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Abstract

Based on interpolatory Hermite splines on rectangular domains, the interpolatory
curl-free wavelets and its duals are first constructed. Then we use it to characterize a
class of vector-valued Besov spaces. Finally, the stability of wavelets that we
constructed are studied.
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1 Introduction

Due to its potential use in many physical problems, like the simulation of incompressi-
ble fluids or in electromagnetism, curl-free wavelet bases have been advocated in sev-
eral articles and most of the study focus on the cases of R? and R® [1-4]. However, it is
reasonable to study the corresponding wavelet bases on bounded domains because of
some practical use. At the same time, the stability and the characterization of function
spaces are also necessary in some applications, such as the adaptive wavelet methods.
In recent years, divergence-free and curl-free wavelets on bounded domains begin to
be studied [5-8]. In particular, [8] use the truncation method to obtain interpolatory
spline wavelets on rectangular domains from [3]. Inspired by this, we mainly study the
interpolatory 3D curl-free wavelet bases on the cube and its applications for character-
izing the vector-valued Besov spaces.

In Section 2, we first give the construction of interpolatory curl-free wavelets and its
duals on the cube. The characterization of a class of vector-valued Besov spaces are
given in part 3. Finally, we also study the stability of the corresponding curl-free
wavelets.

Now, we begin with some notations and formulae, which will be used later on. Let &
and &5 stand for two cubic Hermite splines:

EF(x) = (1 —3x% — 2x°) Xj_1,0) (%) + (1 — 3x% + 2x7) Xjo, 1) (%),
E5(x) = (x+2x% +2°) Xj_1,0)(x) + (x — 2% + x> ) Xjo,1) ().
Similarly, the quadratic Hermite splines are defined as

& (x) = (—6x—6x2)X[,1,0],§’2_(x) = (1+4x+3x2)X[,1,0](x)+(1 —4x+3x2)X[0,1)(x).
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Let Z]Q ={0,1,.., 21'},21.1 ={1,2,.., 21},Z]2 ={0,1,..,2 — 1},
={1,2,..,

and
2/ — 1). For each J = jo, define the scaling functions on [0,1]:

%_m]k = S (2]x - k)X[O 1] ke Z]Q;
= E (Px—R)Xjo) = & (Dx— k), k€ 258, = & (Px — k)Xo, k € Z).

Let V™" = span [Eljk’ bk k€ Z]Q]’VJ'A(_

) A— A .
=: span [Sl;j,kl’gz;j,kz ki eZLk, € Z]Q], then
A+ A,—
{Vj } and {Vj

} are two MRAs on L*([0,1]) [8]. The corresponding duals ?g",ﬁ]ik are
given in the sense of distributions:

Er = 80, (f 51]k> f@7k) ke 2055 = — 0,<f 52]k> =297 (27k), k € 2°;

27k

E = Xvop (f, E@;) Y / f)dxk e 21 E = 5, <f, Eﬁ/;) - fk) ke 2.

27i(k—1)

The inperpolating multi-wavelets nﬁ;ﬁ on [0,1] as well as the wavelet spaces are
defined by

M) = 15 () Koy = 75 (), € 25 W = span [nick cm = 1,2,k e 27

with nn=&n(2-=1),m=1,2n =16 (2-—-1)—=&7(2--2);n;, =1& (2 --1).
Here and after, /1;(-) = h(2 - -k). The corresponding duals are given by

1 1 1 1 3 3 1 1 1
N7 =281 — 8g— & 8o— 81, nh= T8g— 81— 81— 80— 84,
m 1 5 0 5 1+8 0 8 1, My 4 0 4 1 5 1 0 8 1
2 2
1 1 1 1 3
;= X — A — 8o+ 61, 7, =81+ 8o+ 81— _AX
m [0,;] [§1] 4 0 41 P ; 4 0 41 ) [0,1]

and <f nm " k> = (f (;f‘) p ﬁ$> Moreover, there is the following differential relations

1,k()—zf(sl,k(x) e (e —27)) ke 2 L Ea(x) = Vel (v)

d
0. 1, A— 2
51]2]— 51]2,, EZ]k zézjk,keZ dnm/]k_zﬁ nm‘jk,ker. (1.1)

51]}:: ( sl]k s1]k 1) 52]k=_ s2]k

2 Curl-free wavelets on the cube

For _u>(x, ¥,z) = (u1,u,u3)7, the 3D curl-operator is defined as
curl—u> = (82113 — 33“2, 33111 — 81u3, 811,42 — 82u1)T.

