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Abstract

For any fixed integer k with k ≠ 0, 1, we prove the Hyers-Ulam stability of an Euler-
Lagrange-type quadratic functional equation

f (kx + y) + f (kx − y) = kf (x + y) + kf (x − y) + 2k(k − 1)f (x) − 2(k − 1)f (y)

in normed spaces and in non-Archimedean normed spaces.

1 Introduction
The problem of stability of functional equations was originally stated by Ulam [1]. In

1941, Hyers [2] gave an affirmative answer to Ulam’s problem for the case of approxi-

mate additive mappings on Banach spaces. In 1950, Aoki discussed the Hyers-Ulam

stability theorem in [3]. His result was further generalized and rediscovered by Rassias

[4] in 1978. The stability problem for functional equation has extensively been investi-

gated by a number of mathematicians [5-9].

The quadratic function f(x) = cx2 satisfies the functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y) (1)

and therefore Equation (1) is called the quadratic functional equation. Every solution

of Equation (1) is said to be a quadratic mapping. The Hyers-Ulam stability theorem

for the quadratic functional equation (1) was by Skof [9] for the functions f : E1 ® E2
where E1 is a normed space and E2 is a Banach space. The result of Skof is still true if

the relevant domain E1 is replaced by an Abelian group and this was dealt with by

Cholewa [10]. Czerwik [11] proved the Hyers-Ulam stability of the quadratic functional

equation (1). This result was further generalized by Rassias [12], Borelli and Forti [13].

During the last three decades, a number of papers and research monographs have

been published on various generalizations and applications of the Hyers-Ulam stability

of several functional equations, and there are many interesting results concerning this

problem [14-20]. In particular, Rassias investigated the Hyers-Ulam stability for the

relative Euler-Lagrange functional equation

f (ax + by) + f (bx − ay) = (a2 + b2)[f (x) + f (y)] (2)

in [21-23].

In 2008, Ravi et al. [24] investigated the Hyers-Ulam stability of a quadratic func-

tional equation

f (2x + y) + f (2x − y) = 2f (x + y) + 2f (x − y) + 4f (x) − 2f (y). (3)
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In this article, we generalize the functional equation (3) to a more general form

f (kx + y) + f (kx − y) = kf (x + y) + kf (x − y) + 2k(k − 1)f (x) − 2(k − 1)f (y) (4)

and investigate the Hyers-Ulam stability of the equation for any fixed integer k with

k ≠ 0, 1. As results, we improve the generalized stability results given in [24] in

normed spaces and in non-Archimedean normed spaces.

2 General solution of (4)
First of all, if k = -1 in Equation (4), then it is easy to see that

f (−x + y) + f (−x − y) = −f (x + y) − f (x − y) + 4f (x) + 4f (y)

is equivalent to Equation (1), and so the solution of Equation (4) with k = -1 is a

quadratic mapping. Thus, we consider general solutions of Equation (4) for any fixed

integer k with |k| > 1 in the following theorem. The following lemma can be found in

[25-27].

Lemma 2.1. A mapping f : X ® Y between linear spaces satisfies the functional

equation

f (2x + y) + f (2x − y) = 4[f (x + y) + f (x − y)] + 2[f (2x) − 4f (x)] − 6f (y)

if and only if f is quadratic and quartic.

Theorem 2.2. A mapping f : X ® Y between linear spaces satisfies the functional

equation (4) with |k| > 1 if and only if f is quadratic.

Proof. Let f be a solution of Equation (4). Letting x = y = 0 in (4), we have f(0) = 0.

