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Abstract

In this article, we establish a double inequality between the generalized Heronian
and logarithmic means. The achieved result is inspired by the articles of Lin and Shi
et al, and the methods from Janous. The inequalities we obtained improve the
existing corresponding results and, in some sense, are optimal.
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1 Introduction
The logarithmic mean L(a, b) of two positive numbers a and b is defined by
b a #b,

a—
L(a, b) — )] loga—logb’

1.1
a, a =b. (L.1)

Recently, the logarithmic mean has been’ the subject of intensive research. In parti-
cular, many remarkable inequalities for the logarithmic mean can be found in the
literature [1-30]. It might be surprising that the logarithmic mean has applications in
physics, economics, and even in meteorology [31-33]. In [31], Kahlig and Matkowski
study a variant of Jensen’s functional equation involving the logarithmic mean, which
appears in a heat conduction problem. A representation of the logarithmic mean as an
infinite product and an iterative algorithm for computing the logarithmic mean as the
common limit of two sequences of special geometric and arithmetic means are given
in [17]. In [34,35] it is shown that the logarithmic mean can be expressed in terms of
Gauss’s hypergeometric function ,F;. And, in [35], Carlson and Gastafson prove that
the reciprocal of the logarithmic mean is strictly totally positive, that is, every n x n

determinant with elements L(x,{yf)’ where 0 < %1 < xp <. < x,and 0 < y; < Y5 <. < Yy

are positive for all n > 1.
The power mean of order r of two positive numbers a and b is defined by

1
Ma b= 1 (3) A0, (1.2)

Jab, r=0

It is well-known that M,(a, b) is continuous and strictly increasing with respect to
r e R for fixed @, b >0 with a = b.
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Lin [18] presents the sharp power mean bounds for logarithmic mean as follows:

Mg (a,b) < L(a,b) <M1 (a,b) (1.3)
3

for all @, b >0 with a = b.
For w 2 0 and p € R the generalized Heronian mean H,, (4, b) of two positive

numbers a and b is introduced by Shi et al. [36] as follows:

P p
a’+w(ab) 2 +b*
H,,,(a,b) = [ P } P70, (1.4)
ab, p=0.

From (1.2) and (1.4) we clearly see that H,o(a, b) = M,(a, b) for all pe R and a, b
>0. It easily follows from (1.4) that H,,,, (a, b) is continuous with respect to p € R for
fixed a, b >0 and w = 0, strictly increasing with respect to p € R for fixed a, b >0
with a # b and w = 0, strictly decreasing with respect to w > 0 for fixed a, b >0 with
a # b and p >0, and strictly increasing with respect to w > 0 for fixed a, b >0 with a =
b and p <0.

In [37], Janous prove that

L(a,b) < Hy4 (a,b) (1.5)

for all @, b >0 with a = b.

The purpose of this article is to find the greatest value p = p(w) and the least value
q = q(®) such that the double inequality H,,,, (4, b) < L(a, b) < H,,, (a, b) holds for
fixed w = 0 and all @, b >0 with a = b.

2 Main result
Theorem 2.1. For fixed w > 0 and all ¢, b >0 with a # b we have

How(a,b) < L(a,b) < Howr (a,b), 2.1
:2,

and ngl,w(“' b) and H, (a, b) are the best possible upper and lower generalized

Heronian mean bounds of the logarithmic mean L(a, b), respectively.
Proof. Without loss of generality, we assume a > b and put t = j > 1. Then from

(1.1) and (1.4) we get

log[L(a, b)] — log[H ws2 Lab)]

w+2 w+2

t—1> 6 l+wt12 +t 6 (2.2)
= log — log .
logt w+2 w+2
Let
1 6 1 w+2 w+2
r— +owt 12 +t 6
t)=1 - 1 . .
4o, Og(logt) w+2 08 w+2 (2.3)
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Then simple computations lead to

lim (1) =0, (2.4)

: f(0)