Let I € {1, 2, 3} =: Iy, define scaling functions

3

(pfn(xlerI x3) = l_[srlnwu(xv)r m = (mll my, m3)T S {]-r 2}3
v=1

. rvel
with E;Iw: {;ﬁ e
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The corresponding wavelets are

Iﬁg{m(xl/ x2rx3) = l—[ ﬁi‘/,mwv(xv)re S Eﬁ: m = (mlr my, m3)T € {172}3
v=1

Here and after, Ej denotes the non-zero apexes of the unite cube and

£=0,
I - v’
Vs {nu =1

Let <pm]k wm]kXIO 11> Which is the tensor product of corresponding interpolatory

scaling functions on the interval. The corresponding duals are given similarly. Further-
more, define

?ﬁ,i;ﬁk = (pﬁf%\{l}S VA =: span {E),An/i;jrk cme{l,2) ke Vi1 <i< 3}

and the projection operators:

— —
Np = AMEAs) o ARy 4 AN A = ANy 4 AR sy + AN Pss,

I |
Lemma 2.1 [8]. For smooth functions
2 [ of
. 3 3 AAIp _ A AN .
f:10,1P = R 2 AMf = A <8xi>’lel"
Proposition 2.1. For

T e C(auk[0,11P) = (T € (C([0,1P))? : curl T € (C([0, 1))’y  there  has
curl (XJA?) = Xf’*(curl?)-

Proof. Note that Lemma 2.1, then

T\)iA’*(curl?)=A]-A'm(?f3 - 3f2)51+Af"2’ <3f1 - 8f1)52 & (aﬁ - 3f1>53

0x;  0x3 X3 ox 0x1 0x2
A2 NTEY 3 (2,3) A(lz)
= AT - AT ) 8
<8x2 J f3 33(,'3 J f2 e B.X3 fl f3 2
0 A3 EUNTEY
AM3Le AN 53
* (3x1 1 f2 sz ] fl 3

which is curl (7\)]4 ?) by definition.

Proposition 2.1 is important, because it tells us that XJA keeps curl-free property. In

general, vector-valued wavelets and wavelet spaces are given, respectively, by
—_—
o = weAmIz\k{’}a WA =: span {$em”k ecE;,me{l1,2’,1<i<3,ke VO}

Foree Ejand me {1, 2}3, we define

Ac A= Al 0 Al i 0 AL Al 1
we,m;j,k =2 Jgradv,[/elm;“jlk =2 ]8x1 1//e’ml_‘}'k81+2 ]szl// % p82+2 JBxg '/’e,m;oj,k‘33'k S

Clearly, curl (1// )=0.

e,m; 1 k
. - = A
To give a decomposition for W take

—

Anon _, , Adog\{i} 2
v emijk wem]k Sisk € V
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for i € Ip\{i.}. Here, we choose i, such that e;, = 1.

Proposition 2.2. The vector-valued function system
—Ac —” A,non * 3 : 1 PARE D TOA
U ot V¥ ey € € E5m € {1,281 # e,y € V), ky € V/'} is complete in W

Proof. It is sufficient to show the statement for j = 0. Let 7) € V)vg satisfy

(7.0 50) = (17 2m0,) = 0

for all e € E5,m € {1,2), k € V]-l U V,-z}, 1 <i<3andi = i. Here, the inner product
- >
is in L*([0,1]%). Without loss of generality, one assumes i, = 1. Then, (f, W eA"??gk> =0

leads to
A,Ip\{2 AL
(fz’ we,m;oo\,ﬁz }> (f Ipe mo()\k ) = 0.

By the definition of y' and differential relations (1.1), one knows

0 Al 0 Al
( 2 3%y we,m?&k) = < 31 9% 1pe,m;ﬂO/k =0.

- a
Moreover, (f,l_/;fy;,f;olk) = 0 reduces to <f1/ o, Yo ) = 0. Now, it follows that

e,m;0,k

( 1, wﬁr;ff’o\',{zl}) =0 from i, = 1. Finally, (]?, E)ﬁm,i;o,k) =0 and 7) - _0> follows from the
definition of W@«
To give the bi-orthogonal decomposition, we define
= 1~

Ac  _ 7 Ao\ fie}
1'Z/e,m;j,k - 2we m(;k 5 (2'1)