Putting y = 0 in (4), we get f(kx) = k2f(x). Putting x = 0 in (4), we get f(-y) = f(y). Thus,

the mapping f is even. Therefore, it suffices to prove that if a mapping f satisfies Equa-

tion (4) for any fixed integer k with |k| > 1, then f is quadratic. Now, replacing y by x

+ y in (4), we have

f ((k + 1)x + y) + f ((k− 1)x− y) = kf (2x + y) + kf (y) + 2k(k− 1)f (x)− 2(k− 1)f (x + y) (5)

for all x, y Î X. Replacing y by -y in (5), we obtain

f ((k+1)x− y) + f ((k−1)x+ y) = kf (2x− y) + kf (y) + 2k(k−1)f (x)−2(k−1)f (x− y) (6)

for all x, y Î X. Adding (5) to (6), we get

f ((k + 1)x + y) + f ((k + 1)x − y) + f ((k − 1)x + y) + f ((k − 1)x − y)

= k[f (2x + y) + f (2x − y)] − 2(k − 1)[f (x + y) + f (x − y)]

= −2(k − 1)[f (x + y) + f (x − y)] + 4k(k − 1)f (x) + 2kf (y)

(7)

for all x, y Î X. From the substitution y = kx + y in (4), we have

f (2kx + y) + f (y) = k[f ((k + 1)x + y) + f ((k − 1)x + y)]

+ 2k(k − 1)f (x) − 2(k − 1)f (kx + y)
(8)

for all x, y Î X. Replacing y by -y in (8), we get

f (2kx − y) + f (y) = k[f ((k + 1)x − y) + f ((k − 1)x − y)]

+ 2k(k − 1)f (x) − 2(k − 1)f (kx − y)
(9)
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for all x, y Î X. Adding (8) to (9), we get

f (2kx + y) + (2kx − y) = k[f ((k + 1)x + y) + f ((k + 1)x − y)]

+ k[f ((k − 1)x + y) + f ((k − 1)x − y)]

− 2(k − 1)[f (kx + y) + f (kx − y)]

+ 4k(k − 1)f (x) − 2f (y)

(10)

for all x, y Î X. It follows from (10), by using (4) and (7), that

f (2kx + y) + f (2kx − y) = k2[f (2x + y) + f (2x − y)]

− 4x(k − 1)[f (x + y) + f (x − y)]

+ 8k(k − 1)f (x) + 2(k − 1)(3k − 1)f (y)

(11)

for all x, y Î X. If we replace x by 2x in (4), then we obtain that

f (2kx + y) + f (2kx − y) = k[f (2x + y) + f (2x − y)]

+ 2k(k − 1)f (2x) − 2(k − 1)f (y)
(12)

for all x, y Î X. Associating (11) with (12), we conclude that the mapping f satisfies

the equation

f (2x + y) + f (2x − y) = 4[f (x + y) + f (x − y)] + 2[f (2x) − 4f (x)] − 6f (y)

for all x, y Î X. Therefore, it follows from Lemma 2.1 that f is quadratic because of

the property f(kx) = k2f(x).

Conversely, if a mapping f is quadratic, then it is obvious that f satisfies (4).

3 Hyers-Ulam stability of (4) in banach spaces
In this section, let X be a normed space and Y a Banach space. We will investigate the

Hyers-Ulam stability problem for the functional equation (4). For notational conveni-

ence, we define an operator Dk f(x, y) as

Dkf (x, y) := f (kx + y) + f (kx − y) − kf (x + y) − kf (x − y)

− 2k(k − 1)f (x) + 2(k − 1)f (y)

for all x, y Î X, where k is a fixed integer with |k| > 1.

Theorem 3.1. Let ψ : X2 ® [0, ∞) be a function such that

∞∑
i=0

ψ(kix, kiy)
k2i

< ∞ (13)

for all x, y Î X. If a mapping f : X ® Y satisfies the inequality∥∥Dkf (x, y)
∥∥ ≤ ψ(x, y) (14)

for all x, y Î X, then there exists a unique quadratic mapping Q1 : X ® Y which

satisfies Equation (4) and the inequality∥∥∥∥f (x) − f (0)
k + 1

− Q1(x)

∥∥∥∥ ≤ 1
2k2

∞∑
i=0

ψ(kix, 0)
k2i

(15)
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for all x Î X, where
∥∥f (0)∥∥ ≤ ψ(0, 0)

2k(k − 1)
. The mapping Q1 is defined by

Q1(x) = lim
n→∞

f (knx)
k2n

(16)

for all x Î X.

