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Abstract

In this article, we define the generalized cesàro sequence spaces ces(p)(q) and
consider it equipped with the Luxemburg norm. We show that the spaces ces(p)(q)
has the H-property and Uniform Opial property. The results of this article, we
improve and extend some results of Petrot and Suantai.
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1. Introduction
Let (X, || · ||) be a real Banach space and let B(X) (resp., S(X)) be a closed unit ball

(resp., the unit sphere) of X. A point x Î S(X) is an H-point of B(X) if for any

sequence (xn) in X such that ||xn|| ® 1 as n ® ∞, the week convergence of (xn) to x

implies that ||xn - x|| ® 0 as n ® ∞. If every point in S(X) is an H-point of B(X), then

X is said to have the property (H). A Banach space X is said to have the Opial property

(see [1]), if every weakly null sequence (xn) in X satisfies

lim
n→∞ inf ||xn|| ≤ lim

n→∞ inf ||xn − x||,

for every x Î X \{0}. Opial proved in [1] that the sequence space lp(1 < p < ∞) have

this property but Lp[0, π](p ≠ 2, 1 < p < ∞) do not have it. A Banach space X is said

to have the uniform Opial property (see [2]), if for each ε >0 there exists τ >0 such

that for any weakly null sequence (xn) in S(X) and x Î X with || x || > ε there holds

1 + τ ≤ lim
n→∞ inf ||xn + x||.

For example, the space in [3-5] have the uniform Opial property.

Let l0 be the space of all real sequences. For 1 ≤ p < ∞, the Cesàro sequence space

(cesp, for short) is defined by

cesp =

{
x ∈ l0 :

∞∑
n=1

(
1
n

n∑
i=0

|x(i)|
)p

< ∞
}

equipped with the norm

||x|| =
( ∞∑

n=1

(
1
n

n∑
i=1

|x(i)|
)p) 1

p
(1:1)
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This space was first introduced by Shiue [6]. It is useful in the theory of matrix

operators and others (see [7,8]). Suantai [9,10] defined the generalized Cesàro sequence

space ces(p) when p = (pk) is a bounded sequence of positive real numbers with pk ≥ 1

for all k Î N by

ces(p) = {x ∈ l0 : �(λx) < ∞ for some λ > 0},

where

�(x) =
∞∑
n=1

(
1
n

k∑
i=1

|x(i)|
)pn

equipped with the Luxemburg norm

||x|| = inf
{
ε > 0 : �

( x
ε

)
≤ 1

}
.

In the case when pk = p, 1 ≤ p < ∞ for all k Î N, the generalized Cesàro sequence

space ces(p) is the Cesàro sequence space cesp and the Luxemburg norm is expressed

by the formula (1.1). Khan [11] defined the generalized Cesàro sequence space for 1 ≤

p < ∞ with q = qk is a bounded sequence of positive real numbers by

cesp(q) =

⎧⎪⎨
⎪⎩x ∈ l0 :

⎛
⎝ ∞∑

k=1

(
1
Qk

k∑
i=1

|qix(i)|
)p⎞⎠1/p

< ∞

⎫⎪⎬
⎪⎭ ,

where Qk =
n∑

k=1
qk,n Î N. If qk = 1 for all k Î N, then cesp(q) reduces to cesp.

In this article, we define the generalized Cesàro sequence space for a bounded

sequence p = (pk) and q = qk of positive real numbers with pk ≥ 1 and qk ≥ 1 for all k

Î N by

ces(p)(q) = {x ∈ l0 : �(λx) < ∞ for some λ > 0},

where

�(x) =
∞∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

with Qk =
n∑

k=1
qk and consider ces(p)(q) equipped with the Luxemburg norm

||x|| = inf
{
ε > 0 : �

( x
ε

)
≤ 1

}
.

