1

2

(1 − s)(1 − t) + st

ψ(s)

for all t with
1
2

≤ t ≤ 1.

The following inverse Hölder-type inequality holds:

Proposition 9. Let x1, x2, y1, y2 Î C. If ψ ∈ �̃, then∥∥(x1, y1)∥∥ψ

∥∥(x2, y2)∥∥ψ∗
≤ |x1x2| +

∣∣y1y2∣∣ . (5)

Proof. From the definition of the function ψ* we get that

(1 − s)(1 − t) + st ≥ ψ(s)ψ∗(t).

Putting in that inequality s =

∣∣y1∣∣
|x1| +

∣∣y1∣∣ , t =
∣∣y2∣∣

|x2| +
∣∣y2∣∣ and using formula (3) we get (5).

Example 10. Let 0 < p < 1. The function ψp belongs to �̃ and the related function ψ*

is ψq, where
1
p
+
1
q
= 1. In this case inequality (5) has a form

|x1| |x2| +
∣∣y1∣∣ ∣∣y2∣∣ ≥ (|x1|p + |x2|p)

1
p (

∣∣y1∣∣q + ∣∣y2∣∣q) 1q
which is the reversed Hölder inequality in the simplest form, see e.g., [12, p. 99].

The following result is a variant of the Beckenbach-Dresher inequality, obtained by

using the inverse Holder inequality of the concrete space l1/u, the Minkowski inequality

for the norm ∥.∥ψ and the inverse Minkowski inequality (4).

Theorem 11. Let ψ ∈ �, ψ̃ ∈ �̃. Let f1 = (a11, a
1
2), f2 = (a21, a

2
2), g1 = (

∣∣b11∣∣ , ∣∣b12∣∣), g2 = (
∣∣b21∣∣ , ∣∣b22∣∣)

where aji, b
j
i ∈ C, i, j = 1, 2 and let

∥∥g1∥∥ψ̃
�= 0,

∥∥g2∥∥ψ̃
�= 0.

If u ≥ 1, then∥∥f1 + f2
∥∥u

ψ∥∥g1 + g2
∥∥u−1

ψ̃

≤
∥∥f1∥∥u

ψ∥∥g1∥∥u−1
ψ̃

+

∥∥f2∥∥uψ∥∥g2∥∥u−1
ψ̃

.

The inequality holds also when u < 0,ψ ∈ �̃, ψ̃ ∈ �. If 0 < u < 1,ψ ∈ �̃, ψ̃ ∈ �̃,

then the inequality holds in the opposite direction.

Proof. To prove this inequality in the first case we use the Minkowski inequality for

the norm ∥.∥ψ, the inverse Minkowski inequality (4) for the pseudo-norm ‖.‖ψ̃ and the

inverse Hölder inequality for the l1/u-norm:∥∥f1 + f2
∥∥u

ψ∥∥g1 + g2
∥∥u−1

ψ̃

≤ (
∥∥f1∥∥ψ

+
∥∥f2∥∥ψ

)u(
∥∥g1∥∥ψ̃

+
∥∥g2∥∥ψ̃

)1−u

≤ ∥∥f1∥∥uψ ∥∥g1∥∥1−u
ψ̃

+
∥∥f2∥∥uψ ∥∥g2∥∥1−u

ψ̃
=

∥∥f1∥∥uψ∥∥g1∥∥u−1
ψ̃

+

∥∥f2∥∥uψ∥∥g2∥∥u−1
ψ̃

.

Nikolova et al. Journal of Inequalities and Applications 2012, 2012:7
http://www.journalofinequalitiesandapplications.com/content/2012/1/7

Page 5 of 14



Remark 12. Note that if
∣∣a11∣∣ = x1,

∣∣a12∣∣ = x2,
∣∣a21∣∣ = y1,

∣∣a22∣∣ = y2, g1 = f1, g2 = f2, u = p,ψ = ψp, ψ̃ =
ψp−1, 1 ≤ p ≤ 2

we get the classical Beckenbach inequality (1) for n = 2.

3 Ψ-Direct sums of spaces and some more generalizations of the
Beckenbach-Dresher inequality
The ψ-direct sum X ⊕ψ Y of the Banach spaces X and Y is a direct sum X ⊕ψ Y

equipped with the norm ∥(x, y)∥ψ = ∥(∥x∥X, ∥y∥Y)∥ψ. This extends the notion of the lp-

sum X ⊕p Y. Recently various geometric properties of ψ- direct sums have been inves-

tigated by many authors [11,13-18].