Assume I = {i, i,, i'}, then

K] .
curl AN < curl o\ s, 2 ol g oMl ) Oy AloNils

emijl = e,m;jk e,m;j,k dx e,m;j,k
i
with |e1] = |ex| = 1 and &16, = -1. Now, define
= 1
A,non _ ., 7 A Io\{iie}
er,m,i;j,k =t i curl ell/fem]k 8. (2.2)

Here, the derivatives are meant in the sense of distributions. Now, we state the main

result:

Proposition 2.3. The set
A, A, 3., 1 2, - .
{‘/je,rrf;j,kl’ we,ﬂrll,zjl',lkz’e € E*/ me {112} ;1 # le/] Z]Or kl [S v] Ik2 € V] } 1s a bl—OrthOgOnal

wavelet basis of L%([0,1]%)® with duals defined in (2.1) and (2.2).
Proof. According to Proposition 2.2, one only need show

~ | =7 A,non ﬁA,C _ 0
(@) <w e m i k' v emjk| — 0;

A,non
e m',i;j k'

A,c .
e’,m’;}",k’> = 8¢,e'Sm,m 8, Ol e

mL

(”) <wem]k’ 0;

*Sll

(i) <wem1k,
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. _)A,non ?A/non
@) <¢ ey, my, iyl ’ 4 e2,m izt | 861’ezaml'mzail'iz(Sjl'jzakl'kz'

The identity (i) holds obviously for i # i.. For i = i, since i # i, then i, # iy, which

means e = ¢’ Finally, the result (i) follows from the bi-orthogonality of 1//?7% ’}i/ d
7 A Ip\{i}
1‘0te,m,'0j,k :

Note that <7), curl ?) = <curl 7), _g)) Then (i) follows from curl-grad = 0. Further-

more,

—Ac Tac T o0 Al 7Ab\ig) 1o an 9 =al\)
<‘/’e,m,-j,k' we,ym,;]-,yk,> = _x27 ox.. Vomgae Ve | = =527 (Vomine oxi, Vomik |-

2
d_ A

Then by the fact dx = —27; and the bi-orthogonality of Ylih, &0, one obtains

—Ac  TAc il Ay AL

< I// e,m;j,k’ 1// e’,m’;j’,k’> =27 <1//e'm;0j'kl ‘ﬁezlm(f;j/'k/> = 3e,e’8m,m’8j,j’8k,k’~
Now, it remains to prove (iv), which is equivalent to

=i wA do\{ 1171e1 - 9 d 1)[IA/IO\{il} 5 18 &A/Io\{iz,iezlg_,

€1 ey, my;j1 .k 3xi/1 ey,my;j1ky ey’ 2 1Y) mysjn ks ©12 (23)

= 6@1 /€2 (Sml /My (Sil A2 8]1 J2 6k1 o

It is easily proved, when e; = e,: In fact, since i,, =i, one can assume i; = i, and
i} = i) because i; = i, leads to (2.3) obviously. In that case, the left-hand side of (2.3)

N1 i, } al\{iz,iez}
er,myji ki’ 7 ea,maijaky

reduces to 2¢; - % - 21 <1p > = 8my,my0j1,j, 0k ki Which is the desired.

To the end, it is sufficient to prove that for e; = e,, that is

ey,my;j,k eymiji ke’ o e2,My3j2,k;

<281 e 8+ 2 ea Y 8 et b, > -0 (2.4)
Xiry

Note that 1, € {iy, 1}, i, }. Then the conclusion is obvious when #, = i;. When i, = i},

then {iy, i} = {i2,ie,} and the left-hand side of (2.4) reduces to
Ado\iviey ) 57 Ado\iz/de, } . .

2¢1 - 9 <1/fe],,21;]-]1,k]1 , 1/162,m02;]-;k22 > = 0. Hence one only need to show (2.4), when i, = i,,

However, (2.4) becomes
el o\ I/NIA,Io\{iz,iez} _o (2.5)
3xi, e1,my;jik" ¥ ey,maia ko - .
1
in that case. Since {i1, i}, 1} = {i2, 15, 1.,} = I, two cases should be considered:

d .
iy = 11,1y =g, I, = 1y and iy = 1}, 1, = i, ¢, = i1. Using p = =27+, the left-hand side
!

of (2.5) is
CoadEy 8 A )\ et [ Ad\i) AN} \
<we1,m1,j1,k1’ Ay, weymzrjzlkz >_2 welrml;jlrkll e2,ma;j2 ky =0
in the first case; In the second one, the left-hand side of (2.5) becomes

9 o o 9 ,
< wA’IO\m wA’I°\{412’12}>. According to the differential relation (1.1), o y SN
i>

ax; ey,myji,ki T ex,masfa ko eq,my;j1,k
2
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a linear combination of wifgl\g? }Z} By the bi-orthogonality of weAlle\g? ,;f and lpéi fzz\{]l; klj},

one receives the desired conclusion.