Thus, we see that pk = p, 1 ≤ p < ∞ for all k Î N, then ces(p)(q) reduces to cesp(q)

and if qk = 1 for all k Î N, then ces(p)(q) reduces to ces(p). Throughout this article, for

x Î l0, i Î N, we denote

Mongkolkeha and Kumam Journal of Inequalities and Applications 2012, 2012:76
http://www.journalofinequalitiesandapplications.com/content/2012/1/76

Page 2 of 9



ei = (

i−1︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, 0, 0, . . .),

x|i = (x(1), x(2), x(3), . . . , x(i), 0, 0, 0, . . .),

x|N−i = (0, 0, 0, . . . , x(i + 1), x(i + 2), . . .),

and M = supk pk with pk >1 for all k Î N. First, we start with a brief recollection of

basic concepts and facts in modular space. For a real vector space X, a function r: X ®
[0, ∞] is called a modular if it satisfies the following conditions;

(i) r(x) = 0 if and only if x = 0;

(ii) r(ax) = r(x) for all scalar a with |a| = 1;

(iii) r(ax + by) ≤ r(x) + r(y), for all x, y Î X and all a, b ≥ 0 with a + b = 1.

The modular r is called convex if

(iv) r(ax + by) ≤ ar(x) + br(y), for all x, y Î X and all a, b ≥ 0 with a + b = 1.

For modular r on X, the space

Xρ = {x ∈ X : ρ(λx) → 0 as λ → 0+}
is called the modular space.

A sequence (xn) in Xr is called modular convergent to x Î Xr if there exists a l >0

such that r(l(xn - x)) ® 0 as n ® ∞.

A modular r is said to satisfy the Δ2-condition (r Î Δ2) if for any ε >0 there exist a

constants K ≥ 2 and a >0 such that

ρ(2u) ≤ Kρ(u) + ε

for all u Î Xr with r(u) ≤ a.

If r satisfies the Δ2-condition for any a >0 with K ≥ 2 dependent on a, we say that r
the strong Δ2-condition (ρ ∈ �s

2) .

Lemma 1.1. [[12], Lemma 2.1] If ρ ∈ �s
2 , then for any L >0 and ε >0, there exists

δ = δ(L, ε) >0 such that

|ρ(u + v) − ρ(u)| < ε,

whenever u, v Î Xr with r(u) ≤ L, and r(v) ≤ δ.

Lemma 1.2. [[12], Lemma 2.3] Convergences in norm and in modular are equivalent

in Xr if r Î Δ2.

Lemma 1.3. [[12], Lemma 2.4] If ρ ∈ �s
2 , then for any ε >0 there exists δ = δ(ε) >0

such that || x || ≥ 1 + δ, whenever r(x) ≥ 1 + ε.

2. Main results
In this section, we prove the property H and uniform Opial property in generalized

Cesàro sequence space ces(p)(q). First, we give some results which are very important

for our con-sideration.

Proposition 2.1. The functional ϱ is a convex modular on ces(p)(q).

Proof. Let x, y Î ces(p)(q). It is obvious that ϱ(x) = 0 if and only if x = 0 and ϱ(ax) =
ϱ(x) for scalar a with |a| = 1. Let a ≥ 0, b ≥ 0 with a + b = 1. By the convexity of the

function t �→ |t|pk , for all k Î N, we have
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�(αx + βy) =
∞∑
k=1

(
1
Qk

k∑
i=1

|αqix(i) + βqiy(i)|
)pk

≤
∞∑
k=1

(
α

1
Qk

k∑
i=1

|qix(i)| + β
1
Qk

k∑
i=1

|qiy(i)|
)pk

≤ α

∞∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

+ β

∞∑
k=1

(
1
Qk

k∑
i=1

|qiy(i)|
)pk

= α�(x) + β�(y).

□
Proposition 2.2. For x Î ces(p)(q), the modular ϱ on ces(p)(q) satisfies the following

properties:

(i) if 0 < a <1, then aM�( xa ) ≤ �(x) and ϱ(ax) ≤ aϱ(x);

(ii) if a >1, then ϱ(x) ≤ aM�( xa );

(iii) if a ≥ 1, then ϱ(x) ≤ aϱ(x) ≤ ϱ(ax).

Proof. (i) Let 0 < a <1. Then we have

�(x) =
∞∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

=
∞∑
k=1

(
a
Qk

k∑
i=1

∣∣∣∣qix(i)a

∣∣∣∣
)pk

=
∞∑
k=1

apk
(

1
Qk

k∑
i=1

∣∣∣∣qix(i)a

∣∣∣∣
)pk

≥
∞∑
k=1

aM
(

1
Qk

k∑
i=1

∣∣∣∣qix(i)a

∣∣∣∣
)pk

= aM
∞∑
k=1

(
1
Qk

k∑
i=1

∣∣∣∣qix(i)a

∣∣∣∣
)pk

= aM�
( x
a

)
.

