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Abstract

The generalized Nash equilibrium problem is a generalization of the standard Nash
equilibrium problem, in which both the utility function and the strategy space of
each player may depend on the strategies chosen by all other players. This problem
has been used to model various problems in applications but convergent solution
algorithms are extremely scare in the literature. In this article, we show that a
generalized Nash equilibrium can be calculated by solving a variational inequality (VI).
Moreover, conditions for the local superlinear convergence of a semismooth Newton
method being applied to the VI are also given. Some numerical results are presented
to illustrate the performance of the method.

Keywords: Nash equilibrium problem, generalized Nash equilibrium problem, varia-
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1 Introduction
In this article, We consider the generalized Nash equilibrium problem (GNEP). To this

end, we first recall the definition of the Nash equilibrium problem (NEP). There are N

players, each player ν Î {1,...,N} controls the variables xν ∈ �nν. All players’ strategies are

collectively denoted by a vector x =
(
x1, ..., xN

)T ∈ �n, where n = n1 + ... + nN. To empha-

size the νth player’s variables within the vector x, we sometimes write x = (xν, x-ν)T, where

x−ν ∈ �n−ν subsumes all the other players’ variables.

Let θν : �n → � be the νth player’s payoff (or loss or utility) function, and let

Xν ⊆ �nν be the strategy set of player ν. Then, x∗ =
(
x∗,1, ..., x∗,N)T ∈ �n is called a

Nash equilibrium, or a solution of the NEP, if each block component x*,ν is a solution

of the optimization problem

min
xν

θ ν
(
xν , x∗,−ν

)
s.t. xν ∈ Xν .

On the other hand, in a GNEP, each player’s strategy belongs to a set Xν

(
x−ν
) ⊆ �nν

that depends on the rival players’ strategies. The aim of each player ν, given the other

players’ strategies x-ν, is to choose a strategy xν that solves the minimization problem
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min
xν

θ ν
(
xν , x−ν

)
s.t. xν ∈ Xν(x−ν).

The GNEP is the problem of finding a vector x* such that each player’s strategy x*,ν

satisfies

θν
(
x∗,ν , x∗,−ν

) ≤ θν
(
yν , x∗,−ν

)
, ∀yν ∈ Xν

(
x∗,−ν

)
.

Such a vector x* is called a generalized Nash equilibrium or, more simply a solution

of the GNEP.

In this article, we focus on a special class of GNEPs referred to as jointly convex

GNEPs. More precisely, we assume that there is a closed and convex set X ⊆ �n,

which represents the joint constraints of all the players, such that

Xν(x−ν) :=
{
xν ∈ �nν | (xν , x−ν

) ∈ X
}
, (1:1)

for all ν = 1,..., N. This condition results to be verified in several applications.

Throughout this article, we assume that the set X can be represented as

X =
{
x ∈ �n|g(x) ≤ 0

}
(1:2)

for some function g : �n → �m. Additional equality constraints are also allowed, but

for notational simplicity, we prefer not to include them explicitly. In many cases, a

player ν might have some additional constraints depending on his decision variables

only. However, these additional constraints can be viewed as part of the joint con-

straints g(x) ≤ 0, so, we include these latter constraints in the former ones.

Throughout this article, we make the following blanket assumptions.

Assumption 1.1 (i) The utility functions θν are twice continuously differentiable and

as a function of xν along, convex.

(ii) The function g is twice continuously differentiable, its components gi are convex

(in x), and the corresponding strategy space X defined by (1.2) is nonempty.

The convexity assumptions are standard in the context of GNEPs. The smoothness

assumptions are also very natural since our aim is to develop locally fast convergent

methods for the solution of GNEPs.

The GNEP was formally introduced by Debreu [1] as early as 1952, but it is only

from the mid-1990s that the GNEP attracted much attention because of its capability

of modeling a number of interesting problems in economy computer science, telecom-

munications, and deregulated markets (e.g., see [2-4]). Another approach for solving

the GNEP is based on the Nikaido-Isoda function. Relaxation methods and proximal-

like methods using the Nikaido-Isoda function are investigated in [5-7]. A regularized

version of the Nikaido-Isoda function was first introduced in [8] for standard NEPs

then further investigated by Heusinger and Kanzow [9], they reformulated the GNEP

as a constrained optimization problem with continuously differentiable objective

function.

