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Abstract

We introduced the notions of (l, μ)-anti-fuzzy subgroups, studied some properties of
them and discussed the product of them.
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1 Introduction and preliminaries
Fuzzy sets was first introduced by Zadeh [1] and then the fuzzy sets have been used in

the reconsideration of classical mathematics. Yuan et al. [2] introduced the concept of

fuzzy subgroup with thresholds. A fuzzy subgroup with thresholds l and μ is also

called a (l, μ)-fuzzy subgroup. Yao continued to research (l, μ)-fuzzy normal sub-

groups, (l, μ)-fuzzy quotient subgroups and (l, μ)-fuzzy subrings in [3-5].

Shen researched anti-fuzzy subgroups in [6] and Dong [7] studied the product of

anti-fuzzy subgroups.

By a fuzzy subset of a nonempty set X we mean a mapping from X to the unit inter-

val 0[1]. If A is a fuzzy subset of X, then we denote A(a) = {x Î X|A(x) <a} for all a Î
0[1].

Throughout this article, we will always assume that 0 ≤ l <μ ≤ 1.

Let G, G1, and G2 always denote groups in the following. 1, 11, and 12 are identities

of G, G1, and G2, respectively.

2 (l, μ)-anti-fuzzy subgroups
Definition 1. A fuzzy set A of a group G is called a (l, μ)-anti-fuzzy subgroup of G if

∀a, b, c Î G.

A (ab) ∧ μ ≤ (A (a) ∨ A (b)) ∨ λ

and

A
(
c−1) ∧ μ ≤ A (c) ∨ λ

where c-1 is the inverse element of c.

Proposition 1. If A is a (l, μ)-anti-fuzzy subgroup of a group G, then A(1) ∧ μ ≤ A(x)

∨ l for all × Î G, where 1 is the identity of G.

Proof. ∀x ÎG and let x−1 be the inverse element of x. Then A(1) ∧ μ = A(xx−1) ∧ μ =

(A(xx−1) ∧ μ) ∧ μ ≤ ((A(x) ∨ A(x−1)) ∨ l) ∧ μ = (A(x) ∧ μ) ∨ (A(x−1) ∧ μ) ∨ (l ∧ μ) ≤ A

(x) ∨ (A(x) ∨ l) ∨ l = A(x) ∨ l.
Theorem 1. Let A be a fuzzy subset of a group G. Then A is a (l, μ)-anti-fuzzy sub-

group of G if and only if A(x-1y) ∧ μ ≤ (A(x) ∨ A(y)) ∨ l, ∀x, y Î G.
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Proof. Let A is a (l, μ)-anti-fuzzy subgroup of G, then

A(x−1y) ∧ μ = A(x−1y) ∧ μ ∧ μ

≤ ((A(x−1) ∨ A(y)) ∨ λ) ∧ μ

= (A(x−1) ∧ μ ∨ A(y)) ∨ (λ ∧ μ)

≤ ((A(x) ∨ λ) ∨ A(y)) ∨ λ

= (A(x) ∨ A(y)) ∨ λ.

Conversely, suppose A(x-1y) ∧ μ ≤ (A(x) ∨ A(y)) ∨ l, ∀x, y Î G, then

A(1) ∧ μ = A(x-1x) ∧ μ ≤ A(x) ∨ A(x) ∨ l = A(x) ∨ l.
So

A(x−1) ∧ μ = A(x−11) ∧ μ = A(x−11) ∧ μ ∧ μ ≤ (A(x) ∨ A(1) ∨ l) ∧ μ = (A(1) ∧ μ) ∨
((A(x) ∨ l) ∧ μ) ≤ (A(x) ∨ l) ∨ ((A(x) ∨ l) ∧ μ) = A(x) ∨ l.
A(xy) ∧ μ = A((x-1)-1 y) ∧ μ = A((x-1)-1y) ∧ μ ∧ μ ≤ (A(x−1) ∨ A(y) ∨ l) ∧ μ = (A(x−1)

∧ μ) ∨ ((A(y) ∨ l) ∧ μ) ≤ (A(x) ∨ l) ∨ (A(y) ∨ l) = (A(x) ∨ A(y)) ∨ l.
So A is a (l, μ)-anti-fuzzy subgroup of G.

Theorem 2. Let A be a fuzzy subset of a group G. Then the following are equivalent:

(1) A is a (l, μ)-anti-fuzzy subgroup of G;

(2) A(a) is a subgroup of G, for any a Î (l, μ], where A(a) ≠ ∅.

Proof. “(1) ⇒ (2)”

Let A be a (l, μ)-anti-fuzzy subgroup of G. For any a Î (l, μ], such that Aa ≠ ∅, we

need to show that x−1 y Î A(a), for all x,y Î A(a).