By convexity of modular ϱ, we have ϱ(ax) ≤ aϱ(x), so (i) is obtained.

(ii) Let a >1. Then

�(x) =
∞∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

=
∞∑
k=1

apk
(

1
Qk

k∑
i=1

∣∣∣∣qix(i)a

∣∣∣∣
)pk

≤ aM
∞∑
k=1

(
1
Qk

k∑
i=1

∣∣∣∣qix(i)a

∣∣∣∣
)pk

= aM�
( x
a

)
.
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Hence (ii) is satisfies. (iii) follows from the convexity of ϱ. □
Proposition 2.3. For any x Î ces(p)(q), we have

(i) if ||x|| <1, then ϱ(x) ≤ ||x||;

(ii) if ||x|| >1, then ϱ(x) ≥ ||x||;

(iii) ||x|| = 1 if and only if ϱ(x) = 1;

(iv) ||x|| <1 if and only if ϱ(x) <1;
(v) ||x|| >1 if and only if ϱ(x) >1.

Proof. (i) Let ε >0 be such that 0 < ε <1 - ||x||, so ||x|| + ε <1. By the definition

of ||·||, then there exits l >0 such that ||x|| + ε > l and �( x
λ
) ≤ 1 . By (i) and (iii) of

Proposition 2.2, we have

�(x) ≤ �

(
(||x|| + ε)

λ
x
)

= �
(
(||x|| + ε)

x
λ

)
≤ (||x|| + ε)�

( x
λ

)
≤ ||x|| + ε,

which implies that ϱ(x) ≤ ||x||. Hence (i) is satisfies.

(ii) Let ε >0 such that 0 < ε <
||x||−1

||x|| , then 0 <(1 - ε)||x|| ≤ ||x||. By definition of ||.||

and Proposition 2.2(i), we have 1 < �( x
(1−ε)||x||) < x

(1−ε)||x||�(x) , so (1 - ε)||x|| < ϱ(x)

for all ε ∈ (0, ||x||−1
||x|| ) which implies that ||x|| ≤ ϱ(x).

(iii) Assume that ||x|| = 1. Let ε >0 then there exits l >0 such that 1 + ε > l >||x|| and

�( x
λ
) ≤ 1 . By Proposition 2.2(ii), we have �(x) ≤ λM�( x

λ
) ≤ λM < (1 + ε)M , so

(�(x))
1
M < 1 + ε for all ε >0 which implies that ϱ(x) ≤ 1. If ϱ(x) <1, let a Î (0, 1) such

that ϱ(x) < aM <1. From Proposition 2.2(i), we have �( xa ) ≤ 1
aM �(x) < 1 . Hence ||x|| ≤

a <1, which is contradiction. Thus, we have ϱ(x) = 1.

Conversely, assume that ϱ(x) = 1. By definition of ||·||, we conclude that ||x|| ≤ 1. If ||x||

<1, then we have by (i) that ϱ(x) ≤ ||x|| <1, which is contradiction, so we obtain that ||x||

= 1. (iv) follows from (i) and (iii), (v) follows from (iii) and (iv). □
Proposition 2.4. For any x Î ces(p)(q), we have

(i) if 0 < a <1 and ||x|| > a, then ϱ(x) > aM;

(ii) if a ≥ 1 and ||x|| < a, then ϱ(x) < aM.

Proof. (i) Let 0 < a <1 and ||x|| > a. Then || xa || > 1 , by Proposition 2.3(v), we have

�( xa ) > 1 . Hence by Proposition 2.2(i), we have �(x) ≥ aM�( xa ) > aM , so we obtain (i).

(ii) Suppose a ≥ 1 and ||x|| < a. Then || xa || < 1 , by Proposition 2.3(iv), we have

�( xa ) < 1 .

If a = 1, it is obvious that ϱ(x) <1 = aM. If a >1, then by Proposition 2.2(ii), we

obtain that �(x) ≤ aM�( xa ) < aM . □
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Proposition 2.5. Let (xn) be a sequence in ces(p)(q).

(i) If ||xn|| ® 1 as n ® ∞, then ϱ(xn) ® 1 as n ® ∞.

(ii) If ϱ(xn) ® 0 as n ® ∞, then ||xn|| ® 0 as n ® ∞.

