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Abstract

In this article, we discuss some generalized retarded nonlinear integral inequalities,
which not only include nonlinear compound function of unknown function but also
include retard items, and give upper bound estimation of the unknown function by
integral inequality technique. This estimation can be used as tool in the study of
differential equations with the initial conditions.
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1 Introduction
Gronwall-Bellman inequalities [1,2] and their various generalizations can be used

important tools in the study of existence, uniqueness, boundedness, stability, and other

qualitative properties of solutions of differential equations, integral equations, and inte-

gral-differential equations.

Lemma 1 (Gronwall [1]). Let u(t) be a continuous function defined on the interval [a,

a + h], a, h are nonnegative constants and

0 ≤ u(t) ≤
t∫

a

[
bu(s) + a

]
ds, t ∈ [a, a + h]. (1:1)

Then, 0 ≤ u(t) ≤ ah exp(bh), ∀t Î [a,a + h].

Lemma 2 (Bellman [2]). Let f, u Î C([0, h], [0, ∞)), h, c are positive constants. If u

satisfy the inequality

u(t) ≤ c +

t∫
0

f (s)u(s)ds, t ∈ [0, h]. (1:2)

Then, u(t) ≤ c exp
(∫ t

0 f (s)ds
)
, t ∈ [0, h].

Lemma 3 (Lipovan [3]). Let u, f Î C([t0,T), R+). Further, let a Î C1([t0,T),[t0,T)) be

nondecreasing with a(t) ≤ t on [t0,T), and let c be a nonnegative constant. Then the

inequality
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u(t) ≤ c +

α(t)∫
α(t0)

f (s)u(s)ds, t ∈ [t0,T) (1:3)

implies that u(t) ≤ c exp

(∫ α(t)

α(t0)
f (s)ds

)
, t ∈ [t0,T)..

Lemma 4 (Abdeldaim and Yakout [4]). We assume that u(t) and f(t) are nonnegative

real-valued continuous functions defined on I and satisfy the inequality

u(t) ≤ u0 +

⎛
⎝ t∫

0

f (s)u(s)ds

⎞
⎠

2

+

t∫
0

f (s)u(s)

⎛
⎝u(s) + 2

s∫
0

f (τ )u(τ )dτ

⎞
⎠ ds,∀t ∈ I,(1:4)

where u0 be a positive constant. Then

u(t) ≤ u0 exp

⎛
⎝ t∫

0

f (s)B1(s)ds

⎞
⎠ , ∀t ∈ I, (1:5)

where

B1(t) =
u0 exp

(
4

∫ t
0 f (s)ds

)
1 − u0

∫ t
0 f (s) exp

(
4

∫ s
0 f (τ )dτ

)
ds
, ∀t ∈ I, (1:6)

such that u0
∫ t
0 f (s) exp

(
4

∫ s
0 f (τ )dτ

)
ds < 1.

Lemma 5 (Abdeldaim and Yakout [4]). We assume that u(t) and f(t) are nonnegative

real-valued continuous functions defined on I and satisfy the inequality

up+1(t) ≤ u0 +

⎛
⎝ t∫

0

f (s)up(s)ds

⎞
⎠

2

+ 2

t∫
0

f (s)up(s)

⎛
⎝u(s) +

s∫
0

f (τ )up(τ )dτ

⎞
⎠ ds, (1:7)

for all t Î I, where u0 > 0, p Î (0,1), are constants. Then

u(t) ≤ u
1
p+1
0 +

2
p + 1

t∫
0

f (s)B2(s)ds, ∀t ∈ I, (1:8)

where

B2(t) = exp

⎛
⎝ 2
p + 1

t∫
0

f (s)ds

⎞
⎠

⎛
⎝u

1−p
p+1
0 + 2(1 − p)

t∫
0

f (s) exp

⎛
⎝−2

1 − p
p + 1

s∫
0

f (τ )dτ

⎞
⎠ ds

⎞
⎠

1
1−p

, (1:9)

for all t Î I.

