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1 Introduction
Throughout this article, we denote by N and ℝ the sets of positive integers and real

numbers, respectively. Let D be a nonempty closed subset of a real Banach space E. A

single-valued mapping T : D ® D is called nonexpansive if ∥Tx - Ty∥ ≤ ∥x - y∥ for all

x, y Î D. Let N(D) and CB(D) denote the family of nonempty subsets and nonempty

closed bounded subsets of D, respectively. The Hausdorff metric on CB(D) is defined

by

H (A1,A2) = max

{
sup
x∈A1

d(x,A2), sup
y∈A2

d(y,A1)

}
,

for A1,A2 Î CB(D), where d(x, A1) = inf{∥x - y∥, y Î A1}. The multi-valued mapping

T : D ® CB(D) is called nonexpansive if H(T(x),T(y)) ≤ ∥x - y∥ for all x, y Î D. An ele-

ment p Î D is called a fixed point of T : D ® N(D) if p Î T(p). The set of fixed points

of T is represented by F(T).

Let E be a real Banach space with dual E*. We denote by J the normalized duality

mapping from E to 2E* defined by

J(x) =
{
x∗ ∈ E∗ :

〈
x, x∗〉 = ‖x‖2 =

∥∥x∗∥∥2} , x ∈ E.

where 〈·,·〉 denotes the generalized duality pairing.

A Banach space E is said to be strictly convex if ‖x+y‖
2 < 1 for all x, y Î U = {z Î E :

∥z∥ = 1} with x ≠ y. E is said to be uniformly convex if, for each � Î (0, 2], there exists

δ > 0 such that ‖x+y‖
2 < 1 − δ for all x, y Î U with ∥x - y∥ ≥ �. E is said to be smooth if
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the limit

lim
t→0

∥∥x + ty
∥∥ − ‖x‖
t

exists for all x, y Î U. E is said to be uniformly smooth if the above limit exists uni-

formly in x, y Î U.

Remark 1.1. The following basic properties for Banach space E and for the normal-

ized duality mapping J can be found in Cioranescu [1].

(i) If E is an arbitrary Banach space, then J is monotone and bounded;

(ii) If E is a strictly convex Banach space, then J is strictly monotone;

(iii) If E is a a smooth Banach space, then J is single-valued, and hemi-continuous, i.

e., J is continuous from the strong topology of E to the weak star topology of E*;

(iv) If E is a uniformly smooth Banach space, then J is uniformly continuous on each

bounded subset of E;

(v) If E is a reflexive and strictly convex Banach space with a strictly convex dual E*

and J*: E* ® E is the normalized duality mapping in E*, then J-1 = J*, J J* = IE*, and J* J

= IE;

(vi) If E is a smooth, strictly convex, and reflexive Banach space, then the normalized

duality mapping J is single-valued, one-to-one and onto;

(vii) A Banach space E is uniformly smooth if and only if E* is uniformly convex. If E

is uniformly smooth, then it is smooth and reflexive.

Next we assume that E is a smooth, strictly convex, and reflexive Banach space and

C is a nonempty closed convex subset of E. In the sequel, we always use j : E × E ®
ℝ+ to denote the Lyapunov functional defined by

φ(x, y) = ‖x‖2 − 2
〈
x, Jy

〉
+

∥∥y∥∥2,∀x, y ∈ E. (1:2)

It is obvious from the definition of j that(‖x‖ − ∥∥y∥∥)2 ≤ φ(x, y) ≤ (‖x‖ − ∥∥y∥∥)2,∀x, y ∈ E. (1:3)

φ
(
x, J−1 (

λJy + (1 − λ)Jz
) ≤ λφ(x, y) + (1 − λ)φ(x, z)

)
, (1:4)

for all l Î [0,1] and x,y,z Î E.

Following Alber [2], the generalized projection Π C : E ® C is defined by∏
C
(x) = arg inf

y∈C
φ(y, x),∀x ∈ E.

Let D be a nonempty subset of a smooth Banach space. A mapping T : D ® E is

relatively expansive [3-5], if the following properties are satisfied:

(R1) F(T) �= ∅;
(R2) j(p,Tx) ≤ j(p,x) for all p Î F(T) and x Î D;

(R3) I - T is demi-closed at zero, that is, whenever a sequence {xn} in D converges

weakly to p and {xn - Txn} converges strongly to 0, it follows that p Î F(T).