10 = DI (2.5)
t(t—l)(l +twt12 +¢ 6 )logt

h w+14 w+2 w+2 +8 w+2 w+14 w+2
where fi(f) = (5t 12 +t 6 +9t12 +t)logt—t 6 +t 6 —owt 12 +wt12 —t+1-

fi () =0, (2.6)
14) w+2 2) w+10 2 w+4

f1(0) = ol )t12 +a)(a)+ )t 12 +a)+ t 6 +1]]logt

24 24 6 2.7)

w+8 o2 w+8 o4 w(w+8) @2 w(w+8) »-10 .
- 6 + re6 — 12 4 t 12,
6 6 12

fi(1) =0, (2.8)
. 1 -10
1 (1) = 288" © f2 (1), (2.9)

here 10 = [0(@+2)(0+ 1)t 127 4 o(@+2)(@ — 10)12 +8(w+ 2)( — 4)] log t — 2e(w+
where

10—w 3 _w+2 4-w 5 :
4w — 68)t 12 +2w(w” +4w — 68)t 12 +288t 6 — 8(w+2)(w + 8)t+8(w” + 10w — 20)

(1) =0, (2.10)

1 w+14
L= 0 12 () (2.11)

f3(t) = —[o(o+2)(@+14) (@ — 10)t — w(w +2)*(0 — 10)]logt + 20(w® — 120 + 848)t+
where w12 10-0 w+14
20(w+2)*(4 — ) +96(w +2)(w — 4)t 12 —576(w —4)t 12 —96(w+2)(w + 8)t 12 .

f3(1) =0, (2.12)
f5(t) = —o(w+2)(o+ 14)(w — 10)logt — o(w + 2)?*(w — 10)t~!
$8(@+2)2(0—a) 12 — 8w+ 2)(w+8)(w+ 14) 12 (2.13)

+2 3 2
+48(w — 4)(w — 10)t 12 + w(w’ — 6w” + 108w + 1976),
f3(1) =0, (2.14)

J O =t"f®, (2.15)

fa(t) = —o(w+2)(w+14)(w — 10)t + (0 +2)*(w — 10) + g(w +2)% (0 — 4)(0—
where w2 w14 10~
10)t 12 — 2w+ 2)%(w+8)(w+14)t 12 —4(w — 2)(w — 4)(w — 10)t 12 .

fa(1) = —8(w + 2) (50> — 10w + 32) < 0, (2.16)
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w—10

(1) = —o(w+2)(w+14)(w — 10) + 118 (w+2)* (0 —4)(w— 10)t 12
- 118 (0 +2)*(w+8)(w+ 14)2tw1+22 (2.17)

1 9 _w+2
+ 3(a)+2)(a)—4)(w— 10)°t™ 12,
/ 2 3 2
f2(1) = —3(a) +2)(50° + 60w” — 108w + 448) < 0, (2.18)

(0=, 0+ 220 R ), (2.19)

where  fo(0) = (@+2)(@ — 4)(@— 105 — (0 +2)(w + 8)(w+ 1425 — 6(w

4)(w — 10)?
f5(1) = —=6(11° + 360w° + 588w + 256) < 0, (2.20)
o= R, 2.21)
where
fo(t) = (0 — 4)*(w — 10)?> — (0 + 2)(w + 8)(w + 14)%t, (2.22)
fs(1) = =6(11e> + 36w* + 588w + 256) < 0. (2.23)

From (2.22) we clearly see that fy(¢) is strictly decreasing in [1, +), then (2.23) leads
to that

fe@® <0 (2.24)

for t € (1, + oo).
It easily follows from (2.5)-(2.21) and (2.24) that

ffm <o (2.25)

for te (1, + ).
Therefore, L(a, b) < H wgl ’w(a, b) follows from (2.2)-(2.4) and (2.25).
On the other hand, Hy(a, b) = M(a, b) < L(a, b) follows from (1.3).
Next, we prove that Hy ,(a, b) and ngZ /w(a, b) are the optimal lower and upper
generalized Heronian mean bounds of the logarithmic mean L(a, b).
Forany 0 <¢ < “’gz, ® > 0 and x >0, from (1.1) and (1.4) we have
lim He.o(1,%)

X—>+00 L(l,x)
1
_€ &
(T+wx 2 +x7°)
_1
X

1 (2.26)
(w+2) ¢ lim |

logx]

+00,
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log[L(1, 1 +x)] —log[Hw+2 (1, 1+x)]
6 —&,0

_ £ N 5 (2.27)
= 4(a)+2)x +o(x’) (x— 0).