Lemma 6 (see [5]). Let � Î C(R+,R+) be a increasing function, u,a,f Î C([t0,T),R+), a

(t) be a increasing function, and a Î C1([t0,T), [t0,T)) be nondecreasing with a(t) ≤ t on

[t0,T) where T Î (0,∞) is a constant. Then the inequality

u(t) ≤ a(t) +

α(t)∫
α(0)

f (s)ϕ(u(s))ds, t ∈ [t0,T) (1:10)
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implies that

u(t) ≤ W−1

⎛
⎜⎝W(a(t)) +

α(t)∫
α(0)

f (s)ds

⎞
⎟⎠ , t ∈ [t0,T1), (1:11)

where

W(t) =

t∫
1

dt
ϕ(t)

ds, t > 0, (1:12)

W-1 is the reverse function of W, T1 is the largest number such that

W(a(T1)) +

α(T1)∫
α(0)

f (s)ds ≤
∞∫
1

dt
ϕ(t)

ds.

There can be found a lot of generalizations of Gronwall-Bellman inequalities in var-

ious cases from literature (e.g., [3-13]).

In this article, we discuss some retarded nonlinear integral inequalities, where linear

case u(t) in integral functions in [4] is changed into the nonlinear case j(u(t)), and the

non-retarded case t in [4] is changed into retarded case a(t), and give upper bound

estimation of the unknown function by integral inequality technique.

2 Main result
In this section, we discuss some retarded integral inequalities of Gronwall-Bellman

type. Throughout this article, let I = [0, ∞).

Theorem 1. Let �,�’,a Î C1(I, I) be increasing functions with �’(t) ≤ k, a(t) ≤ t, a(0)
= 0, ∀t Î I; k, u0 be positive constants, we assume that u(t) and f(t) are nonnegative

real-valued continuous functions defined on I and satisfy the inequality

u(t) ≤ u0+

⎛
⎜⎝

α(t)∫
0

f (s)ϕ(u(s))ds

⎞
⎟⎠

2

+

α(t)∫
0

f (s)ϕ(u(s))

⎛
⎝ϕ(u(s)) + 2

s∫
0

f (τ )ϕ(u(τ ))dτ

⎞
⎠ ds, (2:1)

for all t Î I. If u−1
0 − k

∫ α(t)
0 f (s) exp

(
4

∫ s
0 f (τ )dτ

)
ds > 0, then

z(t) ≤ �−1

⎛
⎜⎝�(u0) +

α(t)∫
0

f (s)B3(s)ds

⎞
⎟⎠ ,∀t ∈ I, (2:2)

where

�(x) :=

x∫
1

ds

ϕ(s)
, ∀x > 0, (2:3)

B3(t) := exp(4

α(t)∫
0

f (s)ds)

⎛
⎜⎝(ϕ(u0))

−1 − k

α(t)∫
0

f (s) exp

⎛
⎝4

s∫
0

f (τ )dτ

⎞
⎠ ds

⎞
⎟⎠

−1

. (2:4)
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Remark 1. If a(t) = t, �(u(s)) = u(s), then Theorem 1 reduces Lemma 4.

Proof. Let z(t) denotes the function on the right-hand side of (2.1), which is a non-

negative and nondecreasing function on I with z(0) = u0. Then (2.1) is equivalent to

u(t) ≤ z(t), u(α(t)) ≤ z(α(t)), ∀t ∈ I. (2:5)

Differentiating z(t) with respect to t, we have

dz
dt

= 2α′(t)f (α(t))ϕ(u(α(t)))

α(t)∫
0

f (s)ϕ(u(s))ds + α′(t)f (α(t))ϕ(u(α(t)))

×

⎛
⎜⎝ϕ(u(α(t))) + 2

α(t)∫
0

f (τ )ϕ(u(τ ))dτ

⎞
⎟⎠ ds, ∀t ∈ I.