If T satisfies (R1) and (R2), then T is called quasi-j-nonexpansive [6].
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Recently, Nilsrakoo and Saejung [7] introduced the following iterative sequence for

finding a fixed point of relatively nonexpansive mapping T : D ® E. Given x1 Î D,

xn+1 =
∏

D
J−1 (

αnJu + (1 − αn)
(
βnJxn + (1 − βn)JTxn

))
where D is nonempty closed convex subset of a uniformly convex and uniformly

smooth Banach space E, ΠD is the generalized projection of E onto D and {an} and

{bn} are two sequences in [0,1].

They proved strong convergence theorems in uniformly convex and uniformly

smooth Banach space E.

Iterative methods for approximating fixed points of multi-valued mappings in Banach

spaces have been studied by some authors, see for instance [8-15].

Let D be a nonempty closed convex subset of a smooth Banach space E. We define a

relatively nonexpansive multi-valued mapping as follows.

Definition 1.2. A multi-valued mapping T : D ® N(D) is called relatively nonexpan-

sive, if the following conditions are satisfied:

(S1) F(T) �= ∅
(S2) j(p,z) ≤ j(p, x), ∀x Î D, z Î T(x), p Î F(T);

(S3) I - T is demi-closed at zero, that is, whenever a sequence {xn} in D which

weakly to p and limn®∞ d(xn, T(xn)) = 0, it follows that p Î F(T).

If T satisfies (S1) and (S2), then multi-valued mapping T is called quasi-j-
nonexpansive.

In this article, inspired by Nilsrakoo and Saejung [7], we introduce the following

iterative sequence for finding a fixed point of relatively nonexpansive multi-valued

mapping T : D ® N(D). Given u Î E,xi Î D,

xn+1 =
∏

D
J−1 (

αnJu + (1 − αn)
(
βnJxn + (1 − βn)Jwn

)
where wn Î Txn for all n Î N, D is a nonempty closed convex subset of a uniformly

convex and uniformly smooth Banach space E, ΠD is the generalized projection of E

onto D and {an}, {bn} are sequences in [0,1]. We proved the strong convergence theo-

rems in uniformly convex and uniformly smooth Banach space E.

2 Preliminaries
In the sequel, we denote the strong convergence and weak convergence of the

sequence {xn} by xn ® x and xn ⇀ x, respectively.

First, we recall some conclusions.

Lemma 2.1 [16,17]. Let E be a smooth, strictly convex, and reflexive Banach space

and C be a nonempty closed convex subset of E. Then the following conclusions hold:

(a) j(x, ΠCy) + j(ΠCy, y) ≤ j(x, y) for all x Î C and y Î E;

(b) If x Î E and z Î C, then

z =
∏

C
x ⇔ 〈

z − y, Jx − Jz
〉 ≥ 0,∀y ∈ C;
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(c) For x, y Î E, j(x, y) = 0 if and only x = y.

Remark 2.2. If E is a real Hilbert space H, then j(x, y) = ∥x - y∥2 and ΠC is the

metric projection PC of H onto C.

Lemma 2.3 [18]. Let E be a uniformly convex Banach space, r > 0 be a positive

number and Br(0) be a closed ball of E. Then, for any given sequence {xi}∞i=1 ⊂ Br(0)

and for any given sequence {λi}∞i=1 of positive numbers with
∑∞

i=1
λi = 1, then there

exists a continuous, strictly increasing, and convex function g : [0, 2r) ® [0, ∞) with g

(0) = 0 such that for any positive integers i, j with i <j,∥∥∥∥∥
∞∑
n=1

λnxn

∥∥∥∥∥
2

≤
∞∑
n=1

λn‖xn‖2 − λiλjg
(∥∥xi − xj

∥∥)
(2:1)

In what follows, we need the following lemmas for proof of our main results.

Lemma 2.4 [17]. Let E be a uniformly convex and smooth Banach space and let {xn}

and {yn} be two sequences of E such that {xn} or {yn} is bounded. If limn®∞j(xn, yn) =
0. Then limn®∞∥xn-yn∥ = 0.