Motivated by the fact that a standard NEP can be reformulated as a variational

inequality problem (VI for short), see, for example, [10,11], Harker [12] characterized

the GNEP as a quasi-variational inequality(QVI). But unlike VI, there are few efficient

methods for solving QVI, and therefore such a reformulation is not used widely in

designing implementable algorithms. On the other hand, it was noted in [13], for
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example, that certain solutions of the GNEP (the normalized Nash equilibria, to be

defined later) can be found by solving a suitable standard VI associated to the GNEP.

Here, we further investigate the properties of the normalized Nash equilibria. The

rest of the article is organized as follows. Section 2 gives some preliminaries. In Section

3, we use the fact that the normalized Nash equilibria can be found by solving a suita-

ble VI, we reformulate the VI associated to the GNEP as a semismooth system of

equations and the nonsingularity of the B-subdifferential for the system is explored.

Finally, in Section 4, we implement a semismooth Newton method to some examples

of the GNEP.

We use the following notations throughout the article. A function G : �n → �t is

called a Ck-function if it is k times continuously differentiable. For a differentiable

function g : �n → �m, the Jacobian of g at x ∈ �n is denoted by J g(x), and its trans-

posed by ∇g(x). Given a differentiable function � : �n → �, the symbol ∇xν �(x)

denotes the partial gradient with respect to xν-part only, and ∇2
xνxμ�(x) denotes the

second-order partial derivative with respect to xν-part and xμ-part. For a function

f : �n × �n → �, f (x, ·) : �n → � denotes the function with x being fixed. For vec-

tors x, y ∈ �n,
〈
x, y
〉
denotes the inner product defined by 〈x,y〉 := xTy and x ⊥ y means

〈x,y〉 = 0.

2 Preliminaries
Let F : �n → �m be a locally Lipschitz continuous function. By Rademacher’s theorem,

F is differentiable almost everywhere. Let DF denote the set of points where F is differ-

entiable. Then, the Bouligand-subdifferential of F at x is given by (see [14]),

∂BF(x) :=
{
H ∈ �m×n|∃

{
xk
}

⊆ DF : xk → x,H = lim
k→∞

J F
(
xk
)}

.

Its convex hull

∂F(x) := conv
{
∂BF(x)

}

is Clarke’s generalized Jacobian of F at x (see [15]).

Based on this notation, we next recall the definition of a semismooth function. This

concept was firstly introduced by Mifflin [16] for real-valued mappings and extended

by Qi and Sun [17] to vector-valued mappings.

Definition 2.1 Let � : O ⊆ �n → �mbe a locally Lipschitz continuous function on

the open set O. We say that F is semismooth at a point x ∈ Oif

(i) F is directionally differentiable at x; and

(ii) for any Δx Î X and V Î ∂F(x + Δx) with Δx ® 0,

�(x + �x) − �(x) − V(�x) = o (‖�x‖) .

Furthermore, F is said to be strongly semismooth at x ∈ Oif F is semismooth at x

and for any Δx Î X and V Î ∂F(x + Δx) with Δx ® 0,

�(x + �x) − �(x) − V(�x) = O
(‖�x‖2) .

In the study of algorithms for locally Lipschitzian systems of equations, the following

regularity condition plays a role similar to that of the nonsingularity of the Jacobian in

the study of algorithms for smooth systems of equations.
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Definition 2.2 Let G : �n → �nbe Lipschitzian around x, G is said to be BD-regular

at x if all the elements in ∂BG(x) are nonsingular. If x̄is a solution of the system G(x) =

0 and G is BD-regular at x̄, then x̄is called a BD-regular solution of this system.

Given a closed convex set K ⊆ �n and a continuous function G : K → �n, solving the

VI defined by K and G (which is denoted by VI(G, K)) means finding a vector x Î K

such that

G(x)T(y − x) ≥ 0, for all y ∈ K.

Define the function F : �n → �n by

F(x) :=

⎛
⎜⎝

∇x1θ
1(x)
...

∇xNθN(x)

⎞
⎟⎠ ,

we state a result due to [13] which will be used later.