In the ψ-direct sum X ⊕ψ Y of Banach spaces the Minkowski inequality holds, i.e.,

we have the following:

Let A and C be Banach spaces and let f1 = (a11, a
1
2), f2 = (a21, a

2
2), a

i
1 ∈ A, ai2 ∈ C, i = 1, 2.

Then ∥∥f1 + f2
∥∥
A⊕ψC

≤ ∥∥f1∥∥A⊕ψC
+

∥∥f2∥∥A⊕ψC
.

Let us improve that idea to the sum of ordered spaces.

Let B and D be ordered spaces equiped with pseudo-norms ∥.∥B and ∥.∥D and let

g1 = (
∣∣b11∣∣ , ∣∣b12∣∣), g2 = (

∣∣b21∣∣ , ∣∣b22 )∣∣ , bi1 ∈ B, bi2 ∈ D, i = 1, 2. That means that in B and D

the inverse Minkowski inequality holds, i.e.,∥∥∣∣b11∣∣ + ∣∣b21∣∣∥∥B ≥ ∥∥b11∥∥B + ∥∥b21∥∥B, ∥∥∣∣b12∣∣ + ∣∣b22∣∣∥∥D ≥ ∥∥b12∥∥D +
∥∥b22∥∥D.

Let ψ̃ be a concave function from �̃. Let us define
B⊕ψ̃D. B⊕ψ̃D is called ψ̃-direct sum of spaces B and D. Using monotonicity of the

pseudo-norm ‖.‖�̃ generated by the function ψ̃ and the fact that the inverse Minkowski

inequality holds for this pseudo-norm, we get the following estimates for the ψ̃-direct

sum: ∥∥g1 + g2
∥∥
B⊕ψ̃D

=
∥∥(∥∥∣∣b11∣∣ + ∣∣b21∣∣∥∥B, ∥∥∣∣b12∣∣ + ∣∣b22∣∣∥∥D)∥∥ψ̃

≥ ∥∥(∥∥b11∥∥B + ∥∥b21∥∥B, ∥∥b12∥∥D +
∥∥b22∥∥D)∥∥ψ̃

=
∥∥(∥∥b11∥∥B, ∥∥b12∥∥D) + (

∥∥b21∥∥B,
∥∥b22∥∥D)∥∥ψ̃

≥ ∥∥(∥∥b11∥∥B, ∥∥b12∥∥D)
∥∥

ψ̃
+

∥∥(∥∥b21∥∥B,
∥∥b22∥∥D)∥∥ψ̃

=
∥∥g1∥∥B⊕ψ̃D

+
∥∥g2∥∥B⊕ψ̃D

.

So we have showed that when ψ̃ ∈ �̃ and the inverse Minkowski inequality holds in

B and D, then this inequality holds also for the pseudo-norm of B⊕ψ̃D.

Our next result is the following inequalities of the Beckenbach-Dresher type:

Theorem 13. Let ψ ∈ �, ψ̃ ∈ �̃ and A, C be Banach spaces, B, D ordered spaces

such that the inverse Minkowski inequality holds. Let

f1 = (a11, a
1
2), f2 = (a21, a

2
2), g1 = (

∣∣b11∣∣ , ∣∣b12∣∣), g2 = (
∣∣b21∣∣ , ∣∣b22∣∣), ∥∥g1∥∥ψ̃

�= 0,
∥∥g2∥∥ψ̃

�= 0, for

ai1 ∈ A, ai2 ∈ C, bi1 ∈ B, bi2 ∈ D, i = 1, 2. If u ≥ 1, then∥∥f1 + f2
∥∥u
A⊕ψC∥∥g1 + g2

∥∥u−1
B⊕ψ̃D

≤
∥∥f1∥∥uA⊕ψC∥∥g1∥∥u−1

B⊕ψ̃D

+

∥∥f2∥∥uA⊕ψC∥∥g2∥∥u−1
B⊕ψ̃D

.

Proof. The proof is similar to the proof of Theorem 11 so we omit the details.