Proof. Letting x = y := 0 in (14), we get

∥∥f (0)∥∥ ≤ ψ(0, 0)
2k(k − 1)

.

Putting y := 0 in (14) and dividing by 2k2, we obtain∥∥∥∥ f (kx)k2
− f (x) +

k − 1
k2

f (0)

∥∥∥∥ ≤ ψ(x, 0)
2k2

(17)

for all x Î X. Setting f̄ (x) := f (x) − f (0)
k + 1

, we lead to a functional inequality

∥∥∥∥∥ f̄ (kx)k2
− f̄ (x)

∥∥∥∥∥ ≤ ψ(x, 0)
2k2

(18)

for all x Î X. Using the induction argument on a positive integer n we may obtain

that ∥∥∥∥∥f̄ (x) − f̄ (knx)
k2n

∥∥∥∥∥ ≤ 1
2k2

n−1∑
i−0

ψ(kix, 0)
k2i

(19)

for all x Î X. Now, it follows from (19) that for m >n > 0,∥∥∥∥∥ f̄ (k
mx)

k2m
− f̄ (knx)

k2n

∥∥∥∥∥ =

∥∥∥∥∥ f̄ (k
m−n+nx)

k2(m−n+n)
− f̄ (knx)

k2n

∥∥∥∥∥
=

1
k2n

∥∥∥∥∥f̄ (knx) − f̄ (km−nknx)
k2(m−n)

∥∥∥∥∥
≤ 1

2k2

m−n−1∑
i=0

ψ(ki+nx, 0)
k2(i+n)

(20)

for all x Î X. Since the right-hand side of the inequality (20) tends to 0 as n ® ∞, a

sequence

{
f̄ (knx)
k2n

}
is Cauchy. Therefore, we may define a mapping Q1 : X ® Y as

Q1(x) = lim
n→∞

f̄ (knx)
k2n

= lim
n→∞

f (knx)
k2n

for all x Î X. Letting n ® ∞ in (19), we lead to the approximation (15).

Next, we have to show that Q1 satisfies Equation (4). Replacing x, y by knx, kny in

(14) and dividing by k2n, we obtain that
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1
k2n

∥∥f (kn(kx + y)) + f (kn(kx − y)) − kf (kn(x + y)) − kf (kn(x − y))

−2k(k − 1)f (knx) + 2(k − 1)f (xny)
∥∥ ≤ 1

k2n
ψ(knx, kny)

for all x, y Î X. Taking the limit as n ® ∞, we see from (13) and (16) that the map-

ping Q1 satisfies Equation (4) and so it is quadratic by Theorem 2.2.

To prove the uniqueness of the quadratic mapping Q1 satisfying the inequality (15),

let us assume that there exists a quadratic mapping Q′
1 : X → Y which satisfies the

inequality (15). Then, we have Q1(k
nx) = k2nQ1(x) and Q′

1(k
nx) = k2nQ′

1(x) for all x Î
X and all n Î N. Hence, it follows from (15) that

∥∥Q1(x) − Q′
1(x)

∥∥ =
1
k2n

∥∥Q1(knx) − Q′
1(k

nx)
∥∥

≤ 1
k2n

∥∥∥Q1(knx) − f̄ (knx)
∥∥∥ +

∥∥∥f̄ (knx) − Q′
1(k

nx)
∥∥∥

≤ 1
k2

∞∑
i=n

ψ(kix, 0)
k2i

which tends to zero as n ® ∞. This completes the proof of the theorem.

The following theorem is an alternative stability result concerning the stability of

functional equation (4).

Theorem 3.2. Let ψ: X2 ® [0, ∞) be a function such that

∞∑
i=1

k2iψ
( x
ki
,
y
ki

)
< ∞ (21)

for all x, y Î X. If a mapping f : X ® Y satisfies the inequality∥∥Dkf (x, y)
∥∥ ≤ ψ(x, y) (22)

for all x, y Î X, then there exists a unique quadratic mapping Q2 : X ® Y which

satisfies Equation (4) and the inequality

∥∥f (x) − Q2(x)
∥∥ ≤ 1

2k2

∞∑
i=1

k2iψ(
x
ki
, 0) (23)

for all x Î X. The mapping Q2 is defined by

Q2(x) = lim
n→∞ k2nf (

x
kn

) (24)

for all x Î X.