3 Characterization for Besov spaces
We shall characterize a class of vector-valued Besov spaces in this section. For 0 <p, ¢
< o and s > 0, the Besov space B;(Lp(Q)) is the set of all fe L”(Q) such that

If

By(1/(R) = H{zsjwmoc' 27, Lp(Q))}”m <+

with m = [s] + 1 and o,,(f, 27, [?(Q)) the classical m-order modulus of smoothness.
The corresponding norm is defined by

If

B((Q) ||f||L1’(Q) |f By (LP(2))"

Our Besov space is defined as
By(1/([0,1])) = (T e (By(LP([0, 1)) : x_fi € By(LP([0,11%)),i=1,2,3;j #1)
j

with the norm

3fz

|7

B (o) Z Il +Z 2 |

i=1 i=1 1<j<3
j#

By(Lr([o1]° ))

— v ~

Clearly, curl f € (B (LA([0, 113)))> when f ¢ By (LA (10, 1))

The following lemma is easily proved by the definition of modulus of smoothness:
Lemma 3.1. If f(x), §(x) € By(L”(R)), then f(x1)8(x2) € B (L"(R?)).

For & = (oj)jj, and o = (04 define

(s~
lellg,, = {2 P Nyl

29

Lemma 3.2 [8]. If ¢ € B (LP(R")) is compactly supported, 0 <p, g < o and 0 <s <0,
then

) (s—n)j
> B2 k) <2 P Bl

kev; By(L(0.1]"))

DO (2 —k) S lelle,,

JZlo ke By (12 (10,11")

where V; =: {k : suppo(2 - -k) € [0,1] "}
Theorem 3.1. Let _)A . w , and wAn‘m be defined in Section 2. If 0
em]k

mz] e,m,i;jk

1
<s<1+pand0<p,q£oo,thenonehas
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—A c A non 7 non
Z Z Bunie @ mijo.re * Z Z Z DLomik ¥ emjte Z Z Z Lomijhe ¥ emijk

m,i keV; j=jo e,m,i#i, ke V! j=jo em rev? —
o $ J By ((01]))
<2 Bmill + lorgmill o + [l
~ mi|| gp e,m,i £s+l e,m [;‘{71 .
m,i em i#i,

Proof. It is enough to prove the following inequality:

S [1Bmill
B ((011)

Z ﬁmlk§0m110

keVj,

(i)

c
(ii) Z Z em,]kwem]k S ”aem z;;fql:
jZjo keV}!
! By(1r([0.1]%)
non 7/ non < H non i P
(111) Z Z Ole,nfl,i;j,k e,m,i;jk [ %emyi || st (1 7‘ le)-
JZjo ke v} =~ 3 P
By(Lr([0,1]7)
- _. —A
Let I = Z Pmike @ mijok and h, be the vth component of ;. Then, for y = i,
keVj,
h; = Z B\ (20x — k), Z B in 20 < @l ) (2ox — k).
keVj, keVj, X

1 1 1
: 2+ 1+ 1+ I\{i}
Since £ e B..? (I’(R)) < B.." (IP(R)) and £ c B.." (IP(R)Y then both ¢, ' and
d i 1
i, (0111}{1} are in the Besov space B(:p (LP(R3)Y due to Lemma 3.1. Moreover, Lemma

bl
h;

dx, < || Bmill . Note that i, =

By (L ([0.1]%))
0 for v = i. Finally, the first inequality follows from the definition.