Remark 14. If u < 1, the analogue result can be considered.
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If g1 = f1, g2 = f2, u = p,ψ = ψp, ψ̃ = ψp−1, 1 ≤ p ≤ 2, then we get that∥∥a11 + a21
∥∥p
A +

∥∥a12 + a22
∥∥p
C∥∥∣∣b11∣∣ + ∣∣b21∣∣∥∥p−1

B +
∥∥∣∣b12∣∣ + ∣∣b22∣∣∥∥p−1

D

≤
∥∥a11∥∥p

A +
∥∥a12∥∥pC∥∥b11∥∥p−1

B +
∥∥b12∥∥p−1

D

+

∥∥a21∥∥pA +
∥∥a22∥∥pC∥∥b21∥∥p−1

B +
∥∥b12∥∥p−1

D

.

Note that if we take A = B = C = D = R and put∣∣a11∣∣ = x1,
∣∣a12∣∣ = x2,

∣∣a21∣∣ = y1,
∣∣a22∣∣ = y2 then we get the classical Beckenbach inequality

(1) for n = 2.

A natural question arises : can we get some similar generalization of Beckenbach-

Dresher inequality for n > 2?

We use the construction from [19]. Let Δn be a set Δn = {(s1, ..., sn-1) Î Rn-1 : s1 + ...

+ sn-1 ≤ 1, si ≥ 0, 1 ≤ i ≤ n - 1}. In [19] the authors considered the family Ψn of all con-

tinuous convex functions ψ on Δn which satisfy:

ψ(0, 0, . . . , 0) = ψ(0, 1, 0, . . . , 0) = · · · = ψ(0, 0, . . . , 0, 1) = 1. (6)

ψ(s1, . . . , sn−1) ≥ (s1 + · · · + sn−1)ψ
(

s1
s1 + · · · + sn−1

, . . . ,
sn−1

s1 + · · · + sn−1

)

ψ(s1, . . . , sn−1) ≥ (1 − sk)ψ
(

s1
1 − sk

, . . . ,
sk−1

1 − sk
, 0,

sk+1
1 − sk

, . . . ,
sn−1

1 − sk

)

for k = 1, ..., n - 1. They showed that the family ANn of all absolute normalized

norms on Cn and the family Ψn are in one-to-one correspondence: if ∥.∥ Î ANn, then

ψ(s1, . . . , sn−1) =‖ (1 −
n−1∑
i=1

si, s1, . . . , sn−1) ‖

belongs to Ψn and for given ψ Î Ψn the following norm ∥.∥ψ belongs to ANn:

∥∥(z1, . . . , zn)∥∥ψ
= (|z1| + . . . + |zn|)ψ

( |z2|
|z1| + . . . + |zn| , . . . ,

|zn|
|z1| + . . . + |zn|

)
(7)

if (z1, ..., zn) ≠ (0, ..., 0) and ∥(0, ..., 0)∥ψ = 0.

The set �̃n is defined as a set of all positive continuous concave functions ψ̃ on Δn,

which satisfy condition (6).

Let us define the pseudo-norm ‖.‖ψ̃ by the formula given in (7). Consider for simpli-

city the case n = 3. If the function ψ̃ is concave it is not difficult to prove using the

same idea as in Proposition 7, that, for l > 1, it yields that

ψ̃(s, t)
s

≥ ψ̃(λs,λt)
λs

and
ψ̃(s, t)
1 − s

≥ ψ̃(λs,λt)
1 − λs

.

In the same way as it was done in Propositions 6 and 7 we can prove monotonicity

of the pseudonorm and the inverse Minkowski inequality∥∥∣∣(|x1| , ∣∣y1∣∣ , |z1|) + (|x2| ,
∣∣y2∣∣ , |z2|)∥∥ψ̃

≥ ∥∥∣∣(|x1| , ∣∣y1∣∣ , |z1|)∥∥ψ̃
+
∥∥∣∣((|x2| , ∣∣y2∣∣ , |z2|)∥∥ψ̃

.