Corollary 3.3. Let ε 1 ≥ 0, ε2 ≥ 0 and p, q be real numbers such that either 0 <p, q <

2 or p, q > 2. If a mapping f : X ® Y satisfies the inequality∥∥Dkf (x, y)
∥∥ ≤ ε1‖x‖p + ε2

∥∥y∥∥q
for all x, y Î X, then there exists a unique quadratic mapping Qi : X ® Y (i = 1,2)

which satisfies (4) and inequality
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∥∥f (x) − Q1(x)
∥∥ ≤ ε1‖x‖p

2(k2 − kp)
, if 0 < p, q < 2;

∥∥f (x) − Q2(x)
∥∥ ≤ ε1‖x‖p

2(kp − k2)
, if p, q > 2.

for all x Î X. Furthermore, for each fixed xÎ X if f(tx) is continuous for all t Î R,

then f(tx) = t2f(x) for all t Î R.

Proof. Taking ψ(x, y) = ε1║x║p + ε2║y║q and applying Theorems 3.1 and 3.2, we

obtain the desired approximations.

The following is a simple example that the quadratic functional equation Dkf(x, y) =

0, k ≥ 2 is not stable for p = 2 = q in Corollary 3.3.

Example 3.4. Let j: R ® R be defined by

φ(x) =

{
μx2 if |x| < 1,

μ otherwise.

where μ > 0 is a positive constant, and define f : R ® R by

f (x) =
∞∑
i=0

φ(2ix)
4i

, for all x ∈ R.

Then, f satisfies the functional inequality∣∣f (2x + y) + f (2x − y)x − 2f (x + y) − 2f (x − y) − 4f (x) + 2f (y)
∣∣

≤ 44μ(|x|2 + ∣∣y∣∣2) (25)

for all x, y Î R, but there do not exist a quadratic function Q : R ® R and a con-

stant b > 0 such that∣∣f (x) − Q(x)
∣∣ ≤ β|x|2 for all x ∈ R. (26)

Proof. It is easy to see that f is bounded by
4μ

3
on R. If |x|2 + ∣∣y∣∣2 ≥ 1

4
or 0, then the

left side of (25) is less than 16μ, and thus (25) is true. Now suppose that

0 < |x|2 + ∣∣y∣∣2 <
1
4
. Then there exists a positive integer k such that

1
4k+2

≤ |x|2 + ∣∣y∣∣2 <
1

4k+1
, (27)

so that 44|x|2 <
1
4
, 4k

∣∣y∣∣2 <
1
4
and 2k - 1(2x ± y), 2k - 1(x ± y), 2k - 1x, 2k - 1y all

belong to the interval (-1, 1). Hence, for i = 0, 1,..., k - 1,

φ(2i(2x + y)) + φ(2i(2x− y))− 2φ(2i(x + y)) + 2φ(2i(x− y))− 4φ(2ix) + 2φ(2iy) = 0
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Therefore, it follows from the definition of f and the inequality (27) that∣∣f (2x + y) + f (2x − y) − 2f (x + y) − 2f (x − y) − 4f (x) + 2f (y)
∣∣

≤
∞∑
i=0

1
4i

∣∣φ(2i(2x + y)) + φ(2i(2x − y))

−2φ(2i(x + y)) − 2φ(2i(2x − y)) − 4φ(2ix) + 2φ(2iy)
∣∣

≤
∞∑
i=k

1
4i
12μ = 16μ4−k ≤ 44μ(|x|2 + ∣∣y∣∣2)

(28)

for all x, y Î R with 0 < |x|2 + ∣∣y∣∣2 <
1
4
. Thus f satisfies (25) for all x, y Î R.