Lemma 2.1 Suppose that the GNEP satisfies Assumption 1.1 and assume further that

the sets Xν(x
-ν) are defined by (1.1) with X closed and convex. Then, every solution of

the VI(F, X) is a solution of the GNEP.

3 The nonsmooth equation reformulation and nonsingularity conditions
Consider the GNEP from Section 1 with utility functions θν and a strategy set X satis-

fying the requirements from Assumption 1.1. In this section, our aim is to show that

the GNEP can be reformulated as a nonsmooth equation and then we present several

conditions guaranteeing the BD-regularity condition of the equation.

Suppose that x is a solution of the GNEP. Then if for player ν, a suitable constraint

qualification (like the slater condition) holds, it follows that there exists a Lagrange

multiplier λν ∈ �m such that the Karush-Kuhn-Tucker (KKT) conditions

∇xν θ ν
(
xν , x−ν

)
+ ∇xν g

(
xν , x−ν

)
λν = 0,

0 ≤ λν⊥ − g
(
xν , x−ν

) ≥ 0
(3:1)

are satisfied.

Let us consider the KKT conditions for the VI(F,X). Assuming that a suitable con-

straint qualification holds at a solution x, the KKT conditions can be expressed as

F(x) + ∇g(x)λ = 0,

0 ≤ λ⊥ − g(x) ≥ 0,
(3:2)

which is equivalent to
⎛
⎜⎝

∇x1θ
1(x)
...

∇xNθN(x)

⎞
⎟⎠ +

⎛
⎜⎝

∇x1g(x)
...

∇xNg(x)

⎞
⎟⎠ λ = 0,

0 ≤ λ⊥ − g(x) ≥ 0.

(3:3)

The next lemma from [13] relates the normalized Nash equilibria to the KKT condi-

tions (3.3).

Lemma 3.1 (i) Let x be a solution of VI(F,X) at which the KKT conditions (3.3) hold.

Then x is a solution of the GNEP (normalized Nash equilibria) at which the KKT con-

ditions (3.1) hold with l1 = l2 = ... = lN = l.
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(ii) Viceversa, let x be a solution of the GNEP at which KKT conditions (3.1) hold

with l1 = l2 = ... = lN. Then x is a solution of VI(F, X).

Using the minimum function ϕ : � × � → �, ϕ(a, b) := min{a, b}, the KKT condi-

tions (3.2) can equivalently be written as the nonlinear system of equations

�(ω) := �(x,λ) = 0, (3:4)

where � : �n+m → �n+m is defined by

�(ω) = �(x,λ) :=
(

L(x,λ)
φ(−g(x),λ)

)
,

and

L(x,λ) := F(x) + ∇g(x)λ,

φ(−g(x),λ) :=
(
ϕ(−g1(x),λ1), ...,ϕ(−gm(x),λm)

)T ∈ �m.

From Assumption 1.1, we know that F is semismooth.

In the following, our aim is to present several conditions guaranteeing that all ele-

ments in the generalized Jacobian ∂F(ω) (and hence in the B-subdifferential ∂BF(ω))

are nonsingular. Our first result gives a description of the structure of the matrices in

the generalized Jacobian ∂F(ω).

Lemma 3.2 Let ω = (x,λ) ∈ �n+m. Then, each element H Î ∂F(ω)T can be repre-

sented as follows:

H =
[∇xL(ω) −∇g(x)Da(ω)

∇g(x)T Db(ω)

]
,

where Da(ω) := diag(a1(ω), ..., am(ω)), Db(ω) := diag(b1(ω), ..., bm(ω)) ∈ �m×mare

diagonal matrices whose ith diagonal elements are given by

ai(ω) =

⎧⎨
⎩

1, if −gi(x) < λi,
0, if −gi(x) > λi,
μi, if −gi(x) = λi,

and bi(ω) =

⎧⎨
⎩

0, if −gi(x) < λi,
1, if −gi(x) > λi,

1 − μi, if −gi(x) = λi,

for any μi Î [0,1].

Proof. The first n components of the vector function F are continuously differenti-

able, so the expression for the first n columns of H readily follows. Then, consider the

last m columns. Use the fact that

∂φ(−g(x),λ)T ⊂ ∂ϕ(−g1(x),λ1)T × · · · × ∂ϕ(−gm(x),λm)T ,

if i is such that -gi(x) ≠ li, then � is continuously differentiable at (-gi(x), li) and the

expression for the (n + i)th column of H follows. If instead -gi(x) = li, then, using the

definition of the B-subdifferential, it follows that

∂Bϕ
(−gi(x),λi

)T =
{(

−∇gi(x)
T , 0

)
,
(
0, eTi

)}
.