As above we could prove that if B1, ..., Bn have inverse Minkowski property and

ψ̃ ∈ �̃n, then (B1 ⊕ B2 ⊕ . . . ⊕ Bn)ψ̃ would have inverse Minkowski property. So we

can state the following generalization of the previous Theorem:
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Theorem 15. Let ψ ∈ �n, ψ̃ ∈ �̃n and A1, A2, ..., An be Banach spaces, B1, B2, ..., Bn

be ordered spaces in which the inverse Minkowski inequality hold. Let
f1 = (a11, a

1
2, . . . a

1
n), f2 = (a21, a

2
2, . . . , a

2
n), g1 = (

∣∣b11∣∣ , ∣∣b12∣∣ , . . . , ∣∣b1n∣∣), g2 = (
∣∣b21∣∣ , ∣∣b22∣∣ , . . . , ∣∣b2n∣∣), ∥∥g1∥∥ψ̃

�=
0,

∥∥g2∥∥ψ̃
�= 0 , where

a1i , a
2
i ∈ Ai, b1i , b

2
i ∈ Bi for i = 1, 2, ..., n. If u ≥ 1, then∥∥f1 + f2

∥∥u
(A1⊕A2⊕...⊕An)ψ∥∥g1 + g2

∥∥u−1
(B1⊕B2⊕...⊕Bn)ψ̃

≤
∥∥f1∥∥u(A1⊕A2⊕...⊕An)ψ∥∥g1∥∥u−1

(B1⊕B2⊕...⊕Bn)ψ̃

+

∥∥f2∥∥u(A1⊕A2⊕...⊕Bn)ψ∥∥g2∥∥u−1
(B1⊕B2⊕...⊕Bn)ψ̃

.

Proof. The proof is completely similar as that before, so we leave out the details.

4 Norm of the Lorentz sequence space and its variants
Let us consider two-dimensional Lorentz sequence space d(2)(ω, q), where 0 < ω < 1, 1

≤ q. It is R2 with the norm

∥∥(x, y)∥∥
ω,q = (x∗q + ωy∗q)

1
q .

The corresponding convex function is

ψω,q(t) =

⎧⎪⎨
⎪⎩
((1 − t)q + ωtq)

1
q , 0 ≤ t ≤ 1

2
,

(tq + ω(1 − t)q)
1
q ,

1
2

≤ t ≤ 1.

The dual norm of d(2)(ω, q) is completely determined by Mitani and Saito in [10] by

finding the corresponding function ψ∗
ω,q. Namely, if 0 < ω < 1 and 1 < q < ∞, then we

have that

ψ∗
ω,q(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((1 − t)p + ω1−ptp)
1
p , 0 ≤ t ≤ ω

1 + ω
,

(1 + ω)
1
p −1

,
ω

1 + ω
≤ t ≤ 1

1 + ω
,

(tp + ω1−p((1 − t)p)
1
p ,

1
1 + ω

≤ t ≤ 1,

where
1
p
+
1
q
= 1. The dual norm is equal to

∥∥(x, y)∥∥∗
ω,q =

∥∥(x, y)∥∥
ψ∗

ω,q
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(|x|p + ω1−p

∣∣y∣∣p) 1p , ω |x| ≥ ∣∣y∣∣ ,
(1 + ω)

1
p−1

(|x| + ∣∣y∣∣), ω |x| ≤ ∣∣y∣∣ ≤ ω−1 |x| ,
(
∣∣y∣∣p + ω1−p|x|p)

1
p , ω−1 |x| ≤ ∣∣y∣∣ .

If 0 <ω < 1 and q = 1, then

ψ∗
ω,1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − t, 0 ≤ t ≤ ω

1 + ω
,

1
1 + ω

,
ω

1 + ω
≤ t ≤ 1

1 + ω
,

t,
1

1 + ω
≤ t ≤ 1,
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and

∥∥(x, y)∥∥∗
ω,1 =

∥∥(x, y)∥∥
ψ∗

ω,q
=

⎧⎪⎨
⎪⎩

|x| , ω |x| ≥ ∣∣y∣∣ ,
1

1 + ω
(|x| + ∣∣y∣∣), ω |x| ≤ ∣∣y∣∣ ≤ ω−1 |x| ,∣∣y∣∣ , ω−1 |x| ≤ ∣∣y∣∣ .