3.2 implies 1hillg: (1r(j0,1%)) < < |Bmil  and ‘

Let Z Zl aemlk wemjk and g, be the vth component of ¢ £ (1 <v<3) Then
j=jo keV;
c 9 Io j
gU = Z Z ae,m;j,k 9 we,m (2 X — k)/
jZjo keV} Y
02 j
gv—zzzaem]k x 8 (2x—k)
JZjo kev}
- . 9 1] .
Similar to the above, o 01 € Boo? (LP(R?)). According to Lemma 3.2,
ox, " 0x,0x,
”gv s 3 S ||05e,m s S, ”ae,m «1 and 8 S ”ae,m 541«
By(Lr([0,1]7)) b g 0xy, B (L(10,1])) v

Finally, one receives the second inequality and the last one follows analogously.
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Let W¥ (D) denotes the Sobolev space with regularity exponent y and domain D.
Moreover,
E4 (f, WX(D)) =: inf — Pl
d (f T ( )) Pelll;lldq ||f ”Wr (D)
Furthermore, let 0 = 27([0,11% + k) for k € (ij)S, the boundary cases are: when

there is only one k; = 2/(1 < i < 3), 0« is defined as replacing the ith position of 27
(ky, ky + 1] ® [k, ko +1] ® [ks, k3 +1]) by [27F, 2]; when k; = k; = 2 for i, i’ € {1, 2,
3}, both the positions i and i are replaced by (2%, 27; finally,
% 2i,212) = 279([27, Y@ |27, Y @ [271, ).

Lemma 3.3 [8]. Let
n—Z+;L<s<d,s>0,ueNo,0<p,q§oo,1§t§oo,joeN0,

p
Then

H <2j(s—§+2‘—u)

(Ea (f, W2 (‘fj«k)))kezn )jzjo ”eq S |ﬂ3;(u>([o,1]"))'

The following lemma can be easily proved, but it is important for proving Theorem
3.2
Lemma 3.4. The following relations hold:

(i) =1 (27 (k) )) = Sf@0 = @0 1) = 277 @)+ 2 s D)
(1) - 270007 (27 (k3 )) = @ 1)+ @)+ 270D ) G+ 1)

2(k+ ) 27(ke1) ) )
(i) =2 f f(e)dt — 2 / fOdt = f@TR) +  f@7k+ 1),
27k 279k )

279 (k1)
(asi)-=02 [ f@des @0+ ST 1) +F@ T ).

27k

3
Theorem 3.2. Let 1+p<s<3 and 0 <p, ¢q < . Then

= = — ﬁA' — ﬁA' . L .
Bui= (T % nison)), o, @om = << PV i omi = ({F ¥ cmigi jo = Li #ic satisfy
keVig, jzjokev}, jZjoke V7,

D Bmill + D | 2ol

em \ i,

I7

Cc
se1 T || ae/m s+1 -~ .
Ly L By (L2([0,11%))

Proof. One only need to show the following inequality:

W [Bnills |7

By ([0.11)

(i) H Yo

—
£s+1 5 H f
g

By(r((011%)

—
ls+1 5 H f
L

c
(i) ||ec5,, B (o)
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—
Note that B, ir = < f, Tﬁ,ﬁ,i ok > < i @ Nrﬁ]]"}z{‘ > Then one assumes i = 1 without loss of

generality and proves first

”ﬂmlnm H f1’~Ar10/ >)keV’,~0 o

%
<

By(r(j01)

1 1
By the embedding property, B;(L*(D)) € Wy (D) for s > » - _th and

”f” WD) ~ ”f By (I’(D))’ (3.1)

When my =ms = 1,

<f1’(pm]o >‘ — ”fl ||L°°(U,0 k— 51 for m = 1 or ”fl HLOO(U &) for my =
2.
Using (3.1), one obtains

1
p
P -
(kEXV;jg “fl ”Lx(")o,k&l)) =1

< e d
1Bl < < A ”B-;(U(IOAP))SH f
1

P
(2 1ilie) o -2

When mj3 = 2 (similarly for m, = 2), we obtain

1 ~a2) -
8X3'(pm;j"’k

By(r(lo])”

f

3x3

f

3x3

2o ,mp =1

Wi (0j0,k-81)

Kfl’ P >‘ =2 2
,ymy = 2.
Wi (004)

1
Note that 1 + <5 < 3, then the same arguments as above lead to (i).

For h € B;(L”([O, 1]*)), we first claim that there are only the following two cases:

@ (1 Fontih)| < 277 W (03)) 0r 27E3 (B, Wik (035

®) |(1 Fnlih)| S Bl L (03)) or Es( L™ (054-5)).
In fact, by the vanishing moment property of the dual wavelets, that is,
e (P1) = 0.Py € [ ], (P2) =0, P2 e [

Then (h 1//em]k> (h P, 1//em]k> for each P € II,. Hence, if ¢, = 1 or e; = 0 but m;

= 2, the differential relation (1.1) implies that

A"} —i
(. 7] <27

27]:||h — Pl (o, ks, € = 0,mi = 1;
~ 270k = Pllw o0, 0.