We claim that the quadratic functional equation D2f(x, y) = 0 is not stable for p = 2

= q in Corollary 3.3. Suppose on the contrary that there exist a quadratic function Q :

R ® R and a constant b > 0 satisfying (26). Since f is bounded and continuous for all

x Î R, Q is bounded on any open interval containing the origin and continuous at the

origin. Therefore, Q must have the form Q(x) = hx2 for any x in R. Thus, we obtain

that ∣∣f (x)∣∣ ≤ (β + |η|)|x|2 for all x ∈ R. (29)

However, we can choose a positive integer m with mμ >b + |h|. If x ∈
(
0,

1
2m−1

)
,

then 2ixÎ (0, 1) for all i = 0, 1,..., m - 1, and for this x we get

f (x) =
∞∑
i=0

φ(2ix)
4n

≥
m−1∑
i=0

μ(2ix)
2

4i
= mμx2 > (β + |η|)x2,

which contradicts (29). Therefore, the quadratic functional equation D2f(x, y) = 0 is

not stable if p = 2 = q in Corollary 3.3.

Corollary 3.5. Let ε be a nonnegative real number. If a mapping f : X ® Y satisfies

the inequality∥∥Dkf (x, y)
∥∥ ≤ ε

for all x, y Î X, then there exists a unique quadratic mapping Q1 : X ® Y which

satisfies Equation (4) and the inequality∥∥∥∥f (x) − f (0)
k + 1

− Q1(x)

∥∥∥∥ ≤ ε

2(k2 − 1)

for all x Î X. Furthermore, for each fixed x Î X if f(tx) is continuous for all t Î R,

then f(tx) = t2f(x) for all t Î R.

Proof. Taking ψ(x, y) = ε and applying Theorem 3.1, we lead to the approximation.

In the last part, we consider a singular case k = -1, which is not investigated in The-

orems 3.1 and 3.2 concerning the stability of the functional equation (4).

Theorem 3.6. Let ψ : X2 ® [0, ∞) be a function such that

∞∑
i=0

ψ(2ix, 2iy)
4i

< ∞ (30)
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for all x, y Î X. If a mapping f : X ® Y satisfies the inequality∥∥D−1f (x, y)
∥∥ ≤ ψ(x, y) (31)

for all x, y Î X, then there exists a unique quadratic mapping Q1 : X ® Y which

satisfies the equation D-1Q1(x, y) = 0 and the inequality∥∥∥∥f (x) − 2f (0)
3

− Q1(x)

∥∥∥∥ ≤ 1
8

∞∑
i=0

ψ(2ix, 2ix)
4i

+
1
4

∞∑
i=0

ψ(2i+1x, 0)
4i+1

(32)

for all x Î X, where
∥∥f (0)∥∥ ≤ ψ(0, 0)

4
. The mapping Q1 is defined by

Q1(x) = lim
n→∞

f (2nx)
4n

(33)

for all x Î X.

Proof. Letting x = y := 0 in (31), we get
∥∥f (0)∥∥ ≤ ψ(0, 0)

4
. Putting y := 0 in (31) and

dividing by 2, we obtain

∥∥f (−x) − f (x) − 2f (0)
∥∥ ≤ ψ(x, 0)

2

for all x Î X. Setting y := x in (31), one has∥∥f (−2x) + f (2x) − 8f (x) + 2f (0)
∥∥ ≤ ψ(x, x)

for all x Î X. Combining two inequalities above and then letting

f̄ (x) := f (x) − 2f (0)
3

, we lead to a functional inequality

∥∥∥∥∥ f̄ (2x)4
− f̄ (x)

∥∥∥∥∥ ≤ 1
8

ψ(x, x) +
1
42

ψ(2x, 0) (34)

for all x Î X. Using the induction argument on a positive integer n, we may obtain

that ∥∥∥∥∥f̄ (x) − f̄ (2nx)
4n

∥∥∥∥∥ ≤ 1
8

n−1∑
i=0

ψ(2ix, 2ix)
4i

+
1
4

n−1∑
i=0

ψ(2i+1x, 0)
4i+1

(35)

for all x Î X. The remaining proof of this theorem follows similarly from the corre-

sponding part of Theorem 3.1.

