RESEARCH

Open Access

On (λ, μ) -anti-fuzzy subgroups

Yuming Feng^{1*} and Bingxue Yao²

* Correspondence: yumingfeng25928@163.com ¹School of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, People's Republic of China Full list of author information is available at the end of the article

Abstract

We introduced the notions of (λ, μ) -anti-fuzzy subgroups, studied some properties of them and discussed the product of them.

Keywords: product, (λ, μ) -fuzzy, subgroup, ideal

1 Introduction and preliminaries

Fuzzy sets was first introduced by Zadeh [1] and then the fuzzy sets have been used in the reconsideration of classical mathematics. Yuan et al. [2] introduced the concept of fuzzy subgroup with thresholds. A fuzzy subgroup with thresholds λ and μ is also called a (λ , μ)-fuzzy subgroup. Yao continued to research (λ , μ)-fuzzy normal subgroups, (λ , μ)-fuzzy quotient subgroups and (λ , μ)-fuzzy subrings in [3-5].

Shen researched anti-fuzzy subgroups in [6] and Dong [7] studied the product of anti-fuzzy subgroups.

By a fuzzy subset of a nonempty set *X* we mean a mapping from *X* to the unit interval 0[1]. If *A* is a fuzzy subset of *X*, then we denote $A_{(\alpha)} = \{x \in X | A(x) < \alpha\}$ for all $\alpha \in 0[1]$.

Throughout this article, we will always assume that $0 \le \lambda < \mu \le 1$.

Let G, G_1 , and G_2 always denote groups in the following. 1, 1_1 , and 1_2 are identities of G, G_1 , and G_2 , respectively.

2 (λ , μ)-anti-fuzzy subgroups

Definition 1. A fuzzy set A of a group G is called a (λ, μ) -anti-fuzzy subgroup of G if $\forall a, b, c \in G$.

$$A(ab) \wedge \mu \leq (A(a) \vee A(b)) \vee \lambda$$

and

 $A(c^{-1}) \wedge \mu \leq A(c) \vee \lambda$

where c^{-1} is the inverse element of c.

Proposition 1. If A is a (λ, μ) -anti-fuzzy subgroup of a group G, then $A(1) \land \mu \leq A(x)$ $\lor \lambda$ for all $\varkappa \in G$, where 1 is the identity of G.

Proof. $\forall x \in G$ and let x^{-1} be the inverse element of x. Then $A(1) \land \mu = A(xx^{-1}) \land \mu = (A(xx^{-1}) \land \mu) \land \mu \leq ((A(x) \lor A(x^{-1})) \lor \lambda) \land \mu = (A(x) \land \mu) \lor (A(x^{-1}) \land \mu) \lor (\lambda \land \mu) \leq A$ (x) $\lor (A(x) \lor \lambda) \lor \lambda = A(x) \lor \lambda$.

Theorem 1. Let A be a fuzzy subset of a group G. Then A is a (λ, μ) -anti-fuzzy subgroup of G if and only if $A(x^{-1}y) \land \mu \leq (A(x) \lor A(y)) \lor \lambda, \forall x, y \in G$.

© 2012 Feng and Yao; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Proof. Let A is a (λ, μ) -anti-fuzzy subgroup of G, then

$$\begin{aligned} A(x^{-1}\gamma) \wedge \mu &= A(x^{-1}\gamma) \wedge \mu \wedge \mu \\ &\leq \left((A(x^{-1}) \vee A(\gamma)) \vee \lambda \right) \wedge \mu \\ &= (A(x^{-1}) \wedge \mu \vee A(\gamma)) \vee (\lambda \wedge \mu) \\ &\leq \left((A(x) \vee \lambda) \vee A(\gamma) \right) \vee \lambda \\ &= (A(x) \vee A(\gamma)) \vee \lambda. \end{aligned}$$