(o =252 <

Moreover, the (a) part follows from the definition of E5(h, WL (D)); If e; = 0 and m;
=1,
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o g AAE) Ith — P”L“’(U‘kfs.)' ei=0,m =1,
T (e
‘(h I/fekaH ‘(h Vemik|| = { h = Pllix (e, 0-W.

and the (b) part follows.

—
. . non c e ~
Now, one is ready to estimate @, ,, ;i) and ¢, ., By the definition of 1/,?;:?“, one

knows
— )
“?%nuk‘ Kf eArr??]nk> =271 KCUﬂf ‘ﬁfwﬁ\k{ﬂe}‘s >
i afi  of; af; fi, ~ai
_ j—1 L 1e Afi —j—1 i TAL) le Afi'}
=2 <3xie ax;’ 1/fem]k> 2 (Kaxie wem]k * Bxi’we'mijlk :
fi iy S |0 a
Define ﬁ;‘fn“l]k = <8x,~ ‘//em;k and ye“;rij/k =27 o, ‘/’eml]k Then, it is
sufficient to show
non non
I By(r(01]%)) I By ((011)
n= i o ke S 27 YEs(h, W 27%E5(h, W}
Let h =: o in our claim. Then em,isj < 3( 5o (T)) 3( 5o (07k-5))
i,
1-
or Bon . S 27Es(h, L (0j)), 27Es (h, L (0jk-s,)). By loell st = 2 Ol]”zp)”gq

and Lemma 3.3, one receives that

Il < | 2 <|7 .
s = o, Loy ~ | Iy
Similarly, Hy“"“ S “?H holds and Hoc“m < H?
P e~ 1 By w o) emilt ~ 1 WBw oy’

Finally, to estimate a,.; = <f 1//em]k> <1e frrfi\kl”), one assumes without

loss of generality that i, = 1 and of <f1, em]k > Note that : My, = —27;, and
x

ek =
d

fi ~aq
dx <8x1 1pem}k

or e3 = 1 or m, = 2 or ms = 2. Similar to the last case, one obtains
f1 i f1
O i S 27VEs ( Whio)) or 27Es (0 1 (o)

and (iii) is proved in these cases. Now it remains to show (iii), when e, = e3 = 0 and

g = —52 Then 27 with i, /e {2,3} and i # [, when e, = 1

em}k‘

VVIZZVI’Ig:lZ

For each P € Ily, let g(x;,, x3) be a primitive of P(x;,-x3), i.e.
g(x1, %2, x3) = /P(xl,xz,xa)dxz,

moreover, g}xZ=2’/(szl) =t 1 |sp=2-i(la—1) if ky = 1,2,...,2 and g’m:zﬂ' =t f1 |yymri if ky =

0. Since e; = 1 and 7,, has vanishing moments of order 2, then we obtain
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—2"'<(fl g) em‘f’k> Hh—g To) k=122

i 2,3)
2 ]<(fl 7g)’ 3%y em]k+62> <1 em]k+62>

(2,3}
(=872 - oo

. 0 ~ .
72—f<(fl -8, wﬁ,;fj,’k> , k=122
= —i 8 A3
2 1((,(1 9, em‘]’mz> ky=0
oh _ 33 o =1,2,..,2;
< ";xz 33’“2 1% (05,)
i O _ 98 . =0
sz 8x2 L“(a],k)
o .
2 2 p L ka=1,2,..,2;
- ax2 LOC ((’7'}(752 )
= 3
h_p , ky = 0.
8x2 L“(a],k)

Therefore, we have

. a .
27E;s ( /i ,Lw(aj,k,az)) Jky=1,2,..,2;
< 3X2

7T A{2,3}
‘(flf em]k >‘ = ‘(fl =8 Vo mijk >‘ N T
271E3 ( ,LOO(O']'/k)> , k2 =0.
aJCQ_

The desired result follows from Lemma 3.3.

It should be pointed out that there is no common range for s in Theorems 3.1 and
3.2. Indeed, this is a big shortcoming. However, we need only one estimate in many
cases.