The following theorem is an alternative stability result concerning the stability of the

functional equation (4) with k = -1.

Theorem 3.7. Let ψ : X2 ® [0, ∞) be a function such that

∞∑
i=1

4iψ(
x
2i
,
y
2i
) < ∞ (36)

for all x, y Î X. If a mapping f : X ® Y satisfies the inequality∥∥D−1f (x, y)
∥∥ ≤ ψ(x, y) (37)
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for all x, y Î X, then there exists a unique quadratic mapping Q2 : X ® Y which

satisfies the equation D-1Q2(x, y) = 0 and the inequality

∥∥f (x) − Q2(x)
∥∥ ≤ 1

8

∞∑
i=1

4iψ
( x
2i
,
x
2i

)
+
1
4

∞∑
i=1

4i−1ψ
( x
2i−1

, 0
)

(38)

for all x Î X. The mapping Q2 is defined by

Q2(x) = lim
n→∞ 4nf (

x
2n

) (39)

for all x Î X.

Corollary 3.8. Let ε1 ≥ 0, ε2 ≥ 0 and p, q be real numbers such that either 0 <p, q <

2 or p, q > 2. If a mapping f : X ® Y satisfies the inequality∥∥D−1f (x, y)
∥∥ ≤ ε1‖x‖p + ε2

∥∥y∥∥q
for all x, y Î X, then there exists a unique quadratic mapping Qi : X ® Y (i = 1,2)

which satisfies the equation D-1Qi (x, y) = 0 and inequality⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∥∥f (x) − Q1(x)
∥∥ ≤ ε1(2 + 2p)‖x‖p

4(22 − 2p)
+

ε2‖x‖q
2(22 − 2q)

, if 0 < p, q < 2;

∥∥f (x) − Q2(x)
∥∥ ≤ ε1(2 + 2p)‖x‖p

4(2p − 22)
+

ε2‖x‖q
2(2q − 22)

, if p, q > 2.

for all x Î X. Furthermore, for each fixed x Î X if f(tx) is continuous for all t Î R,

then f(tx) = t2f(x) for all t Î R.

4 Hyers-Ulam stability of (4) in non-archimedean spaces
In this section, let X be a vector space and Y a complete non-Archimedean space. We

recall that a field K, equipped with a function (non-Archimedean absolute value, valua-

tion) | · | from K into [0, ∞), is called a non-Archimedean field if the function | · |: K

® [0, ∞) satisfies the following conditions:

(1) |r| = 0 if and only if r = 0;

(2) |rs| = |r||s|;

(3) the strong triangle inequality, namely, |r + s| ≤ max{|r|, |s|} for all r, s Î K.

Clearly, |1| = 1 = | - 1| and |n| ≤1 for all nonzero integer n.

Let Y be a vector space over the non-Archimedean field K with a non-trivial non-

Archimedean valuation | · |. A function ║ · ║: Y ® [0, ∞) is called a non-Archimedean

norm (valuation) if it satisfies the following conditions:

(1) ║x║ = 0 if and only if x = 0;

(2) |rx| = |r| ║x║ for all x Î Y and all r Î K;

(3) the strong triangle inequality, namely,∥∥x + y
∥∥ ≤ max

{‖x‖ , ∥∥y∥∥}
for all x, y Î Y.
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In this case, the pair (Y, ║ · ║) is called a non-Archimedean space. By a complete

non-Archimedean space we mean one in which every Cauchy sequence is convergent.

It follows from the strong triangle inequality that

‖xn − xm‖ ≤ max
{∥∥xj+1 − xj

∥∥ : m ≤ j < n − 1
}

for all xn,xm Î Y and all m,n Î N with n >m. Therefore, a sequence {xn} is a Cauchy

sequence in non-Archimedean space (Y, ║ · ║) if and only if the sequence {xn+1-xn}

converges to zero in the space (Y, ║ · ║). Now, we will investigate the generalized the

Hyers-Ulam stability problem for the functional equation (4) in a complete non-Archi-

medean space Y.