Conversely, suppose $A(x^{-1}y) \land \mu \leq (A(x) \lor A(y)) \lor \lambda, \forall x, y \in G$, then $A(1) \land \mu = A(x^{-1}x) \land \mu \leq A(x) \lor A(x) \lor \lambda = A(x) \lor \lambda$. So $A(x^{-1}) \land \mu = A(x^{-1}1) \land \mu = A(x^{-1}1) \land \mu \land \mu \leq (A(x) \lor A(1) \lor \lambda) \land \mu = (A(1) \land \mu) \lor (A(x) \lor \lambda) \land \mu) \leq (A(x) \lor \lambda) \lor ((A(x) \lor \lambda) \land \mu) = A(x) \lor \lambda$. $A(xy) \land \mu = A((x^{-1})^{-1}y) \land \mu = A((x^{-1})^{-1}y) \land \mu \land \mu \leq (A(x^{-1}) \lor A(y) \lor \lambda) \land \mu = (A(x^{-1})^{-1}y)$

 $\wedge \ \mu) \lor ((A(y) \lor \lambda) \land \mu) \le (A(x) \lor \lambda) \lor (A(y) \lor \lambda) = (A(x) \lor A(y)) \lor \lambda.$

So *A* is a (λ, μ) -anti-fuzzy subgroup of *G*.

Theorem 2. Let A be a fuzzy subset of a group G. Then the following are equivalent:

(1) *A* is a (λ, μ) -anti-fuzzy subgroup of *G*; (2) $A_{(\alpha)}$ is a subgroup of *G*, for any $\alpha \in (\lambda, \mu]$, where $A_{(\alpha)} \neq \emptyset$.

Proof. "(1) \Rightarrow (2)"

Let A be a (λ, μ) -anti-fuzzy subgroup of G. For any $\alpha \in (\lambda, \mu]$, such that $A_{\alpha} \neq \emptyset$, we need to show that $x^{-1} y \in A_{(\alpha)}$, for all $x, y \in A_{(\alpha)}$.

Since $A(x) < \alpha$ and $A(y) < \alpha$, Then $A(x^{-1} y) \land \mu \leq A(x) \lor A(y) \lor \lambda < \alpha \lor \alpha \lor \lambda = \alpha \lor \lambda$ = α . Note that $\alpha \leq \mu$, we obtain $A(x^{-1} y) < \alpha$. So $x^{-1} y \in A_{(\alpha)}$.

"(2) \Rightarrow (1)"

Conversely, let $A_{(\alpha)}$ is a subgroup of G. We need to prove that $A(x^{-1} y) \land \mu \leq A(x) \lor A(y) \lor \lambda$, $\forall x \in G$. If there exist $x_0, y_0 \in G$ such that $A(x_0^{-1}y_0) \land \mu = \alpha > A(x_0) \lor A(y_0) \lor \lambda$, then $A(x_0) < \alpha$, $A(y_0) < \alpha$ and $\alpha \in (\lambda, \mu]$. Thus $x_0 \in A_\alpha$ and $y_0 \in A_\alpha$. But $A(x_0^{-1}y_0) \geq \alpha$, that is $x_0^{-1}y_0 \notin A_{(\alpha)}$. This is a contradiction with that $A_{(\alpha)}$ is a subgroup of G. Hence $A(x^{-1} y) \land \mu \leq A(x) \lor A(y) \lor \lambda$ holds for any $x, y \in G$.

Therefore, A is a (λ, μ) -anti-fuzzy subgroup of G.

We set $\inf \emptyset = 1$, where \emptyset is the empty set.

Theorem 3. Let $f: G_1 \to G_2$ be a homomorphism and let A be a (λ, μ) -anti-fuzzy subgroup of G_1 . Then f(A) is a (λ, μ) -anti-fuzzy subgroup of G_2 , where

 $f\left(A\right)\left(\gamma\right)=\inf_{x\in G_{1}}\left\{A\left(x\right)\left|f\left(x\right)=\gamma\right\},\quad\forall_{\gamma}\in G_{2}.$

Proof. If $f^{-1}(y_1) = \emptyset$ or $f^{-1}(y_2) = \emptyset$ for any $y_1, y_2 \in G_2$, then $(f(A)(y_1^{-1}y_2)) \wedge \mu \leq 1 = (f(A)(y_1) \vee f(A)(y_2)) \vee \lambda$.