Let E be a reflexive, strictly convex, and smooth Banach space. The duality mapping

J* from E* onto E** = E coincides with the inverse of the duality mapping J from E

onto E*, that is, J* = J-1. We make use the following mapping V : E × E* ® ℝ studied

in Alber [19]:

V(x, x∗) = ‖x‖2 − 2
〈
x, x∗〉 + ∥∥x∗∥∥2 (2:2)

for all x Î E and x* Î E*. Obviously, V(x, x*) = j(x, J-1(x*)) for all x Î E and x* Î E*.

We know the following lemma.

Lemma 2.5 [20]. Let E be a reflexive, strictly convex, and smooth Banach space, and

let V as in (2.2). Then

V(x, x∗) + 2
〈
J−1(x∗) − x, y∗

〉 ≤ V(x, x∗ + y∗), (2:3)

for all x Î E and x*,y* Î E*.

Lemma 2.6 [21]. Assume that {an} is a sequence of nonnegative real numbers such

that

αn+1 ≤ (1 − γn)αn + γnδn,

where {gn} is a sequence in (0,1) and {δn} is a sequence such that

(a) limn→∞γn = 0,
∑∞

n=1 γn = ∞;

(b) lim supn®∞ ≤ 0.

Then limn®∞an = 0.

Lemma 2.7 [22]. Let {an} be a sequence of real numbers such that there exists a

subsequence {ni} of {n} such that αni < αni+1 for all i Î N. Then there exists a nonde-

creasing sequence {mk} ⊂ N such that mk ® ∞ and the following properties are satis-

fied for all (sufficiently large) numbers k Î N:

αmk ≤ αmk+1 and αk ≤ αmk+1.
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In fact, mk = max{j ≤ k : aj <aj+1}.

3 Main results
Lemma 3.1 Let E be a strictly convex and smooth Banach space, and D a nonempty

closed subset of E. Suppose T : D ® N(D) is a quasi-j-nonexpansive multi-valued

mapping. Then F(T) is closed and convex.

Proof. First, we show F(T) is closed. Let {xn} be a sequence in F(T) such that xn ®
x*. Since T is quasi-j-nonexpansive, we have

φ(xn, z) ≤ φ(xn, x∗)

for all z Î T(x*) and for all n Î N. Therefore,

φ(x∗, z) = lim
n→∞ φ(xn, z)

≤ lim
n→∞ φ(xn, x∗)

= φ(x∗, x∗)
= 0.

By Lemma 2.1(c), we obtain x* = z. Hence, T(x*) = {x*}. So, we have x* Î F(T). Next,

we show F(T) is convex. Let x, y Î F(T) and t Î (0,1), put p = tx + (1 - t)y. We show

p Î F(T). Let w Î F(p), we have

φ(p,w) =
∥∥p∥∥2 − 2

〈
p, Jw

〉
+ ‖w‖2

=
∥∥p∥∥2 − 2

〈
tx + (1 − t)y, Jw

〉
+ ‖w‖2

=
∥∥p∥∥2 − 2t 〈x, Jw〉 − 2(1 − t)

〈
y, Jw

〉
+ ‖w‖2

=
∥∥p∥∥2 + tφ(x,w) + (1 − t)φ(y, p) − t‖x‖2 − t(1 − t)

∥∥p∥∥2

=
∥∥p∥∥2 − 2

〈
tx + (1 − t)y, Jp

〉
+

∥∥p∥∥2

=
∥∥p∥∥2 − 2

〈
p, Jp

〉
+

∥∥p∥∥2

= 0.

By Lemma 2.1(c), we obtain p = w. Hence, T(p) = {p}. So, we have p Î F(T). There-

fore, F(T) is convex.

Lemma 3.2. Let D be a nonempty closed convex subset of a reflexive, strictly convex,

and smooth Banach space E and T : D ® N(D) be a relatively nonexpansive multi-

valued mapping. If {xn} is a bounded sequence such that limn®∞d(xn,Txn) and x* = ΠF

(T)x, then

lim
n→∞ sup

〈
xn − x∗, Jx − Jx∗〉 ≤ 0.

Proof. From (S3) of the mapping T, we choose a subsequence
{
xni

}
of {xn} such that

xni ⇀ y ∈ F(T) and

lim
n→∞ sup

〈
xn − x∗, Jx − Jx∗〉 = lim

i→∞
〈
xni − x∗, Jx − Jx∗〉 .