(2:6)

Using (2.5), we obtain

dz
dt

≤ α′(t)f (α(t))ϕ(z(α(t)))w(t), ∀t ∈ I, (2:7)

where w(t) := ϕ(z(α(t))) + 4
∫ α(t)
0 f (s)ϕ(z(s))ds,w(0) = ϕ(z(0)) = ϕ(u0), w is a nonne-

gative and nondecreasing function on I. By the monotonicity �, �’,z, and a(t) ≤ t we

have �(z(a(t))) ≤ w(t), �’(z(a(t))) ≤ k. Differentiating w(t) with respect to t, and using

(2.7) we have

dw
dt

≤ ϕ′(z(α(t)))α′(t)f (α(t))w2(t) + 4α′(t)f (α(t))w(t)

≤ kα′(t)f (α(t))w2(t) + 4α′(t)f (α(t))w(t), ∀t ∈ I.
(2:8)

By w(t) > 0, we have

w−2(t)
dw
dt

≤ kα′(t)f (α(t)) + 4α′(t)f (α(t))w−1(t), ∀t ∈ I. (2:9)

Let v(t) = w-1(t), from (2.9) we have

dv
dt

+ 4α′(t)f (α(t))v(t) ≥ −kα′(t)f (α(t)), ∀t ∈ I. (2:10)

Consider ordinary differential equation

dy
dt

+ 4α′(t)f (α(t))y(t) = −kα′(t)f (α(t)), y(0) = (ϕ(u0))−1, ∀t ∈ I. (2:11)

The solution of Equation (2.11) is

y(t) = (ϕ(u0))−1 exp

⎛
⎝−4

t∫
0

α′(s)f (α(s))ds

⎞
⎠

− exp

⎛
⎝−4

t∫
0

α′(s)f (α(s))ds

⎞
⎠ t∫

0

kα′(s)f (α(s)) exp

⎛
⎝ s∫

0

4α′(τ )f (α(τ ))dτ

⎞
⎠ ds

= (ϕ(u0))−1 exp

⎛
⎜⎝−4

α(t)∫
0

f (s)ds

⎞
⎟⎠ − exp

⎛
⎜⎝−4

α(t)∫
0

f (s)ds

⎞
⎟⎠

α(t)∫
0

kf (s) exp

⎛
⎝4

s∫
0

f (τ )dτ

⎞
⎠ ds.

= exp

⎛
⎜⎝−4

α(t)∫
0

f (s)ds

⎞
⎟⎠

⎛
⎜⎝(ϕ(u0))

−1 − k

α(t)∫
0

f (s) exp

⎛
⎝4

s∫
0

f (τ )dτ

⎞
⎠ ds

⎞
⎟⎠ .

(2:12)
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By (2.10), (2.11), and (2.13), we obtain

v(t) ≥ exp

⎛
⎜⎝−4

α(t)∫
0

f (s)ds

⎞
⎟⎠

⎛
⎜⎝(ϕ(u0))

−1 − k

α(t)∫
0

f (s) exp

⎛
⎝4

s∫
0

f (τ )dτ

⎞
⎠ ds

⎞
⎟⎠ .(2:13)

By the definition of B3(t) in (2.4) and the inequality (2.13), we have w(t) <B3(t),∀t Î I.

From (2.7), we get

dz
dt

≤ α′(t)f (α(t))ϕ(z(α(t)))B3(α(t)) ≤ α′(t)f (α(t))B3(α(t))ϕ(z(t)),∀t ∈ I. (2:14)

By taking t = s in the inequality (2.14) and integrating (2.14) from 0 to t, by the defi-

nition (2.3) of F we obtain

z(t) ≤ �−1

⎛
⎝�(z(0)) +

t∫
0

α′(s)f (α(s))B3(α(s))ds

⎞
⎠ ≤ �−1

⎛
⎜⎝�(z(0)) +

α(t)∫
0

f (s)B3(s)ds

⎞
⎟⎠ , (2:15)

for all t Î I. This completes the proof of the Theorem 1.