Suppose that $f^{-1}(y_1) \neq \emptyset$, $f^{-1}(y_2) = \emptyset$ for any $y_1, y_2 \in G_2$. Then

For any $y_1, y_2 \in G_2$, we have

$$\begin{split} f(A)\left(y_{1}^{-1}y_{2}\right) \wedge \mu &= \inf_{t \in G_{1}} \left\{ A\left(t\right) | f\left(t\right) = y_{1}^{-1}y_{2} \right\} \wedge \mu \\ &= \inf_{t \in G_{1}} \left\{ (A\left(t\right)) \wedge \mu | f\left(t\right) = y_{1}^{-1}y_{2} \right\} \\ &\leq \inf_{x_{1}, x_{2} \in G_{1}} \left\{ (A\left(x_{1}^{-1}x_{2}\right)) \wedge \mu | f\left(x_{1}\right) = y_{2}, f\left(x_{2}\right) = y_{2} \right\} \\ &\leq \inf_{x_{1}, x_{2} \in G_{1}} \left\{ (A\left(x_{1}\right) \vee A\left(x_{2}\right)) \vee \lambda | f\left(x_{1}\right) = y_{1}, f\left(x_{2}\right) = y_{2} \right\} \\ &= \left(\inf_{x_{1} \in S_{1}} \left\{ A\left(x_{1}\right) | f\left(x_{1}\right) = y_{1} \right\} \vee \inf_{x_{2} \in S_{1}} \left\{ A\left(x_{2}\right) | f\left(x_{2}\right) = y_{2} \right\} \right) \vee \lambda \\ &= \left(f\left(A\right) \left(y_{1}\right) \vee f\left(A\right) \left(y_{2}\right) \right) \vee \lambda. \end{split}$$

So, f(A) is a (λ, μ) -anti-fuzzy subgroup of G_2 .

Theorem 4. Let $f: G_1 \to G_2$ be a homomorphism and let B be a (λ, μ) -anti-fuzzy subgroup of G_2 . Then $f^{-1}(B)$ is a (λ, μ) -anti-fuzzy subgroup of G_1 , where

 $f^{-1}(B)(x) = B(f(x)), \quad \forall_x \in G_1.$

Proof. For any $x_1, x_2 \in G_1$,

$$\begin{aligned} f^{-1} &(B) \left(x_1^{-1} x_2 \right) \wedge \mu &= B \left(f \left(x_1^{-1} x_2 \right) \right) \wedge \mu \\ &= B \left(\left(f \left(x_1 \right) \right)^{-1} f \left(x_2 \right) \right) \wedge \mu \\ &\leq \left(B \left(f \left(x_1 \right) \right) \vee B \left(f \left(x_2 \right) \right) \right) \vee \lambda \\ &= \left(f^{-1} \left(B \right) \left(x_1 \right) \vee f^{-1} \left(B \right) \left(x_2 \right) \right) \vee \lambda. \end{aligned}$$

So, $f^{-1}(B)$ is a (λ, μ) -anti-fuzzy subgroup of G_1 .

Let G_1 be a group with the identity 1_1 and G_2 be a group with the identity 1_2 , then $G_1 \times G_2$ is a group with the identity $(1_1, 1_2)$ if we define (x_1, y_1) $(x_2, y_2) = (x_1x_2, y_1y_2)$ for all (x_1, y_1) , $(x_2, y_2) \in G_1 \times G_2$. Moreover, the inverse element of any $(x, a) \in G_1 \times G_2$ is $(y, b) \in G_1 \times G_2$ if and only if y is the inverse element of x in G_1 and b is the inverse element of a in G_2 .