Proof. (i) Assume that ||xn|| ® 1 as n ® ∞. Let ε Î (0, 1). Then there exists N Î N

such that 1 - ε <||xn|| <1 + ε for all n ≥ N. By Proposition 2.4, we have (1 - ε)M < ϱ
(xn) <(1 + ε)M for all n ≥ N, which implies that ϱ(xn) ® 1 as n ® ∞.

(ii) Suppose that ||xn|| ↛ 0 as n ® ∞. Then there exists ε Î (0, 1) and a subsequence

(xnk) of (xn) such that ||xnk || > ε for all k Î N. By Proposition 2.4(i) we obtain

�(xnk) > (ε)M for all k Î N. This implies that ϱ(xn) ↛ 0 as n ® ∞. □
Lemma 2.6. Let x Î ces(p)(q) and (xn) ⊆ ces(p)(q). If ϱ(xn) ® ϱ(x) as n ® ∞ and xn(i) ®

x(i) as n ® ∞ for all i Î N, then xn ® x as n ® ∞.

Proof. Let ε >0 be given. Since �(x) =
∑∞

k=1

(
1
Qk

∑k
i=1 |qixn(i)|

)pk
< ∞ , there exists

k0 Î N such that

∞∑
k=k0+1

(
1
Qk

k∑
i=1

|qixn(i)|
)pk

<
ε

3 · 2M+1
. (2:1)

Since �(xn) − ∑k0
k=1

(
1
Qk

∑k
i=1 |qixn(i)|

)pk → �(x) − ∑k0
k=1

(
1
Qk

∑k
i=1 |qix(i)|

)pk
and xn

(i) ® x(i) as n ® ∞ for all i Î N there exists n0 Î N such that

�(xn) −
k0∑
k=1

(
1
Qk

k∑
i=1

|qixn(i)|
)pk

< �(x) −
k0∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

+
ε

3 · 2M (2:2)

for all n ≥ n0 and

k0∑
k=1

(
1
Qk

k∑
i=1

|qixn(i) − qix(i)|
)pk

<
ε

3
, (2:3)

for all n ≥ n0. It follow from (2.1), (2.2), and (2.3), for all n ≥ n0 we have

�(xn − x) =
∞∑
k=1

(
1
Qk

k∑
i=1

|qixn(i) − qix(i)|
)pk

=
k0∑
k=1

(
1
Qk

k∑
i=1

|qixn(i) − qix(i)|
)pk

+
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qixn(i) − qix(i)|
)pk

<
ε

3
+ 2M

⎛
⎝ ∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qixn(i))|
)pk

+
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qix(i))|
)pk

⎞
⎠

=
ε

3
+ 2M

⎛
⎝�(xn) −

k0∑
k=1

(
1
Qk

k∑
i=1

|qixn(i)|
)pk

+
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qix(i))|
)pk

⎞
⎠

<
ε

3
+ 2M

⎛
⎝�(x) −

k0∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

+
ε

3 · 2M +
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qix(i))|
)pk

⎞
⎠

=
ε

3
+ 2M

⎛
⎝ ∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

+
ε

3 · 2M +
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qix(i))|
)pk

⎞
⎠

=
ε

3
+ 2M

⎛
⎝2

∞∑
k=k0+1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

+
ε

3 · 2M

⎞
⎠

<
ε

3
+

ε

3
+

ε

3
= ε.
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This show that ϱ(xn -x) ® 0 as n ® ∞. Hence, by Proposition 2.5(ii), we have ||xn -x||

® 0 as ® ∞. □
Theorem 2.7. The space ces(p)(q) has the property (H).

Proof. Let x Î S(ces(p)(q)) and (xn) ⊆ ces(p)(q) such that ||xn||® 1 and xn
w→ x as n® ∞.

By Proposition 2.3(iii), we have ϱ(x) = 1, so it follow form Proposition 2.5(i), we get ϱ(xn) ®
ϱ(x) as n ® ∞. Since the mapping πi: ces(p)(q) ® ℝ defined by πi(y) = y(i), is a continuous

linear functional on ces(p)(q), it follow that xn(i) ® x(i) as n ® ∞ for all i Î N. Thus by

Lemma 2.6, we obtain xn ® x as n ® ∞, and hence the space ces(p)(q) has the property (H).

□

Corollary 2.8. For any 1 < p < ∞, the space cesp(q) has the property (H).