Theorem 2. Let ψ(t),�(t),�(t)/t,a(t) Î C1(I,I) be increasing functions with ψ’(t) = �(t),

a(t) ≤ t, a(0) = 0, ∀t Î I; k, u0 be positive constants, we assume that u(t) and f(t) are

nonnegative real-valued continuous functions defined on I and satisfy the inequality

ψ(u(s)) ≤ u0 +

⎛
⎜⎝

α(t)∫
0

f (s)ϕ(u(s))ds

⎞
⎟⎠

2

+

α(t)∫
0

f (s)ϕ(u(s))

⎛
⎝u(s) + 2

s∫
0

f (τ )ϕ(u(τ ))dτ

⎞
⎠ ds,

(2:16)

for all t Î I. Then

u(t) ≤ exp

⎛
⎜⎝�−1

⎛
⎜⎝�(ln(1 + ψ−1(u0)) +

α(t)∫
0

f (s)ds) +

α(t)∫
0

4f (s)ds

⎞
⎟⎠

⎞
⎟⎠ ,∀t ∈ (0,T2). (2:17)

where

�(t) :=

t∫
1

exp(s)ds
ϕ(exp(s))

, ∀t > 0, (2:18)

Ξ-1,ψ-1 are the reverse function of Ξ, ψ respectively, T2 is the largest number such that

�

⎛
⎜⎝ln(1 + ψ−1(u0)) +

α(t)∫
0

f (s)ds

⎞
⎟⎠ +

α(t)∫
0

4f (s)ds ≤
∞∫
1

exp(s)ds
ψ(exp(s))

, ∀x ∈ R+.

Remark 2. If a(t) = t,�(u(t)) = up(t),ψ(u(t)) = up+1(t)/(p + 1), by Theorem 2, we can

obtain the result similar to Lemma 5.

Proof. Let ψ(z(t)) denotes the function on the right-hand side of (2.16), then z(t) is a

nonnegative and nondecreasing function on I with z(0) = ψ-1(u0). Then (2.16) is
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equivalent to

u(t) ≤ z(t), u(α(t)) ≤ z(α(t)) ∀t ∈ I. (2:19)

Differentiating ψ(z(t)) with respect to t, we have

ψ ′(z(t))
dz
dt

= 2α′(t)f (α(t))ϕ(u(α(t)))

α(t)∫
0

f (s)ϕ(u(s))ds + α′(t)f (α(t))ϕ(u(α(t)))

×

⎛
⎜⎝u(α(t)) + 2

α(t)∫
0

f (τ )ϕ(u(τ ))dτ

⎞
⎟⎠ ds, ∀t ∈ I.

(2:20)

Using (2.19) and the relation ψ’(z(t)) = �(z(t)), from (2.20) we obtain

dz
dt

≤ α′(t)f (α(t))

⎛
⎜⎝z(t) + 4

α(t)∫
0

f (s)ϕ(z(s))ds

⎞
⎟⎠ , ∀t ∈ I. (2:21)

Let w(t) := z(t) + 4
∫ α(t)
0 f (s)ϕ(z(s))ds, then w(0) = z(0) = ψ-1(u0), z(t) ≤ w(t), w is a

nonnegative and nondecreasing function on I. Differentiating w(t) with respect to t,

and using (2.21) we have

dw
dt

≤ α′(t)f (α(t))w(t) + 4α′(t)f (α(t))ϕ(z(α(t)))

≤ α′(t)f (α(t))w(t) + 4α′(t)f (α(t))ϕ(w(α(t))), ∀t ∈ I.
(2:22)

By w(t) > 0, we have

dw
w(t)dt

≤ α′(t)f (α(t)) + 4α′(t)f (α(t))ϕ(w(α(t)))/w(α(t)), ∀t ∈ I. (2:23)

Integrating (2.23) from 0 to t, we have

lnw(t) ≤ ln(1 + w(0)) +

t∫
0

α′(s)f (α(s))ds +

t∫
0

4α′(s)f (α(s))ϕ(w(α(s)))(w(α(s)))−1ds

≤ ln(1 + w(0)) +

α(t)∫
0

f (s)ds +

α(t)∫
0

4f (s)ϕ(w(s))(w(s))−1ds

≤ ln(1 + w(0)) +

α(t)∫
0

f (s)ds +

α(t)∫
0

4f (s)ϕ(exp(lnw(s)))(exp(lnw(s)))−1ds,

(2:24)

for all t Î I. Using Lemma 6 and the Definition (2.18) of Ξ, we obtain

lnw(t) ≤ �−1

⎛
⎜⎝�(ln(1 + w(0)) +

α(t)∫
0

f (s)ds) +

α(t)∫
0

4f (s)ds

⎞
⎟⎠

= �−1

⎛
⎜⎝�(ln(1 + ψ−1(u0)) +

α(t)∫
0

f (s)ds) +

α(t)∫
0

4f (s)ds

⎞
⎟⎠ ,∀t ∈ (0,T2).