Theorem 5. Let A, B be two (λ, μ) -anti-fuzzy subgroups of groups G_1 and G_2 , respectively. The product of A and B, denoted by $A \times B$, is a (λ, μ) -anti-fuzzy subgroup of the group $G_1 \times G_2$, where

$$(A \times B) (x, y) = A(x) \vee B(y), \forall (x, y) \in G_1 \times G_2.$$

Proof. Let (x^{-1}, a^{-1}) be the inverse element of (x, a) in $G_1 \times G_2$. Then x^{-1} is the inverse element of x in G_1 and a^{-1} is the inverse element of a in G_2 . Hence $A(x^{-1}) \wedge \mu \leq A(x) \vee \lambda$ and $B(a^{-1}) \wedge \mu \leq B(a) \vee \lambda$. For all $(y, b) \in G_1 \times G_2$. We have

$$((A \times B) (x, a)^{-1} (y, b)) \wedge \mu = ((A \times B) (x^{-1}, a^{-1}) (y, b)) \wedge \mu$$

= $(A (x^{-1}y) \vee B (a^{-1}b)) \wedge \mu$
= $(A (x^{-1}y) \wedge \mu) \vee (B (a^{-1}b) \wedge \mu)$
 $\leq (A (x) \vee A (y) \vee \lambda) \vee (B (a) \vee B (b) \vee \lambda)$
= $(A (x) \vee B (a)) \vee (A (y) \vee B (b)) \vee \lambda$
= $((A \times B) (x, a)) \vee ((A \times B) (y, b)) \vee \lambda.$

Hence $A \times B$ is a (λ, μ) -anti-fuzzy subgroup of $G_1 \times G_2$.

Theorem 6. Let A and B be two fuzzy subsets of groups G_1 and G_2 , respectively. If A \times B is a (λ, μ) -anti-fuzzy subgroup of $G_1 \times G_2$, then at least one of the following statements must hold.

$$A(1_1) \land \mu \leq B(a) \lor \lambda, \quad \forall_a \in G_2$$

and

 $B(1_2) \wedge \mu \leq A(x) \vee \lambda, \quad \forall x \in G_1.$

Proof. Let $A \times B$ be a (λ, μ) -anti-fuzzy subgroup of the group $G_1 \times G_2$.

By contraposition, suppose that none of the statements hold. Then we can find $x \in G_1$ and $a \in G_2$ such that $A(x) \lor \lambda < B(1_2) \land \mu$ and $B(a) \lor \lambda < A(1_1) \land \mu$. Now

 $(A \times B) (x, a) \vee \lambda = (A(x) \vee B(a)) \vee \lambda = (A(x) \vee \lambda) \vee (B(a) \vee \lambda) < (A(1_1) \wedge \mu) \vee (B(1_2) \wedge \mu) = (A \times B) (1_1, 1_2) \wedge \mu.$

Thus $A \times B$ is a (λ, μ) -anti-fuzzy subgroup of the group $G_1 \times G_2$ satisfying $(A \times B)(x, a) \vee \lambda < (A \times B) (1_1, 1_2) \wedge \mu$. This is a contradict with that $(1_1, 1_2)$ iss the identity of $G_1 \times G_2$.

Theorem 7. Let A and B be fuzzy subsets of groups G_1 and G_2 , respectively, such that $B(1_2) \land \mu \leq A(x) \lor \lambda$ for all $x \in G_1$. If $A \times B$ is a (λ, μ) -anti-fuzzy subgroup of $G_1 \times G_2$, then A is a (λ, μ) -anti-fuzzy subgroup of G_1 .

Proof. From $B(1_2) \land \mu \leq A(x) \lor \lambda$ we obtain that $\mu \leq A(x) \lor \lambda$ or $B(1_2) \leq A(x) \lor \lambda$, for all $x \in G_1$.