4 The stability of curl-free wavelet bases
In this part, we shall prove that the single-scale wavelet bases that we have constructed
in Section 2 are stable. The following lemma is the classical result of functional
analysis:

Lemma 4.1. Let X be a Banach space and x1, %5,...,x, € X be linearly independent.
Then there exists a constant C > 0 such that for any scalars o, oy,..., &, one has

[lorx1 + coxo + ... + apXpll = C(Joq| + |ao] + ...+ |ag]).

Lemma 4.2 [8]. Let X be a Banach space and f}, fi»,..., in; € X be linearly indepen-

dent for each i = 1, 2,., m, then the tensor products
{fij, (x1)f2), (x2) - - - fmj, (k) Vi € (1,2, ..., 3}, i = 1,2, ..., m are also linearly independent.
Theorem 4.1. The function system

3

{2 2 I//‘em]k,z 2 wsﬁgﬁk”e eE;,mef{l,2P ke le,k/ € Vf,i #1i, 1 generates a Riesz
. = . .

basis for WjA with Riesz bounds independent of j.

Proof. By Proposition 2.2, one need only show the stability of the function system.
Let

— non Anon _>A
_'Zdem]kwe/m]k+zzdem1]k e,m,izjk Wj'

e,mk e,m,k i#i,
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Then ||Z)>||L2([0'1]3)3 < ||Z)>||Hs([0'1]3)3 for s > 0. Since H'([0, 1]*) = B5(L2(]0, 1]*)).

then ||7)>||L2([0'1]3)3 < ||_)|§52(L2([0'1]3)3). Moreover, one receives
1
5\ 2
|'& HLz([o Py S ZZ o ‘ Z e ,J,k‘ '
e,m,k i#i, e,m,k

due to Theorem 3.1. Now, it remains to prove the lower bound. Let
. o 3
i =1 27([0, 1] + k), k € (ij)s, then keng %k =10, 1] . We take an example for e =
i
(0,0, 1) and m = (2,1,1),

A+ - A+ ,
w e, ,], (52]/121 51] 123 nl] fes’ 2] kl (51] Iy ‘i:l;j/k2+1> nl] fes’ 2] Iy 51] kz /]/k3>
—7 A,non A,non _
v e,m, ik (52,],121 51 ko ]71 bE k; 0, 0) v em, 2k (O g:2] Iy 51 ko ]71 bE k; O)

For each fixed k € (Z})’, by the characteristics of supports, Lemma 4.1 and 4.2, one
has
[ 1 as -
O
2

non 7 Anon on — Anon non —> Anon
+d m, 1k ]// em, 1k + de m,1;j+6; I// e,m,1;j,k+8, + Z ( e,m, 1L;j k+8, l// e,m,;i;j,k+81+

wn=1

2
— — A —
c Ac c Ac c Ac
e,m;jk w e,m;j ke + Z de,m;j,k+5, w e,m;jk + de,m;]',k+81+62 w e,m;jle+81+8;
i=1

— —> A — 2
non A,non c non A,non
e,m,u;j,k+81+8; w e,m,u;j,k+51+62) + ( e,m;j,k w e, m] ®t de m,ij ke w e,m,i;j,k’)‘ dx

e#(0,0,1),m#(2,1,1),i#i., k'
2

non

. 2
d * | be,m, 155k

e,m;j,k+81+38;

) oz

e#(0,0,1),m#(2,1,1),i#i., k'

2 2
c non
=C de,m;j,k+5, + e,m,1;j,k+8; )

2
[
IS

i=1

|+

mon
e,m,u;jk+8,

mon 2 mon
d + e,m,i;jk

e,m, u;j,ke+81+8

dC

2
+ e,m;j, k'

)
Finally, the lower estimation follows from

I3 oy = £ [BFarze| DX jam + 2

kG(Z,-Z)SO'j,k e,mk i#i, e,mk

dC

e,m;j,k

Corollary 4.2. The system {2 2 wem]k,e €eEj,me {1,2)3, ke le} is a Riesz basis

for V)V]-A'C =: span {2 1& em]k,e eEt,me{l1,2)3 ke le} with bounds independent of

J.
—
Proof. Note that @ = > d; e,mij k we/m]k + Zk > d?(r)r:ll/]/ eAerl?]nk € WjA and curl-grad
e,m, e,m,k i#,
= 0. Then the desired result follows from the fact that 7 is curl-free if and only if for
all dyoiip = 0.

e,m,i;j,k
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