By Lemma 2.1(b), we immediately obtain that

lim
n→∞ sup

〈
xn − x∗, Jx − Jx∗〉 = 〈

y − x∗, Jx − Jx∗〉 ≤ 0.
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Lemma 3.3. Let D be a nonempty closed convex subset of a reflexive, strictly convex,

and smooth Banach space E and T : D ® N(D) be a relatively nonexpansive multi-

valued mapping. Let {xn} be a sequence in D defined as follows: u Î E, x1 Î D and

xn+1 =
∏
D

J−1 (
αnJu + (1 − αn)

(
βnJxn + (1 − βn)Jwn

))
, (3:1)

where wn Î Txn for all n Î N, {an}, {bn} are sequences in [0,1]. Then {xn} is

bounded.

Proof. Let p Î F(T) and yn = J−1
(
βnJxn + (1 − βn)Jwn

)
for all n Î N. Then

xn+1 ≡
∏

D
J−1 (

αnJu + (1 − αn)Jyn
)

for all n Î N. By using (1.4), we have

φ(p, yn) = φ
(
p, J−1 (

βnJxn + (1 − βn)Jwn
))

≤ βnφ(p, xn) + (1 − βn)φ(p,wn)

≤ βnφ(p, xn) + (1 − βn)φ(p, xn)

= φ(p, xn)

and

φ(p, xn+1) = φ
(
p,

∏
D
J−1 (

αnJu + (1 − αn)Jyn
))

≤ φ
(
p, J−1 (

αnJu + (1 − αn)Jyn
))

≤ αnφ(p, u) + (1 − αn)φ(p, yn)

≤ αnφ(p, u) + (1 − αn)φ(p, xn)

≤ max
{
φ(p, u),φ(p, xn)

})
≤ · · ·
≤ max

{
φ(p, u),φ(p, x1)

})
.

This implies that {xn} is bounded.

Theorem 3.4 Let D be a nonempty closed convex subset of a uniformly convex and

uniformly smooth Banach space E and T : D ® N(D) be a relatively nonexpansive

multivalued mapping. Let {an} and {bn} be sequences in (0,1) satisfying

(C1) limn®∞, an = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3) lim infn®∞ bn(1- bn) > 0.

Then {xn} defined by (3.1) converges strongly to ΠF(T)u, where ΠF(T) is the general-

ized projection from E onto F(T).

Proof. By Lemma 3.1, F(T) is closed and convex. So, we can define the generalized

projection ΠF(T) onto F(T). Putting u* = ∏F(T)u, by Lemma 3.3 we know that {xn} is

bounded and hence, {wn} is bounded. Let g : [0,2r] ® [0,∞) be a function satisfying the

properties of Lemma 2.3, where r = sup{∥u∥, ∥xn∥, ∥wn∥ : n Î N}. Put

yn ≡ J−1 (
βnJu + (1 − βn)Jwn

)
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Then

φ(u∗, yn) = φ
(
u∗, J−1 (

βnJxn + (1 − βn)Jwn
))

=
∥∥u∗∥∥2 − 2

〈
u∗,βnJxn + (1 − βn)Jwn

〉
+

∥∥βnJxn + (1 − βn)Jwn
∥∥2

≤ ∥∥u∗∥∥2 − 2βn
〈
u∗, Jxn

〉 − 2(1 − βn)
〈
u∗, Jwn

〉
+ βn‖xn‖2 + (1 − βn)‖wn‖2

− βn(1 − βn)g (‖Jxn − Jwn‖)
= φ

(
u∗, xn

) − βn (1 − βn) g (‖Jxn − Jwn‖)

(3:2)

and

φ
(
u∗, xn+1

)
= φ

(
u∗,

∏
D
J−1 (

αnJu + (1 − αn)Jyn
))

≤ φ
(
u∗, J−1 (

αnJu + (1 − αn)Jyn
))

≤ αnφ(u∗, u) + (1 − αn)φ(u∗, yn)
≤ αnφ(u∗, u) + (1 − αn)

(
φ(u∗, xn) − βn(1 − βn)g (‖Jxn − Jwn‖)

)
.