Taking the convex hull, we get

∂ϕ(−gi(x),λi)T =
{(

−μi∇gi(x)
T , (1 − μi)eTi

)
|μi ∈ [0, 1]

}
.

This gives the representation of H Î ∂F(ω)T.
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Our next aim is to establish conditions guaranteeing that all elements in the general-

ized Jacobian ∂F(ω) at a point ω = (x,l) satisfying F(ω) = 0 are nonsingular.

Theorem 3.1 Let ω∗ = (x∗,λ∗) ∈ �n+mbe a solution of the system F(ω) = 0. Consider

the following two statements:

(a) The strong second-order sufficient condition and the linear independence con-

straint qualification (LICQ) for VI(F,X) holds at x*.

(b) Any element in ∂F(ω*) is nonsingular.

It holds that (a) ⇒ (b).

Proof. For the sake of notational simplicity, let us define the following subsets of the

index set I := {1,...,m},

I0 :=
{
i|gi(x∗) = 0,λ∗

i ≥ 0
}
, I< :=

{
i|gi(x∗) < 0,λ∗

i = 0
}
.

Moreover, we need

I00 :=
{
i|gi(x∗) = 0,λ∗

i = 0
}
, I+ :=

{
i|gi(x∗) = 0,λ∗

i > 0
}
,

I01 := {i ∈ I00|μi = 1} , I02 :=
{
i ∈ I00|μi ∈ (0, 1)

}
,

I03 := {i ∈ I00|μi = 0} .

The following relationships between these index sets can easily be seen to hold:

I = I0 ∪ I<, I0 = I00 ∪ I+, I00 = I01 ∪ I02 ∪ I03.

Using a suitable reordering of the constraints, every element H Î ∂F(ω*)T has the

following structure:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∇xL(ω∗) −∇g+(x∗) −∇g01(x∗) −∇g02(x∗)Da(ω∗)02 0 0
∇g+(x∗)T 0 0 0 0 0
∇g01(x∗)T 0 0 0 0 0
∇g02(x∗)T 0 0 Db(ω∗)02 0 0
∇g03(x∗)T 0 0 0 I 0
∇g<(x∗)T 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (3:5)

where Da(ω*)02 and Db(ω*)02 are positive definite diagonal matrices. Note that we

abbreviated gI+ etc. by g+ etc. in (3.5). It is obvious that H is nonsingular if and only if

the following matrix is nonsingular,
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∇xL(ω∗) −∇g+(x∗) −∇g01(x∗) −∇g02(x∗) 0 0
∇g+(x∗)T 0 0 0 0 0
∇g01(x∗)T 0 0 0 0 0
∇g02(x∗)T 0 0 Db(ω∗)02Da(ω∗)−1

02 0 0
∇g03(x∗)T 0 0 0 I 0
∇g<(x∗)T 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

In turn, this matrix is nonsingular if and only if the following matrix is nonsingular:

⎡
⎢⎢⎣

∇xL(ω∗) −∇g+(x∗) −∇g01(x∗) −∇g02(x∗)
∇g+(x∗)T 0 0 0
∇g01(x∗)T 0 0 0
∇g02(x∗)T 0 0 Db(ω∗)02Da(ω∗)−1

02

⎤
⎥⎥⎦ . (3:6)
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Let (�x1,�x2,�x3,�x4) ∈ �n × �|I+| × �|I01| × �|I02| be such that

⎡
⎢⎢⎣

∇xL(ω∗) −∇g+(x∗) −∇g01(x∗) −∇g02(x∗)
∇g+(x∗)T 0 0 0
∇g01(x∗)T 0 0 0
∇g02(x∗)T 0 0 Db(ω∗)02Da(ω∗)−1

02

⎤
⎥⎥⎦
⎡
⎢⎢⎣

�x1
�x2
�x3
�x4

⎤
⎥⎥⎦ = 0, (3:7)

we know that

∇xL(ω∗)�x1 − ∇g+(x∗)�x2 − ∇g01(x∗)�x3 − ∇g02(x∗)�x4 = 0,

∇g+(x∗)T�x1 = 0,

∇g01(x∗)T�x1 = 0,

∇g02(x∗)T�x1 + [Db(ω∗)02Da(ω∗)−1
02 ]�x4 = 0.