(2:25)

Using the relation u(t) ≤ z(t) ≤ w(t), we can obtain the estimation (2.17) of (2.16).
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3 Application
In this section, we apply our result to the following nonlinear differential equation [4]⎧⎨

⎩
dx(t)
dt

= F(t, x(α(t))) +H(t, x(α(t)),K(t, x(α(t)))),∀t ∈ I,

x(0) = x0,
(3:26)

where x0 is a constant, F, K Î C(I × I, R), H Î C(I3, R), satisfy the following condi-

tions ∣∣F(t, x(α(t)))∣∣ ≤ f 2(α(t))
∣∣ϕ(x(α(t)))∣∣2, ∣∣K(t, x(α(t)))∣∣ ≤ f (α(t))

∣∣ϕ(x(α(t)))∣∣ ,(3:27)
∣∣H(t, x, y)

∣∣ ≤ ∣∣y∣∣ (ϕ(|x|) + 2

t∫
0

∣∣y∣∣ ds), (3:28)

where f(t) is nonnegative real-valued continuous function defined on I.

Corollary 1. Consider nonlinear system (3.26) and suppose that F,K, H satisfy the

conditions (3.27) and (3.28). Let �,�’, a Î C1(I, I) be increasing functions with �’(t) ≤ k,

a(t) ≤ t, a(0) = 0,∀t Î I, k be positive constants; then all solutions of Equation (3.26)

exist on I and satisfy the following estimation

∣∣x(t)∣∣ ≤ �−1

⎛
⎜⎝�(|x0|) +

α(t)∫
0

f (s)
α′(α−1(s))

B(s)ds

⎞
⎟⎠ ,∀t ∈ I, (3:29)

where

�(x) :=

x∫
1

ds

ϕ(s)
, ∀x > 0, (3:30)

B(t) := exp

⎛
⎜⎝4

α(t)∫
0

f (s)
α′(α−1(s))

ds

⎞
⎟⎠

×

⎛
⎜⎝(ϕ(|x0|))−1 − k

α(t)∫
0

f (s)
α′(α−1(s))

exp

⎛
⎝4

s∫
0

f (τ )
α′(α−1(τ ))

dτ

⎞
⎠ ds

⎞
⎟⎠

−1

.

(3:31)

Proof. Integrating both sides of the Equation (3.26) from 0 to t, we get

x(t) = x0 +

t∫
0

F(s, x(α(s)))ds +

t∫
0

H(s, x(α(s)),K(s, x(α(s))))ds,∀t ∈ I. (3:32)

Wang Journal of Inequalities and Applications 2012, 2012:75
http://www.journalofinequalitiesandapplications.com/content/2012/1/75

Page 7 of 8



From (3.27), (3.28), and (3.32) we obtain

∣∣x(t)∣∣ ≤ |x0| +
t∫

0

f 2(α(s))
∣∣ϕ(x(α(t)))∣∣2ds

+

t∫
0

f (α(s))
∣∣ϕ(x(α(t)))∣∣

⎛
⎝ϕ(

∣∣x(α(s))∣∣) + 2

s∫
0

f (α(τ ))
∣∣ϕ(x(α(τ )))∣∣ dτ

⎞
⎠ ds

≤ |x0| +

⎛
⎜⎝

α(t)∫
0

f (s)
∣∣ϕ(x(s))∣∣

α′(α−1(s))
ds

⎞
⎟⎠

2

+

α(t)∫
0

f (s)
∣∣ϕ(x(s))∣∣

α′(α−1(s))

⎛
⎝ϕ(

∣∣x(α(s))∣∣) + 2

s∫
0

f (τ )
∣∣ϕ(x(τ ))∣∣

α′(α−1(τ ))
dτ

⎞
⎠ ds,∀t ∈ I.

(3:33)

Applying Theorem 1 to (3.33), we get the estimation (3.29). This completes the proof

of the Corollary 1.
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