Equations (2.26) and (2.27) imply that for any @ 2 0 and 0 < ¢ < "’gz there exist
sufficiently large X = X(¢, ) >1 and sufficiently small 6 = 0 (¢, w) >0; such that H,,
(1, x) > L(1, x) for x € (X, +o) and L(1, 1T+x) > ngZ —E,a)(L 1+%) for x e (0, 9).

Remark 2.1. If we take @ = 0, then inequality (2.1) reduce to inequality (1.3).
Remark 2.2. If we take @ = 4, then the upper bound in inequality (2.1) becomes the
upper bound in inequality (1.5).

Acknowledgements

This study was partly supported by the Natural Science Foundation of China (Grant nos. 11071069, 11171307,
11171105), the Social Science Foundation of China (Grant no. 10BTJ001), the Natural Science Foundation of Hunan
Province (Grant no. 09JJ6003), and the Innovation Team Foundation of the Department of Education of Zhejiang
Province (Grant no. T200924).

Author details

'School of Primary Education, Chuxiong Normal University, Chuxiong 675000, China “School of Mathematical Science,
Anhui University, Hefei 230039, China *School of Mathematics and Computational Science, Hunan City University,
Yiyang 413000, China

Authors’ contributions
H-XS provided the main idea in this article. B-YL carried out the proof of inequality (2.1) in this article. Y-MC carried
out the optimality proof of inequality (2.2) in this article. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 22 December 2011 Accepted: 13 March 2012 Published: 13 March 2012

References

1. Xia, W-F, Chu, Y-M, Wang, G-D: The optimal upper and lower power mean bounds for a convex combination of the
arithmetic and logarithmic means. Abstr Appl Anal 2010 (2010). Article 1D 604804, 10

2. Chu, Y-M, Xia, W-F: Two optimal double inequalities between power mean and logarithmic mean. Comput Math Appl.
60(1), 83-89 (2010). doi:10.1016/j.camwa.2010.04.032

3. Shi, M-Y, Chu, Y-M, Jiang, Y-P: Optimal inequalities among various means of two arguments. Abstr Appl Anal. 2009,
Article ID 694394, 10 (2009)

. Chu, Y-M, Xia, W-F: Inequalities for generalized logarithmic means. J Inequal Appl. 2009, Article ID 763252, 7 (2009)

5. Long, B-Y, Chu, Y-M: Optimal inequalities for generalized logarithmic, arithmetic, and geometric means. J Inequal Appl.
2010, Article 1D 806825, 10 (2010)

6. Chu, Y-M, Long, B-Y: Best possible inequalities between generalized logarithmic mean and classical means. Abstr Appl
Anal. 2010, Article ID 303286, 13 (2010)

7. Qiy, Y-F, Wang, M-K, Chu, Y-M, Wang, G-D: Two sharp inequalities for Lehmer mean, identric mean and logarithmic
mean. J Math Inequal. 5(3), 301-306 (2010)

8. Xia, W-F, Chu, Y-M: Optimal inequalities related to the logarithmic, identric, arith-metic and harmonic means. Rev Anal
Numér Théor Approx. 39(2), 176-183 (2010)

9. Chu, Y-M, Wang, S-S, Zong, C: Optimal lower power mean bound for the convex combination of harmonic and
logarithmic means. Abstr Appl Anal. 2011, Article ID 520648, 9 (2011)

10.  Chu, Y-M, Wang, M-K: Optimal inequalities between harmonic, geometric, logarithmic, and arithmetic-geometric means.
J Appl Math. 2011, Article ID 618929, 9 (2011)

11. Chu, Y-M, Hou, S-W, Gong, W-M: Inequalities between logarithmic, harmonic, arith-metic and centroidal means. J Math
Anal. 2(2), 1-5 (2011)

12, Hu, H-N, Wang, S-S, Chu, Y-M: Optimal upper power mean bound for the convex combination of harmonic and
logarithmic means. Pac J Appl Math. 4(1), 35-44 (2011)

13. Qiy, Y-F, Wang, M-K, Chu, Y-M: The sharp combination bounds of arithmetic and logarithmic means for Seiffert's mean.
Int J Pure Appl Math. 72(1), 11-18 (2011)