If 0 <q < 1, ω > 1, then ψω,q is a concave function from �̃ and we have the inverse Min-

kowski inequality for the corresponding pseudo-norm. Indeed, if 0 ≤ t ≤ 1/2, then the

function is increasing and concave; if 1/2 ≤ t ≤ 1, then it is decreasing and concave (which

can be shown by finding the first and second derivatives). Let 0 ≤ t1 ≤ 1/2 ≤ t2 ≤ 1. Con-

sider the line connecting the points (t1, ψω,q(t1)) and (t2, ψω,q(t2)). For the concavity it is

enough to show that the graph of the function is above this line. In fact, this is the case,

because if we consider for instance t1 ≤ t ≤ 1/2, then (because of concavity on this interval)

the graph is above the line connecting the points (t1, ψω,q(t1)) and (1/2, ψω,q(1/2)).

Lemma 1 from [20] for the case 1 ≤ q < ∞, 0 <ω ≤ 1 asserts that

(
ω + 1
2

) 1
q ‖a‖q ≤ ‖a‖ω,q ≤ ‖a‖q (8)

for all a Î R2. It is easy to obtain similar result for other posibilities of parameters q

and ω. For example the following holds:

Lemma 16. If ω ≥ 1 and q > 0, then

‖a‖q ≤ ‖a‖ω,q ≤
(

ω + 1
2

)1
q ‖a‖q (9)

for all a Î R2.

Our next result reads:

Theorem 17. Let a, b Î R2. Then the following inequality holds

‖a + b‖ω,q ≤ C
(‖a‖ω,q + ‖b‖ω,q

)
, (10)

where

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, q ≥ 1, 0 < ω ≤ 1,(
ω + 1
2

) 1
q
, q ≥ 1, 1 ≤ ω,

1
2

(
4

ω + 1

) 1
q
, 0 < q < 1, 0 < ω ≤ 1,

1
2
(ω + 1)

1
q , 0 < q < 1, ω ≥ 1.

Proof. If q ≥ 1, 0 < ω ≤ 1, then Kato and Maligranda proved that C = 1 in [20].

Let q ≥ 1, 1 ≤ ω. Using (9) and the Minkowski inequality for the norm ∥.∥q we have

that

‖a + b‖ω,q ≤
(

ω + 1
2

) 1
q ‖a + b‖q ≤

(
ω + 1
2

)1
q
(‖a‖q + ‖b‖q)

≤
(

ω + 1
2

) 1
q
(‖a‖ω,q + ‖b‖ω,q).
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Let 0 <q < 1, 0 <ω ≤ 1. Using inequality between means of order q and 1 and super-

additivity of the function f(s) = sq we have the following:

2‖a + b‖q = 2((a1 + b1)q + (a2 + b2)q)
1
q ≤ (2(a1 + b1 + a2 + b2)q)

1
q

≤ 2
1
q

(
(aq1 + a2)

1
q + (bq1 + bq2)

1
q

)
= 2

1
q (‖a‖q + ‖b‖q),

where a = (a1, a2) and b = (b1, b2).

Combining the inequality ‖a + b‖q ≤ 2
1
q−1

(‖a‖q + ‖b‖q) and (8) we get that

‖a + b‖ω,q ≤ ‖a + b‖q ≤ 2
1
q−1

(‖a‖q + ‖b‖q)

≤ 2
1
q−1

(
2

ω + 1

)1
q
(‖a‖ω,q + ‖b‖ω,q)

=
1
2

(
4

ω + 1

)1
q
(‖a‖ω,q + ‖b‖ω,q).

Finally, let 0 <q < 1, ω ≥ 1. Using the above-proved inequality and (9) we have that

‖a + b‖ω,q ≤
(

ω + 1
2

) 1
q ‖a + b‖q ≤ 2

1
q −1

(
ω + 1
2

)1
q
(‖a‖q + ‖b‖q)

≤ 1
2
(ω + 1)

1
q (‖a‖ω,q + ‖b‖ ω, q).

The proof is complete.

Remark 18. For the second case we see that the quasi-norm constant C is less than or

equal to ((ω + 1)/2)
1
q . We will compare with the result from [21], Proposition 1, where

ω = 2
q
p−1

, q > q ≥ 1 and the quasi-norm constant is 2
1
p. Since ((ω + 1)/2)

1
q < 2

1
p we

see that quasi-norm constant C obtained in this theorem is strictly less than the known

constant for that case.

Remark 19. As we already mentioned, the norm of dual space of the space d(2)(ω, q),

q ≥ 1, 0 <ω ≤ 1, is given in [10].