Since A(x) <a and A(y) <a, Then A(x−1 y) ∧ μ ≤ A(x) ∨ A(y) ∨ l <a ∨ a ∨ l = a ∨ l
= a. Note that a ≤ μ, we obtain A(x−1 y) <a. So x−1 y Î A(a).

“(2) ⇒ (1)”

Conversely, let A(a) is a subgroup of G. We need to prove that A(x−1 y) ∧ μ ≤ A(x) ∨
A(y) ∨ l, ∀x Î G. If there exist x0, y0 Î G such that

A
(
x−1
0 y0

) ∧ μ = α > A (x0) ∨ A
(
y0

) ∨ λ, then A(x0) <a, A(y0) <a and a Î (l, μ]. Thus

x0 Î Aa and y0 Î Aa. But A
(
x−1
0 y0

) ≥ α, that is x−1
0 y0 /∈ A(α). This is a contradiction

with that A(a) is a subgroup of G. Hence A(x-1 y) ∧ μ ≤ A(x) ∨ A(y) ∨ l holds for any

x, y Î G.

Therefore, A is a (l, μ)-anti-fuzzy subgroup of G.

We set inf ∅ = 1, where ∅ is the empty set.

Theorem 3. Let f: G1 ® G2 be a homomorphism and let A be a (l, μ)-anti-fuzzy sub-

group of G1. Then f(A) is a (l, μ)-anti-fuzzy subgroup of G2, where

f (A)
(
y
)
= inf

x∈G1

{
A (x) |f (x) = y

}
, ∀y ∈ G2.

Proof. If f −1(y1) = ∅ or f−1(y2) = ∅ for any y1, y2 Î G2, then(
f (A)

(
y−1
1 y2

)) ∧ μ ≤ 1 =
(
f (A)

(
y1

) ∨ f (A)
(
y2

)) ∨ λ.

Suppose that f−1(y1) ≠ ∅, f−1(y2) = ∅ for any y1, y2 Î G2. Then
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For any y1, y2 Î G2, we have

f (A)
(
y−1
1 y2

) ∧ μ = inf
t∈G1

{
A (t) |f (t) = y−1

1 y2
} ∧ μ

= inf
t∈G1

{
(A (t)) ∧ μ|f (t) = y−1

1 y2
}

≤ inf
x1,x2∈G1

{(
A

(
x−1
1 x2

)) ∧ μ|f (x1) = y2, f (x2) = y2
}

≤ inf
x1,x2∈G1

{
(A (x1) ∨ A (x2)) ∨ λ|f (x1) = y1, f (x2) = y2

}

= ( inf
x1∈s1

{
A (x1) |f (x1) = y1

} ∨ inf
x2∈S1

{
A (x2) |f (x2) = y2

}
) ∨ λ

=
(
f (A)

(
y1

) ∨ f (A)
(
y2

)) ∨ λ.

So, f(A) is a (l, μ)-anti-fuzzy subgroup of G2.

Theorem 4. Let f : G1 ® G2 be a homomorphism and let B be a (l, μ)-anti-fuzzy
subgroup of G2. Then f−1(B) is a (l, μ)-anti-fuzzy subgroup of G1, where

f−1 (B) (x) = B
(
f (x)

)
, ∀x ∈ G1.

Proof. For any x1, x2 Î G1,

f−1 (B)
(
x−1
1 x2

) ∧ μ = B
(
f
(
x−1
1 x2

)) ∧ μ

= B
((
f (x1)

)−1
f (x2)

)
∧ μ

≤ (
B

(
f (x1)

) ∨ B
(
f (x2)

)) ∨ λ

=
(
f−1 (B) (x1) ∨ f−1 (B) (x2)

) ∨ λ.

So, f−1(B) is a (l, μ)-anti-fuzzy subgroup of G1.

Let G1 be a group with the identity 11 and G2 be a group with the identity 12, then

G1 × G2 is a group with the identity (11, 12) if we define (x1, y1) (x2, y2) = (x1x2, y1y2)

for all (x1, y1), (x2, y2) Î G1 × G2. Moreover, the inverse element of any (x, a) Î G1 ×

G2 is (y, b) Î G1 × G2 if and only if y is the inverse element of x in G1 and b is the

inverse element of a in G2.

Theorem 5. Let A, B be two (l, μ)-anti-fuzzy subgroups of groups G1 and G2, respec-

tively. The product of A and B, denoted by A × B, is a (l, μ)-anti-fuzzy subgroup of the

group G1 × G2, where

(A × B)
(
x, y

)
= A (x) ∨ B

(
y
)
, ∀ (

x, y
) ∈ G1 × G2.