Corollary 2.9. [9, Theorem 2.6] The space ces(p) has the property (H).

Corollary 2.10. For any 1 < p < ∞, the space cesp has the property (H).

Theorem 2.11. The space ces(p)(q) has uniform Opial property.

Proof. Take any ε >0 and x Î ces(p)(q) with ||x|| ≥ ε. Let (xn) be weakly null

sequence in S(ces(p)(q)). By supk pk < ∞, i.e., � ∈ �s
2 , hence by Lemma 1.2 there exists

δ Î (0, 1) independent of x such that ϱ(x) > δ. Also, by � ∈ �s
2 and Lemma 1.1 asserts

that there exists δ1 Î (0, δ) such that

|�(y + z) − �(y)| <
δ

4
(2:4)

whenever, ϱ(y) ≤ 1 and ϱ(z) ≤ δ1. Choose k0 Î N such that

∞∑
k=k0+1

⎛
⎝ 1
Qk

k∑
i=k0+1

|qix(i)|
⎞
⎠pk

<

∞∑
k=k0+1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

<
δ1

4
. (2:5)

So, we have

δ <

k0∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

+
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

≤
k0∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

+
δ1

4
,

(2:6)

which implies that

k0∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

> δ − δ1

4

> δ − δ

4

=
3δ

4
.

(2:7)

Since xn
w→ 0, then there exists n0 Î N such that

3δ

4
≤

k0∑
k=1

(
1
Qk

k∑
i=1

|qixn(i) + qix(i)|
)pk

(2:8)
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for all n > n0, since weak convergence implies coordinatewise convergence. Again, by

xn
w→ 0, then there exists n1 Î N such that

||xn|ko || < 1 −
(
1 − δ

4

) 1
M (2:9)

for all n > n1 where pk ≤ M for all k Î N. Hence, by the triangle inequality of the

norm, we get

||xn|N−ko
|| >

(
1 − δ

4

) 1
M
. (2:10)

It follows by the definition of || · ||, we have

1 ≤ �

⎛
⎜⎜⎜⎜⎝

xn|N−ko(
1 − δ

4

) 1
M

⎞
⎟⎟⎟⎟⎠

=
∞∑

k=k0+1

⎛
⎜⎜⎜⎜⎝

1
Qk

k∑
i=k0+1

|qixn(i)|
(
1 − δ

4

) 1
M

⎞
⎟⎟⎟⎟⎠

pk

≤

⎛
⎜⎜⎜⎜⎝

1(
1 − δ

4

) 1
M

⎞
⎟⎟⎟⎟⎠

M

∞∑
k=k0+1

⎛
⎝ 1
Qk

k∑
i=k0+1

|qixn(i)|
⎞
⎠pk

(2:11)

implies that

∞∑
k=k0+1

⎛
⎝ 1
Qk

∞∑
i=k0+1

|qixn(i)|
⎞
⎠pk

≥ 1 − δ

4
(2:12)

for all n > n1. By inequality (2.4), (2.5), (2.8), and (2.12), yields for any n > n1 that

�(xn + x) =
k0∑
k=1

(
1
Qk

k∑
i=1

|qixn(i) + qix(i)|
)pk

+
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qixn(i) + qix(i)|
)pk

>

k0∑
k=1

(
1
Qk

k∑
i=1

|qixn(i) + qix(i)|
)pk

+
∞∑

k=k0+1

⎛
⎝ 1
Qk

k∑
i=k0+1

|qixn(i) + qix(i)|
⎞
⎠pk

≥ 3δ

4
+

∞∑
k=k0+1

⎛
⎝ 1
Qk

k∑
i=k0+1

|qixn(i)|
⎞
⎠pk

− δ

4

≥ 3δ

4
+

(
1 − δ

4

)
− δ

4

≥ 1 +
δ

4
.
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Since � ∈ �s
2 and by Lemma 1.3 there exists τ depending on δ only such that || xn

+x || ≥ 1+τ, which implies that lim
n→∞ inf ||xn + x|| ≥ 1 + τ , hence the proof is complete.

□

Corollary 2.12. For any 1 < p < ∞, the space cesp(q) has the uniform Opial

property.

Corollary 2.13. [5, Theorem 2.6] The space ces(p) has the uniform Opial property.

Corollary 2.14. [4, Theorem 2] For any 1 < p < ∞, the space cesp has the uniform

Opial property.
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