In the next part of this section we calculate the function ψ*ω, q for 0 <q < 1 and 1 ≤

ω and the corresponding mapping ‖.‖ψ∗. Using those results we obtain examples of the

inverse Holder inequality, and get some new variations of the Beckenbach-Dresher

inequality.

Proposition 20. If 0 <q < 1, 1 ≤ ω, then

ψ∗ω,q(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(tp + ω1−p(1 − t)p)
1
p , 0 < t ≤ 1

ω + 1
,

(1 + ω)
1
p−1

,
1

ω + 1
≤ t ≤ ω

ω + 1
,

((1 − t)p + ω1−ptp)
1
p ,

ω

ω + 1
≤ t < 1,

where
1
p
+
1
q
= 1.
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Proof. We consider the function

f (s) = f (s, t) =
(1 − s)(1 − t) + st

ψω,q(s)

for fixed t. Let first t ∈
[
1
2
, 1

)
. Here ψ∗ω,q(t) = min

s∈[0, 12 ]
f (s).

The derivative of f is

f ′(s) = ((1 − s)q + ωsq)
−1
q−1

((1 − s)q−1t − ωsq−1(1 − t))

and f’(s0) = 0 when

s0 =
tp−1

tp−1 + ωp−1(1 − t)p−1 .

If
ω

ω + 1
≤ t ≤ 1, then 0 ≤ s0 ≤ 1/2. Therefore it is easy to see that the function f

attains its minimum at s = s0 i.e.,

ψ∗ω,q(t) = f (s0) =
(1 − s0)(1 − t) + s0t

((1 − s0)
q + ωsq0)

1
q

= ((1 − t)p + ω1−ptp)
1
p .

If 1/2 ≤ t ≤ ω

ω + 1
, then s0 ≥ 1/2. Hence the minimum of f is at s = 1/2 i.e.,

ψ∗ω,q(t) = f
(1
2

)
= (1 + ω)

1
p−1.

Having in mind the symmetry of the function ψ∗ω,q(t) we can end the proof.

In the previous Proposition we consider t Î (0, 1) since for q Î (0, 1) p is negative.

But, it is easy to see that ψ∗ω,q(0) = ψ∗ω,q(1) = 1.

Proposition 21. If 0 <q ≤ 1, 1 ≤ ω, then

∥∥(x, y)∥∥ψ∗ω,q =

⎧⎪⎪⎨
⎪⎪⎩

(y∗p + ω(1−p)x∗p)
1
p

x∗
y∗ ≥ ω,

(ω + 1)
1
p −1

(|x| + ∣∣y∣∣) x∗
y∗ ≤ ω.

Proof. Let x* ≥ ωy*. Without loosing of generality, put x* = |x|. This means that |x|

≥ ω|y|, and then t =

∣∣y∣∣
|x| + ∣∣y∣∣ ≤

∣∣y∣∣
ω

∣∣y∣∣ + ∣∣y∣∣ =
1

1 + ω
and

∥∥(x, y)∥∥
ψ∗ω,q

= (|x| + ∣∣y∣∣)
( ∣∣y∣∣p
(|x| + ∣∣y∣∣)p + ω(1−p) |x|p

(|x| + ∣∣y∣∣)p
) 1

p

= (
∣∣y∣∣p + ω(1−p)|x|p)

1
p = (y∗p + ω(1−p)x∗p)

1
p .

The case when x* = |y| is quite analogue. Let x* ≤ ωy*. Let for instance x* = |x| i.e., |

y| ≤ |x| ≤ ω|y|. Then
1
2

≥ t =

∣∣y∣∣
|x| + ∣∣y∣∣ ≥

∣∣y∣∣
ω

∣∣y∣∣ + ∣∣y∣∣ =
1

1 + ω
and

∥∥(x, y)∥∥
ψ∗ω,q

= (ω + 1)
1
p−1

(|x| + ∣∣y∣∣).
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Using the inverse Hölder inequality we obtain the following Corollary:

Corollary 22. Let 0 <q ≤ 1, 1 ≤ ω, x1, x2, y1, y2 > 0.

If
x∗
2

y∗2
≥ ω, we have that

(x∗q
1 + ωy∗q1 )

1
q (y∗p2 + ω(1−p)x∗p

2 )
1
p ≤ x1x2 + y1y2.