Proof. Let (x−1, a−1) be the inverse element of (x, a) in G1 × G2. Then x−1 is the

inverse element of x in G1 and a−1 is the inverse element of a in G2. Hence A(x−1) ∧ μ

≤ A(x) ∨ l and B(a−1) ∧ μ ≤ B(a) ∨ l. For all (y, b) Î G1 × G2. We have
(
(A × B) (x, a)−1 (

y, b
)) ∧ μ =

(
(A × B)

(
x−1, a−1) (

y, b
)) ∧ μ

=
(
A

(
x−1y

) ∨ B
(
a−1b

)) ∧ μ

=
(
A

(
x−1y

) ∧ μ
) ∨ (

B
(
a−1b

) ∧ μ
)

≤ (
A (x) ∨ A

(
y
) ∨ λ

) ∨ (B (a) ∨ B (b) ∨ λ)

= (A (x) ∨ B (a)) ∨ (
A

(
y
) ∨ B (b)

) ∨ λ

= ((A × B) (x, a)) ∨ (
(A × B)

(
y, b

)) ∨ λ.

Hence A × B is a (l, μ)-anti-fuzzy subgroup of G1 × G2.
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Theorem 6. Let A and B be two fuzzy subsets of groups G1 and G2, respectively. If A

× B is a (l, μ)-anti-fuzzy subgroup of G1 × G2, then at least one of the following state-

ments must hold.

A (11) ∧ μ ≤ B (a) ∨ λ, ∀a ∈ G2

and

B (12) ∧ μ ≤ A (x) ∨ λ, ∀x ∈ G1.

Proof. Let A × B be a (l, μ)-anti-fuzzy subgroup of the group G1 × G2.

By contraposition, suppose that none of the statements hold. Then we can find x Î
G1 and a Î G2 such that A(x) ∨ l <B(12) ∧ μ and B(a) ∨ l <A(11) ∧ μ. Now

(A×B) (x, a) ∨ l = (A(x)∨B(a))∨l = (A(x)∨l)∨(B(a)∨l) < (A(11)∧μ) ∨ (B(12)∧μ) =
(A×B) (11,12) ∧ μ.

Thus A × B is a (l, μ)-anti-fuzzy subgroup of the group G1 × G2 satisfying (A × B)(x,

a) ∨ l < (A × B) (11, 12) ∧ μ. This is a contradict with that (11, 12) iss the identity of

G1 × G2 .

Theorem 7. Let A and B be fuzzy subsets of groups G1 and G2, respectively, such that

B(12) ∧μ ≤ A(x) ∨l for all × Î G1. If A × B is a (l, μ)-anti-fuzzy subgroup of G1 × G2,

then A is a (l, μ)-anti-fuzzy subgroup of G1.

Proof. From B(12) ∧ μ ≤ A(x) ∨ l we obtain that μ ≤ A(x) ∨ l or B(12) ≤ A(x) ∨ l, for
all x Î G1.

Let x, y Î G1, then (x, 12), (y, 12) Î G1 × G2.

Two cases are possible:

(1) If μ ≤ A(x) ∨ l for all x Î G1. Then

A(xy) ∧ μ ≤ μ ≤ A(x) ∨ l ≤ (A(x) ∨ A(y)) ∨ l
and A(11) ∧ μ ≤ μ ≤ A(x) ∨ l.
(2) If B(12) ≤ A(x) ∨ l for all x Î G1. Then

A
(
xy

) ∧ μ ≤ (
A

(
xy

) ∨ B (1212)
) ∧ μ

=
(
(A × B)

(
xy, 1212

)) ∧ μ

=
(
(A × B)

(
(x, 12)

(
y, 12

))) ∧ μ

≤ (
(A × B) (x, 12) ∨ (A × B)

(
y, 12

)) ∨ λ

= A (x) ∨ B (12) ∨ A
(
y
) ∨ B (12) ∨ λ

=
(
A (x) ∨ A

(
y
)) ∨ λ.

and

A (11) ∧ μ ≤ (A (11) ∨ B (12)) ∧ μ

= ((A × B) (11, 12)) ∧ μ

≤ (A × B) (x, 12) ∨ λ

= A (x) ∨ B (12) ∨ λ

= A (x) ∨ λ.
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Hence A is a (l, μ)-anti-fuzzy subgroup of G1.

Analogously, we have

Theorem 8. Let A and B be fuzzy subsets of groups G1 and G2, respectively, such that

A(11) ∧ μ ≤ B(a) ∨ l for all a Î G2. If A × B is a (l, μ)-anti-fuzzy subgroup of G1 × G2,

then B is a (l, μ)-anti-fuzzy subgroup of G2.

From the previous theorems, we have the following corollary

Corollary 1. Let A and B be fuzzy subsets of groups G1 and G2, respectively. If A × B

is a (l, μ)-anti-fuzzy subgroup of G1 × G2, then either A is a (l, μ)-anti-fuzzy subgroup

of G1 or B is a (l, μ)-anti-fuzzy subgroup of G2.
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