(3:3)

for all n Î N. Put

M = sup
{∣∣φ(u∗, u) − φ(u∗, xn)

∣∣ + βn(1 − βn)g (||Jxn − Jwn) : n ∈ N
}

It follows from (3.3) that

βn(1 − βn)g (‖Jxn − Jwn‖) ≤ φ(u∗, xn) − φ
(
u∗, xn+1

)
+ αnM. (3:4)

Let zn ≡ J−1
(
αnJu + (1 − αn)Jyn

)
. Then xn+1 =

∏
Czn

for all n Î N. It follows from

(2.3) and (3.2) that

φ
(
u∗, xn+1

)
≤ φ

(
u∗, J−1 (

αnJu + (1 − αn)Jyn
))

= V
(
u∗,αnJu + (1 − αn)Jyn

)
≤ V

(
u∗,αnJu + (1 − αn)Jyn − αn(Ju − Ju∗)

) − 2
〈
J−1 (

αnJu + (1 − αn)Jyn
) − u∗,−αn

(
Ju − Ju∗)〉

= V
(
u∗,αnJu∗ + (1 − αn)Jyn

)
+ 2αn

〈
zn − u∗, Ju − Ju∗〉

= φ
(
u∗, J−1 (

αnJu
∗ + (1 − αn)Jyn

))
+ 2αn

〈
zn − u∗, Ju − Ju∗〉

=
∥∥u∗∥∥2 − 2

〈
u∗,αnJu∗ + (1 − αn)Jyn

〉
+

∥∥αnJu∗ + (1 − αn)Jyn
∥∥2 + 2αn

〈
zn − u∗, Ju − Ju∗〉

≤ ∥∥u∗∥∥2 − 2αn
〈
u∗, Ju∗〉 − 2(1 − αn)

〈
u∗, Jyn

〉
+ αn

∥∥u∗∥∥2
+ (1 − αn)

∥∥yn∥∥2 + 2αn
〈
zn − u∗, Ju − Ju∗〉

= αnφ(u, u∗) + (1 − αn)φ(u∗, yn) + 2αn
〈
zn − u∗, Ju − Ju∗〉

≤ (1 − αn)φ(u∗, xn) + 2αn
〈
zn − u∗, Ju − Ju∗〉 .

(3:5)

The rest of proof will be divided into two parts:

Case (1). Suppose that there exists n0 Î N such that
{
φ(u∗, xn)

}∞
n=n0

is nonincreasing.

In this situation, {j(u*, xn)} is then convergent. Then limn®∞ (j(u*, xn) - j(u*, xn+1)) =
0. This together with (C1), (C3), and (3.4), we obtain

lim
n→∞ g (‖Jxn − Jwn‖) = 0.

Therefore,

lim
n→∞ ‖Jxn − Jwn‖ = 0.

Since J-1 is uniformly norm-to-norm continuous on every bounded subset of E, we

have

lim
n→∞ ‖xn − wn‖ = 0. (3:6)
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Since d (xn,Txn) ≤ ‖xn − wn‖, we obtain

lim
n→∞ d(xn,Txn) = 0 (3:7)

Then,

φ(wn, yn) = φ
(
wn, J−1 (

βnJxn + (1 − βn)Jwn
))

≤ βnφ(wn, xn) + (1 − βn)φ(wn,wn)

= βnφ(wn, xn) → 0.

(3:8)

and

φ(yn, zn) ≤ αnφ(yn, u) + (1 − αn)φ(yn, yn) = αnφ(yn, u) → 0. (3:9)

From (3.8), (3.9) and Lemma 2.3, we have

lim
n→∞

∥∥wn − yn
∥∥ = 0

and

lim
n→∞

∥∥yn − zn
∥∥ = 0

This together with (3.6) gives

lim
n→∞ ‖xn − zn‖ = 0 (3:10)

From (3.7), (3.10) and invoking Lemma 3.2, we have

lim
n→∞

〈
zn − u∗, Ju − Ju∗〉 = lim

n→∞
〈
xn − u∗, Ju − Ju∗〉 ≤ 0

Hence the conclusion follows by Lemma 2.5.