If
x∗
2

y∗2
≤ ω , we find that

(x∗q
1 + ωy∗q1 )

1
q (ω + 1)

1
p−1

(|x2| +
∣∣y2∣∣) ≤ x1x2 + y1y2.

Let fi, gi be as in Theorem 13, let f ∗
1 , f

∗
2 be such that f ∗

1 = f1 if ∥f1∥ψ ≥ ∥f2∥ψ and f ∗
1 = f2

if ∥f1∥ψ ≤ ∥f2∥ψ. Moreover, let g∗
1, g

∗
2 be such that g∗

1 = g1 if
∥∥g1∥∥ψ̃

≥ ∥∥g2∥∥ψ̃
, g∗

1 = g2 if∥∥g1∥∥ψ̃
≤ ∥∥g2∥∥ψ̃. Hence

∥∥g∗
1

∥∥
ψ̃

≥ ∥∥g∗
2

∥∥
ψ̃.

We state the following new variant of the Beckenbach-Dresher inequality:

Theorem 23. Let u ≥ 1, 1 ≤ ω. Let ψ ∈ �, ψ̃ ∈ �̃, fi, gi be as in Theorem 13 and∥∥g∗
1

∥∥
ψ̃

≥ ω
1

u−1
∥∥g∗

2

∥∥
ψ̃

> 0. Then

∥∥f ∗
1 + ωf ∗

2

∥∥u
ψ∥∥∥∥g∗

1 + ω
u

u−1 g∗
2

∥∥∥∥
u−1

ψ̃

≤
∥∥f1∥∥uψ∥∥g1∥∥u−1

ψ̃

+

∥∥f2∥∥uψ∥∥g2∥∥u−1
ψ̃

.

Proof. Using the Minkowski inequality for the norm ∥.∥ψ, inverse Minkowski

inequality for ‖.‖ψ̃ and inverse Hölder inequality i.e., previous corollary for∥∥f ∗
1 + ωf ∗

2

∥∥u
ψ∥∥∥∥g∗

1 + ω
u

u−1 g∗
2

∥∥∥∥
u−1

ψ̃

≤ (
∥∥f ∗

1

∥∥
ψ
+ ω

∥∥f ∗
2

∥∥
ψ
)u(

∥∥g∗
1

∥∥
ψ̃
+ ω

u
u−1

∥∥g∗
2

∥∥
ψ̃
)1−u = (x∗q

1 + ωy∗q1 )
1
q (y∗p2 + ω(1−p)x∗p

2 )
1
p

≤ x1x2 + y1y2 =
∥∥f1∥∥uψ ∥∥g1∥∥1−u

ψ̃
+

∥∥f2∥∥uψ̃ ∥∥g2∥∥1−u
ψ̃

=

∥∥f1∥∥uψ∥∥g1∥∥u−1
ψ̃

+

∥∥f2∥∥uψ∥∥g2∥∥u−1
ψ̃

.

:

∥∥f ∗
1 + ωf ∗

2

∥∥u
ψ∥∥∥∥g∗

1 + ω
u

u−1 g∗
2

∥∥∥∥
u−1

ψ̃

≤ (
∥∥f ∗

1

∥∥
ψ
+ ω

∥∥f ∗
2

∥∥
ψ
)u(

∥∥g∗
1

∥∥
ψ̃
+ ω

u
u−1

∥∥g∗
2

∥∥
ψ̃
)1−u = (x∗q

1 + ωy∗q1 )
1
q (y∗p2 + ω(1−p)x∗p

2 )
1
p

≤ x1x2 + y1y2 =
∥∥f1∥∥uψ ∥∥g1∥∥1−u

ψ̃
+

∥∥f2∥∥uψ̃ ∥∥g2∥∥1−u
ψ̃

=

∥∥f1∥∥uψ∥∥g1∥∥u−1
ψ̃

+

∥∥f2∥∥uψ∥∥g2∥∥u−1
ψ̃

.