(3:8)

By the first, second and third equations of (3.8), we obtain that

0 =
〈
�x1,∇xL(ω∗)�x1 − ∇g+(x∗)�x2 − ∇g01(x∗)�x3 − ∇g02(x∗)�x4

〉
=
〈
�x1,∇xL(ω∗)�x1

〉− 〈
�x1,∇g+(x∗)�x2

〉− 〈
�x1,∇g01(x∗)�x3

〉
− 〈

�x1,∇g02(x∗)�x4
〉

=
〈
�x1,∇xL(ω∗)�x1

〉− 〈
�x1,∇g02(x∗)�x4

〉
,

which, together with the last equation of (3.8), implies that

〈
�x1,∇xL(ω∗)�x1

〉
= −�xT4

[
Db(ω∗)02Da(ω∗)−1

02

]
�x4 ≤ 0. (3:9)

From the second equation of (3.8), we know that

�x1 ∈ aff(C(x∗)),

where C(x*) denotes the critical cone of VI(F,X). Then, by (3.9) and the strong sec-

ond-order sufficient condition that

�x1 = 0.

Thus, the first equation of (3.8) reduces to

∇g+(x∗)�x2 + ∇g01(x∗)�x3 + ∇g02(x∗)�x4 = 0. (3:10)

By the LICQ for VI(F,X), we have

�x2 = 0, �x3 = 0, and �x4 = 0.

This together with Δx1 = 0 shows that the matrix (3.6) is nonsingular, and then, H is

nonsingular.

Now, we are able to apply Theorem 3.1 to some classes of GNEPs.

Proposition 3.1 Let ω∗ = (x∗,λ∗) ∈ �n+m satisfying F(ω*) = 0, for all ν = 1,..., N the

payoff functions θν are separable, that is

θν(x) = f ν(xν) + hν(x−ν),

where f ν : �nν → �is stongly convex and hν : �n−nν → �. Assume that LICQ holds at

x*. Then all elements H Î ∂F(ω*) are nonsingular.
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Proof. We know that

F(x∗) =

⎛
⎜⎝

∇x1θ
1(x∗)
...

∇xNθN(x∗)

⎞
⎟⎠ ,

then, by the definition of θν(·), we have

∇F(x∗) =

⎛
⎜⎜⎜⎝

∇2
x1x1θ

1(x∗) ∇2
x1x2θ

1(x∗) · · · ∇2
x1xNθ1(x∗)

∇2
x2x1θ

2(x∗) ∇2
x2x2θ

2(x∗) · · · ∇2
x2xNθ2(x∗)

...
...

. . .
∇2
xNx1θ

N(x∗) ∇2
xNx2θ

N(x∗) · · · ∇2
xNxNθN(x∗)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

∇2
x1x1 f

1(x∗,1)
∇2
x2x2 f

2(x∗,2)
. . .

∇2
xNxN f

N(x∗,N)

⎞
⎟⎟⎟⎠

By the strong convexity of fν, we can conclude that ∇F(x*) is positive definite.

From λ∗
i ≥ 0 and the convexity of gi, we obtain that

∇x
(∇g(x∗)λ∗) =

m∑
i=1

λ∗
i ∇2gi(x∗)

is positive semidefinite, which together with ∇F(x*) is positive definite implies that

∇xL(ω∗) = ∇F(x∗) +
m∑
i=1

λ∗
i ∇2gi(x∗)

is positive definite. Thus, the strong second-order sufficient condition for the VI(F,

X) holds at x*. From Theorem 3.1, we obtain any element in ∂F(ω*) is nonsingular.

Proposition 3.2 Let ω∗ = (x∗,λ∗) ∈ �n+mbe such that F(ω*) = 0. Consider the case

where the payoff functions are quadratic, i.e. for all ν = 1,...,N one has

θν(x) :=
1
2

(
xν
)T
Aννxν +

N∑
μ=1,μ �=ν

(xν)TAνμxμ,

where the matrices Aνμ ∈ �nν × �nμand Aνν are symmetric. Suppose that LICQ holds

at x*, and

B :=

⎡
⎢⎢⎢⎣

A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...
AN1 AN2 · · · ANN

⎤
⎥⎥⎥⎦

is positive definite. Then all the elements in the generalized Jacobian ∂F(ω*) are

nonsingular.