Let $x, y \in G_1$, then $(x, 1_2), (y, 1_2) \in G_1 \times G_2$. Two cases are possible: (1) If $\mu \leq A(x) \lor \lambda$ for all $x \in G_1$. Then $A(xy) \land \mu \leq \mu \leq A(x) \lor \lambda \leq (A(x) \lor A(y)) \lor \lambda$ and $A(1_1) \land \mu \leq \mu \leq A(x) \lor \lambda$. (2) If $B(1_2) \leq A(x) \lor \lambda$ for all $x \in G_1$. Then

$$A (xy) \land \mu \leq (A (xy) \lor B (1_2 1_2)) \land \mu$$

= $((A \times B) (xy, 1_2 1_2)) \land \mu$
= $((A \times B) ((x, 1_2) (y, 1_2))) \land \mu$
 $\leq ((A \times B) (x, 1_2) \lor (A \times B) (y, 1_2)) \lor \lambda$
= $A (x) \lor B (1_2) \lor A (y) \lor B (1_2) \lor \lambda$
= $(A (x) \lor A (y)) \lor \lambda$.

and

$$A(1_1) \land \mu \leq (A(1_1) \lor B(1_2)) \land \mu$$

= $((A \times B)(1_1, 1_2)) \land \mu$
 $\leq (A \times B)(x, 1_2) \lor \lambda$
= $A(x) \lor B(1_2) \lor \lambda$
= $A(x) \lor \lambda$.

Hence *A* is a (λ, μ) -anti-fuzzy subgroup of *G*₁. Analogously, we have

Theorem 8. Let A and B be fuzzy subsets of groups G_1 and G_2 , respectively, such that $A(1_1) \land \mu \leq B(a) \lor \lambda$ for all $a \in G_2$. If $A \times B$ is a (λ, μ) -anti-fuzzy subgroup of $G_1 \times G_2$, then B is a (λ, μ) -anti-fuzzy subgroup of G_2 .

From the previous theorems, we have the following corollary

Corollary 1. Let A and B be fuzzy subsets of groups G_1 and G_2 , respectively. If $A \times B$ is a (λ, μ) -anti-fuzzy subgroup of $G_1 \times G_2$, then either A is a (λ, μ) -anti-fuzzy subgroup of G_1 or B is a (λ, μ) -anti-fuzzy subgroup of G_2 .

Acknowledgements

YF wished to thank Prof. Michela for her help with the language.

Author details

¹School of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, People's Republic of China ²School of Mathematics Science, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China

Authors' contributions

YF had posed ideals and typed this article with a computer. BY had given some good advice. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 19 December 2011 Accepted: 3 April 2012 Published: 3 April 2012

References

- 1. Zadeh, LA: Fuzzy sets. Inf Control. 8, 338-353 (1965)
- 2. Yuan, X, Zhang, C, Ren, Y: Generalized fuzzy groups and many-valued implications. Fuzzy Sets Syst. 138, 205–211 (2003)
- 3. Yao, B: (λ, μ)-fuzzy normal subgroups and (λ, μ)-fuzzy quotient subgroups. J Fuzzy Math. 13(3):695-705 (2005)
- 4. Yao, B: (λ, μ) -fuzzy subrings and (λ, μ) -fuzzy ideals. J Fuzzy Math. **15**(4):981–987 (2007)
- 5. Yao, B: Fuzzy Theory on Group and Ring. Science and Technology Press, Beijing (2008) in Chinese
- 6. Shen, Z: The anti-fuzzy subgroup of a group. J Liaoning Normat Univ (Nat Sci) 18(2):99–101 (1995). in Chinese
- 7. Dong, B: Direct product of anti fuzzy subgroups. J Shaoxing Teachers College 5, 29–34 (1992). in Chinese

doi:10.1186/1029-242X-2012-78

Cite this article as: Feng and Yao: On (λ , μ)-anti-fuzzy subgroups. *Journal of Inequalities and Applications* 2012 2012:78.

Submit your manuscript to a SpringerOpen[™] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com