Theorem 4.1. Let ψ : X2 ® [0, ∞) be a function such that

�1(x) := lim
n→∞max

{
ψ(kix, 0)

|k|2i : 0 ≤ i < n
}

< ∞,

lim
n→∞

ψ(knx, kny)

|k|2n = 0

(40)

for all x, y Î X. If a mapping f : X ® Y satisfies the inequality∥∥Dkf (x, y)
∥∥ ≤ ψ(x, y) (41)

for all x, y Î X, then there exists a quadratic mapping Q1 : X ® Y which satisfies

Equation (4) and the inequality

∥∥f (x) − Q1(x)
∥∥ ≤ 1

|2| |k|2 �1(x) (42)

for all x Î X, where
∥∥f (0)∥∥ ≤ ψ(0, 0)∣∣2k(k − 1)

∣∣. The mapping Q1 is defined by

Q1(x) = lim
n→∞

f (knx)
k2n

(43)

for all x Î X. Moreover, if

lim
l→∞

�1(klx)

|k|2l = lim
l→∞

lim
n→∞max

{
ψ(kjx, 0)

|k|2j : l ≤ j < l + n
}
= 0

for all x Î X, then Q1 is a unique quadratic mapping satisfying (42).

Proof. Letting x = y := 0 in (41), we get f(0) = 0 because ψ(0,0) = 0 by the condition

(40). Putting y := 0 in (41) and dividing by 2|k|2, we obtain∥∥∥∥ f (kx)k2
− f (x)

∥∥∥∥ ≤ ψ(x, 0)

2|k|2 (44)

for all x Î X, where |k| ≤ 1 is a non-Archimedean valuation. Replacing x by knx in

(44) and dividing by |k|2n,∥∥∥∥ f (kn+1x)k2n+2
− f (knx)

k2n

∥∥∥∥ ≤ ψ(knx, 0)

2|k|2n+2 (45)

for all x Î X. Since the right-hand side of the inequality (45) tends to 0 as n ® ∞, a

sequence { f (k
nx)

k2n
} is Cauchy in the complete non-Archimedean space Y. Therefore, we
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may define a mapping Q1 : X ® Y as

Q1(x) = lim
n→∞

f (knx)
k2n

for all x Î X. Using the induction argument and the strong triangle inequality, we

may obtain that∥∥∥∥f (x) − f (knx)
k2n

∥∥∥∥ ≤ 1

2|k|2 max
{

ψ(kix, 0)

|k|2i : 0 ≤ i < n
}

(46)

for all x Î X. Letting n ® ∞ in (46), we lead to the approximation (42).

Next, we have to show that Q1 satisfies Equation (4). Replacing x, y by knx, kny in

(41) and dividing by |k|2n, it then follows that

1

|k|2n
∥∥f (kn(kx + y)) + f (kn(kx − y)) − kf (kn(x + y)) − kf (kn(x − y))

−2k(k − 1)f (knx) + 2(k − 1)f (kny)
∥∥ ≤ 1

|k|2n ψ(knx, kny)

for all x, y Î X. Taking the limit as n ® ∞, we see from (40) and (43) that

Q1(kx + y) +Q1(kx − y)

= kQ1(x + y) + kQ1(x − y) + 2k(k − 1)Q1(x) − 2(k − 1)Q1(y)

for all x, y Î X. Therefore, the mapping Q1 satisfies Equation (4) and so it is quadra-

tic by Theorem 2.2.

Moreover, to prove the uniqueness of the quadratic mapping Q1 satisfying the

inequality (42), let us assume that there exists a quadratic mapping Q′
1 := X → Y

which satisfies the inequality (42). Then, we have Q1(k
lx) = k2lQ1(x) and

Q′
1(k

lx) = k2lQ′
1(x) for all x Î X and all l Î N. Hence, it follows from (42) that for all x

Î X

∥∥Q1(x) − Q′
1(x)

∥∥ =
1

|k|2l
∥∥∥Q1(klx) − Q′

1(k
lx)

∥∥∥
≤ 1

|k|2l max
{∥∥∥Q1(klx) − f (klx)

∥∥∥ , ∥∥∥f (klx) − Q′
1(k

lx)
∥∥∥}

≤ 1

|k|2 lim
n→∞max

{
ψ(kl+ix, 0)

|k|2(l+1)
: 0 ≤ i < n

}

=
1

|k|2 lim
n→∞max

{
ψ(kjx, 0)

|k|2j : l ≤ j < l + n
}

=
1

|k|2
�1(klx)

|k|2l
, ∀l ∈ N,

which tends to zero as l ® ∞. This completes the proof of the theorem.