Proof. We show that ∇xL(ω*) is positive definite, which implies that the strong sec-

ond order sufficient condition for the VI(F,X) holds at x*, and then apply Theorem 3.1.

To this end, first note that
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F(x∗) =

⎛
⎜⎜⎜⎝

∇x1θ
1(x∗)

∇x2θ
2(x∗)
...

∇xNθN(x∗)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

∑N
μ=1 A1μxμ∑N
μ=1 A2μxμ

...∑N
μ=1 ANμxμ

⎞
⎟⎟⎟⎟⎠ .

Moreover,

∇F(x∗) =

⎛
⎜⎜⎝

A11 A12 · · · A1N

A21 A22 · · · A21

· · ·
AN1 AN1 · · · ANN

⎞
⎟⎟⎠ ,

which together with λ∗
i ≥ 0 and the convexity of gi implies that

∇x
(∇g(x∗)λ∗) =

m∑
i=1

λ∗
i ∇2gi(x∗)

is positive semidefinite. Hence, we obtain that ∇xL(ω*) is positive definite. The state-

ment therefore follows from Theorem 3.1.

4 Numerical illustrations
Here, we want to illustrate the performance of the VI method on some GNEPs taken

from the literature. To this end, we use a nonsmooth Newton method to the nonlinear

system of equations F(ω) = 0. The globalization strategy is based on the merit function

�(ω) :=
1
2

�(ω)T�(ω).

A simple Armijo-type line search is used in the algorithm and we switch to the stee-

pest direction whenever the generalized Newton direction is not computable or does

not satisfy a sufficient decrease condition.

Algorithm 4.1

Step 0 Choose ω0 =
(
x0,λ0) ∈ �n+m,ρ > 0, κ > 2, σ ∈

(
0,

1
2

)
,β ∈ (0, 1), ε ≥ 0, and

set k = 0.

Step 1 If ∥∇Ψ(ωk)∥ ≤ ε, stop.

Step 2 Select an element Hk Î ∂BF(ωk). Find a solution dk of the linear system

Hkd = −�(ωk). (4:1)

If system (4.1) is not solvable or if dk does not satisfy the condition

∇�(ωk)Tdk ≤ −ρ

∥∥∥dk∥∥∥κ

, (4:2)

then set

dk = −∇�(ωk). (4:3)

Step 3 Let tk be the greatest number in {bj |j = 0,1,2,...} such that

�
(
ωk + tkdk

)
≤ �

(
ωk
)
+ tkσ∇�

(
ωk
)T

dk. (4:4)
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Step 4 Set ωk+1 = ωk + tkdk, k = k + 1 and go to step 1.

The following result about the convergence property of Algorithm 4.1 comes from

[18] directly.

Theorem 4.1 Assume that Algorithm 4.1 does not terminate within a finite number

of iterations, let {ωk} be generated by Algorithm 4.1 having an accumulation point ω*,

then ω* is a stationary point of Ψ. Moreover, if ω* is a BD-regular solution of the sys-

tem F(ω) = 0, then {ωk} convergence to ω* Q-superlinearly.

We applied MATLAB 7.0 to some problems of GNEPs. The method is terminated

whenever ∥∇Ψ(ωk)∥ <ε with ε := 10-7. The computational results are summarized in

Tables 1, 2, and 3, which indicate that the proposed method produces good approxi-

mate solutions.

Example 4.1 This test problem is the internet switching model introduced by Facchi-

nei et al. [19]. The payoff function of each user is given by

θν(x) :=
xν

B
− xν∑N

ν=1 x
ν
,

with constraints xv ≥ 0.01, ν = 1,..., N and
∑N

ν=1
xν ≤ B. According to [20], we also set

N = 10, B = 1 and use the starting point x0 = (0.1, 0.1, 0.1, ...,)T ∈ �10. The exact solu-

tion of this problem is x* = (0.09,0.09,..., 0.09)T. We only state the first three components

of the iteration vectors in Table 1.