Remark 24. Let u ≥ 1, 1 ≤ ω. Let ψ ∈ �, ψ̃ ∈ �̃ and 0 <
∥∥g∗

1

∥∥
ψ̃

≤ ω
1

u−1
∥∥g∗

2

∥∥
ψ̃
. Then

∥∥f ∗
1 + ωf ∗

2

∥∥u
ψ

(∥∥g1∥∥1−u
ψ̃

+
∥∥g2∥∥1−u

ψ̃

)
(ω + 1)−u ≤

∥∥f1∥∥uψ∥∥g1∥∥u−1
ψ̃

+

∥∥f2∥∥uψ∥∥g2∥∥u−1
ψ̃

.

We get this by replacing x2, y2 in the above corollary by x2 =
∥∥g1∥∥1−u

ψ̃
y2 =

∥∥g2∥∥1−u
ψ̃

. If

we use the inequality
(
aα + bα

2

)1
α ≤ a + b

2
,α = 1 − u ≤ 0 < 1 we get that

(
∥∥g1∥∥1−u

ψ̃
+
∥∥g2∥∥1−u

ψ̃
)(ω + 1)−u ≥ (

∥∥g1∥∥ψ̃
+

∥∥g2∥∥ψ̃
)1−u2u(ω + 1)−u ≥ ∥∥g1 + g2

∥∥1−u
ψ̃

2u(ω + 1)−u.
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Remark 25. For the case
∥∥g∗

1

∥∥
ψ̃

≤ ω
1

u−1
∥∥g∗

2

∥∥
ψ̃
we get another variant of the Becken-

bach-Dresher inequality, namely∥∥f ∗
1 + ωf ∗

2

∥∥u
ψ∥∥g1 + g2

∥∥u−1
ψ̃

(
2

ω + 1

)u

≤
∥∥f1∥∥uψ∥∥g1∥∥u−1

ψ̃

+

∥∥f2∥∥uψ∥∥g2∥∥u−1
ψ̃

.

Remark 26. The cases u < 0,ψ ∈ �̃, ψ̃ ∈ � and u < 1,ψ ∈ �̃, ψ̃ ∈ �̃ can be treated

in a similar way.

For the case q ≥ 1, 0 <ω ≤ 1, ∥.∥ω,q is a norm, so we have the Minkowski and the

Hölder inequality (2).

For the case q ≤ 1, ω ≤ 1we have Minkowski inequality with constant 1
2
(ω + 1)

1
q,

inverse Minkowski, and inverse Holder inequalities.

For the case q ≥ 1, 1 ≤ ω, we have Minkowski inequality with constant ((ω + 1)/2)
1
q.

The function ψω,q is not convex. It has relative minimums at the points t0 and t1. We

could try to improve it constructing a convex function changing it on the interval (t0,

t1) by replacing it by a constant equal to ψω,q(t0) = ψω,q(t1). The corresponding norm is

a norm indeed, but some calculations show that actually this is not a new norm, but

the norm
∥∥(x, y)∥∥∗

ω1−p ,p =
∥∥(x, y)∥∥

ψ∗
ω1−p ,p

.

For the case q ≤ 1, 0 <ω ≤ 1, we have the Minkowski inequality with constant
1
2
(4/(ω + 1))1/q. The function ψω,q is not concave. It has relative maximum at the

points t0 and t1. We can improve it constructing a concave function, namely changing

it on the interval (t0, t1) by replacing it by a constant equal to ψω,q(t0) = ψω,q(t1). The

new function is

ψc,ω,q(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

((1 − t)q + ωtq)
1
q , 0 ≤ t ≤ 1

1 + ωp−1
,

ω
1
q

(1 + ωp−1)
1
p

,
1

1 + ωp−1
≤ t ≤ ωp−1

1 + ωp−1
,

(tq + ω(1 − t)q)
1
q ,

ωp−1

1 + ωp−1
≤ t ≤ 1,

where
1
p
+
1
q
= 1, and

∥∥(x, y)∥∥c,ω,q =
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(|x|ω + ω

∣∣y∣∣q) 1q , ωp−1 |x| ≥ ∣∣y∣∣ ,
ω

(1 + ωp−1)q−1 (|x| +
∣∣y∣∣), ω1−1 |x| ≤ ∣∣y∣∣ ≤ ωp−1 |x| ,

(
∣∣y∣∣q + ω|x|q)

1
q , ωp−1 |x| ≤ ∣∣y∣∣ .

Remark 27. Analogous results connected to the function ψp,q,l are given in the article

[22].
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