14.  Allasia, G, Giordano, C, Pe¢ari¢, J: On the arithmetic and logarithmic means with applications to Stirling’s formula. Atti
Sem Mat Fis Univ Modena. 47(2), 441-455 (1999)

15. Alzer, H: Ungleichungen fur Mittelwerte. Arch Math. 47(5), 422-426 (1986). doi:10.1007/BF01189983

16. Burk, F: The geometric, logarithmic, and arithmetic mean inequality. Am Math Monthly. 94(6), 527-528 (1987).
doi:10.2307/2322844

17. Carlson, BC: The logarithmic mean. Am Math Monthly. 79, 615-618 (1972). doi:10.2307/2317088

18. Lin, TP: The power mean and the logarithmic mean. Am Math Monthly. 81, 879-883 (1974). doi:10.2307/2319447



Shi et al. Journal of Inequalities and Applications 2012, 2012:63 Page 6 of 6
http://www.journalofinequalitiesandapplications.com/content/2012/1/63

19. Maloney, J, Heidel, J, Pecari¢, J: A reverse Holder type inequality for the logarithmic mean and generalizations. J Austral
Math Soc Ser B. 41(3), 401-409 (2000). doi:10.1017/50334270000011322

20. Pittenger, AO: Inequalities between arithmetic and logarithmic means. Univ Beograd Publ Elektrotehn Fak Ser Mat Fiz. ,
678-715: 15-18 (1980)

21, Pittenger, AO: The symmetric, logarithmic and power means. Univ Beograd Publ ElektrotehnFak Ser Mat Fiz. 678-715,
19-23 (1980)

22. Séndor, J: On the identric and logarithmic means. Aequationes Math. 40(2-3), 261-270 (1990)

23. Sandor, J: A note on some inequalities for means. Arch Math. 56(5), 471-473 (1991). doi:10.1007/BF01200091

24. Sandor, J: On certain identities for means. Studia Univ Babes-Bolyai Math. 38(4), 7-14 (1993)

25. Sandor, J: On certain inequalities for means. J Math Anal Appl. 189(2), 602-606 (1995). doi:10.1006/jmaa.1995.1038

26.  Sandor, J: On certain inequalities for means 1. J Math Anal Appl. 199(2), 629-635 (1996). doi:10.1006/jmaa.1996.0165

27. Sandor, J: On certain inequalities for means lll. Arch Math. 76(1), 34-40 (2001). doi:10.1007/s000130050539

28. Stolarsky, KB: The power and generalized logarithmic means. Am Math Monthly. 87(7), 545-548 (1980). doi:10.2307/

2321420

29.  Vamanamurthy, MK, Vuorinen, M: Inequalities for means. J Math Anal Appl. 183(1), 155-166 (1994). doi:10.1006/
jmaa.1994.1137

30.  Alzer, H, Qiu, S-L: Inequalities for means in two variables. Arch Math. 80(2), 201-215 (2003). doi:10.1007/500013-003-
0456-2

31, Kahlig, P, Matkowski, J: Functional equations involving the logarithmic mean. Z Angew Math Mech. 76(7), 385-390
(1996). doi:10.1002/zamm.19960760710

32. Pittenger, AO: The logarithmic mean in n variables. Am Math Monthly. 92(2), 99-104 (1985). doi:10.2307/2322637

33. Pdlya, G, Szego, G: Isoperimetric Inequalities in Mathematical Physics. Princeton Uni-versity Press, Princeton. (1951)

34, Carlson, BC: Algorithms involving arithmetic and geometric means. Am Math Monthly. 78, 496-505 (1971). doi:10.2307/
2317754

35, Carlson, BC, Gastafson, JL: Total positivity of mean values and hypergeometric func-tions. SIAM J Math Anal. 14(2),
389-395 (1983). doi:10.1137/0514030

36.  Shi, H-N, Bencze, M, Wu, Sh-H, Li, D-M: Schur convexity of generalized Heronian means involving two parameters. J
Inequal Appl 2008 (2008). Article ID 879273, 9

37. Janous, W: A note on generalized Heronian means. Math Inequal Appl. 4(3), 369-375 (2001)

doi:10.1186/1029-242X-2012-63
Cite this article as: Shi et al: Optimal generalized Heronian mean bounds for the logarithmic mean. Journal of
Inequalities and Applications 2012 2012:63.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 Main result
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