Example 4.2 This example is the river basin pollution game taken from [5]and is also

analyzed by Heusinger and Kanzow [20]. There are three players, each controlling a

single variable xν ∈ �. The objective functions are

θν(x) := xν
(
c1ν + c2νx

ν − d1 + d2
(
x1 + x2 + x3

))

for ν = 1,2,3, and the constraints are

μ11e1x1 + μ21e2x2 + μ31e3x3 ≤ K1,

μ12e1x1 + μ22e2x2 + μ32e3x3 ≤ K2.

The economic constants d1 and d2 determine the inverse demand law and set to 3.0

and 0.01, respectively. Values for constants c1,v, c2,v, ev, μv,1 and μV,2 are given in the fol-

lowing table, and K1 = K2 = 100. Table 2 for the corresponding numerical results.

Table 1 Numerical results for Example 4.1

k xk1 xk2 xk3 Stepsize

0 0.100000 0.100000 0.100000 0

1 0.086298 0.086298 0.086298 0.015224

2 0.095471 0.095471 0.095471 0.015224

3 0.087856 0.087856 0.087856 0.015224

4 0.093390 0.093390 0.093390 0.015224

5 0.088716 0.088716 0.088716 0.015224

⋮ ⋮ ⋮ ⋮ ⋮
10 0.091365 0.091365 0.091365 0.015224

⋮ ⋮ ⋮ ⋮ ⋮
20 0.089952 0.089952 0.089952 0.302500

21 0.089968 0.089968 0.089968 0.008373
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Example 4.3 We use Algorithm 4.1 to solve a class of problems in which for each

player ν, his payoff function θν(·) is quadratic, that is

θν(x) :=
1
2

(
xν
)T
Aννxν +

N∑
μ=1,μ �=ν

(xν)TAνμxμ

for certain matrices Aνμ ∈ Rnν × Rnμ such that the diagonal block Aνν are symmetric.

Let

B :=

⎡
⎢⎢⎢⎣

A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...
AN1 AN2 · · · ANN

⎤
⎥⎥⎥⎦

be positive definite, The strategy space X is defined by some linear constraints. For

convenience, we set the elements of x0 all 1. The elements of l0 all 0. We set other

parameters in the algorithm as r = 10-8, � = 2.1, s = 10-4, b = 0.55. Our numerical

results are reported in Table 3, where Iter., Func, Res0. and Res*. stand for, respec-

tively, the number of iterations, the number of function evaluations, the residual

∥∇Ψ(·)∥ at the starting point and the residual ∥∇Ψ(·)∥ at the final iterate of

implementation.

Table 2 Numerical results for Example 4.2

k xk1 xk2 xk3 Stepsize

0 0.000000 0.000000 0.000000 0.0000

1 9.208951 2.481282 8.931660 0.166375

2 11.531188 3.106991 11.183971 0.050328

3 12.744136 3.433811 12.360396 0.027680

4 13.100896 3.529937 12.706414 0.008373

5 13.159756 3.545796 12.763501 0.001393

6 13.177536 3.550587 12.780746 0.000421

7 13.182912 3.552036 12.785960 0.000127

8 21.175468 16.026854 2.771656 1

9 21.149274 16.027708 2.732634 1

10 21.144948 16.027849 2.726189 1

11 21.144796 16.027853 2.725963 1

Table 3 Numerical results for Example 4.3

Dim CPU time (s) Iter. Func. Res0. Res*.

10 0.0470 6 15 5.227683e+004 1.028557e-009

50 0.0520 7 20 1.529682e+008 1.752247e-010

100 0.3250 7 24 5.052647e+009 6.559316e-013

300 0.6340 9 33 1.230922e+012 2.016572e-010

500 2.6720 11 43 1.581871e+013 1.446427e-012

1000 13.2189 9 38 5.002778e+014 1.458512e-009

1500 39.4220 9 34 3.800590e+015 3.468333e-013

2000 1.0953e+002 11 50 1.601577e+016 2.619540e-014

2500 2.2250e+002 12 50 4.889072e+016 3.492963e-014

3000 3.4442e+002 11 47 1.216867e+017 1.782483e-013
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The numerical experiments show that the method proposed in this article is imple-

mentable and effective.
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