Case (2). Suppose that there exists a subsequence {ni} of {n} such that

φ(u∗, xni) < φ(u∗, xni+1)

for all i Î N. Then, by Lemma 2.7, there exists a nondecreasing sequence {mk} ⊂ N,

mk ® ∞ such that

φ
(
u∗, xmk

) ≤ φ
(
u∗, xmk+1

)
and φ

(
u∗, xk

) ≤ φ
(
u∗, xmk+1

)
for all k Î N. This together with (3.4) gives

βmk(1 − βmk)g
(∥∥Jxmk − Jwmk

∥∥) ≤ φ
(
u∗, xmk

) − φ
(
u∗, xmk+1

)
+ αmkM ≤ αmkM

for all k Î N. Then, by conditions (C1) and (C3)

lim
k→∞

g
(∥∥Jxmk − Jwmk

∥∥)
= 0

By the same argument as Case (1), we get

lim
k→∞

sup
〈
zmk − u∗, Ju − Ju∗〉 ≤ 0. (3:11)

From (3.5), we have

φ
(
u∗, xmk+1

) ≤ (
1 − αmk

)
φ

(
u∗, xmk

)
+ 2αmk

〈
zmk − u∗, Ju − Ju∗〉 (3:12)
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Since φ
(
u∗, xmk

) ≤ φ
(
u∗, xmk+1

)
, we have

αmkφ
(
u∗, xmk

) ≤ φ
(
u∗, xmk

)−φ
(
u∗, xmk+1

)
+2αmk

〈
zmk − u∗, Ju − Ju∗〉 ≤ 2αmk

〈
zmk − u∗, Ju − Ju∗〉

In particular, since αmk > 0, we get

φ
(
u∗, xmk

) ≤ 2
〈
zmk − u∗, Ju − Ju∗〉

It follows from (3.11) that limk→∞φ
(
u∗, xmk

)
= 0. This together with (3.12) gives

lim
k→∞

φ
(
u∗, xmk+1

)
= 0

But φ (u∗, xk) ≤ φ
(
u∗, xmk+1

)
for all k Î N. We conclude that xk ® u*.

This implies that limn®∞ xn = u* and the proof is finished.

Letting bn = b gives the following result.

Corollary 3.5. Let D be a nonempty closed convex subset of a uniformly convex and

uniformly smooth Banach space E and T : D ® N(D) be a relatively nonexpansive

multivalued mapping. Let {xn} be a sequence in D defined as follows: u Î E,x1 Î D and

xn+1 =
∏

D
J−1 (

αnJu + (1 − αn)
(
βJxn + (1 − β)Jwn

))
,

where wn Î Txn for all n Î N, {an} is a sequence in [0,1] satisfying condition (C1)

and (C2), and b Î (0,1). Then {xn} converges strongly to ∏F(T)u.

4 Application to zero point problem of maximal monotone mappings
Let E be a smooth, strictly convex, and reflexive Banach space. An operator A : E ®
2E* is said to be monotone, if 〈x - y, x* - y*〉 ≥ 0 whenever x, y Î E, x* Î Ax, y* Î Ay.

We denote the zero point set {x Î E : 0 Î Ax} of A by A-10. A monotone operator A

is said to be maximal, if its graph G(A) := {(x, y) : y Î Ax} is not properly contained in

the graph of any other monotone operator. If A is maximal monotone, then A-10 is

closed and convex. Let A be a maximal monotone operator, then for each r > 0 and x

Î E, there exists a unique xr Î D(A) such that J(x) Î J(xr) + rA(xr) (see, for example,

[19]). We define the resolvent of A by Jrx = xr. In other words Jr = (J + rA)-1 J, ∀r > 0.

We know that Jr is a single-valued relatively nonexpansive mapping and A-10 = F(Jr),∀r
> 0, where F(Jr) is the set of fixed points of Jr.

We have the following

Theorem 4.1 Let E, {an}, and {bn} be the same as in Theorem 3.4. Let A : E ® 2E*

be a maximal monotone operator and Jr = (J + rA)-1J for all r > 0 such that A−10 �= ∅.
Let {xn} be the sequence generated by

xn+1 = J−1 [
αnJx1 + (1 − αn)

(
βnJxn + (1 − βn)JJrn xn

)]
,

then {xn} converges strongly to ΠA-10x1.

Proof. In Theorem 3.4 taking D = E, T = Jr, r > 0, then T : E ® E is a single-valued

relatively nonexpansive mapping and A-10 = F(T) = F(Jr),∀r > 0 is a nonempty closed

convex subset of E. Therefore all the conditions in Theorem 3.4 are satisfied. The con-

clusion of Theorem 4.1 can be obtained from Theorem 3.4 immediately.
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