Theorem 4.2. Let ψ : X2 ® [0, ∞) be a function such that

�2(x) := lim
n→∞max

{
|k|2iψ(

x
ki
, 0) : 1 ≤ i ≤ n

}
< ∞

lim
n→∞ |k|2nψ(

x
kn

,
y
kn

) = 0
(47)
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for all x, y Î X. If a mapping f : X ® Y satisfies the inequality∥∥Dkf (x, y)
∥∥ ≤ ψ(x, y) (48)

for all x, y Î X, then there exists a quadratic mapping Q2 : X ® Y which satisfies

Equation (4) and the inequality∥∥∥∥f (x) − f (0)
k + 1

− Q2(x)

∥∥∥∥ ≤ 1

|2| |k|2 �2(x) (49)

for all x Î X, where
∥∥f (0)∥∥ ≤ ψ(0, 0)∣∣2k(k − 1)

∣∣. The mapping Q2 is defined by

Q2(x) = lim
n→∞ k2nf (

x
kn

) (50)

for all x Î X. Moreover, if liml→∞|k|2l�2(
x

kl
) = 0 for all x Î X, then Q2 is a unique

quadratic mapping satisfying (49).

Proof. Letting x = y := 0 in (48), we get

∥∥f (0)∥∥ ≤ ψ(0, 0)
|2k(k − 1)| ,

where |2k (k - 1)| ≤ 1 is a non-Archimedean valuation. Putting y = 0 in (48), one has

|2| ∥∥f (kx) − k2f (x) + (k − 1)f (0)
∥∥ ≤ ψ(x, 0),

i.e.,
∥∥∥f̄ (x) − k2 f̄

( x
k

)∥∥∥ ≤ 1

|2| |k|2 |k|2ψ
(x
k
, 0

) (51)

for all x Î X, where f̄ (x) = f (x) − f (0)
k + 1

. Replacing x by
x

kn
in (51) and multiplying |k|

2n, we have∥∥∥k2nf ( x

kn

)
− k2n+2f

( x

kn+1

)∥∥∥ ≤ 1
|2| |k|

2n+2ψ
( x

kn+1
, 0

)
(52)

for all x Î X. Since the right-hand side of the inequality (52) tends to 0 as n ® ∞,

the sequence {k2nf ( x
kn

)} is Cauchy. Therefore, one may define a mapping Q2 : X ® Y

by

Q2(x) = lim
n→∞ k2nf (

x
kn

)

for all x Î X. Using induction on positive integers n, we obtain that∥∥∥f (x) − k2nf (
x

kn
)
∥∥∥ ≤ 1

|2| |k|2 max
{
|k|2iψ(

x

ki
, 0) : 1 ≤ i ≤ n

}
(53)

for all x Î X. Letting n ® ∞ in (53), we arrive at the estimation (49).

The remaining assertion is similar to that of Theorem 4.1.

Corollary 4.3. Let ε1 ≥ 0, ε2 ≥ 0 and p, q be real numbers such that either 0 <p, q <

2 or p, q > 2. If a mapping f : X ® Y satisfies the inequality∥∥Dkf (x, y)
∥∥ ≤ ε1‖x‖p + ε2

∥∥y∥∥q
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for all x, y Î X, then there exists a unique quadratic mapping Qi : X ® Y (i = 1,2)

which satisfies (4) and inequality⎧⎪⎪⎨
⎪⎪⎩

∥∥f (x) − Q1(x)
∥∥ ≤ ε1‖x‖p

|2| |k|2 ≤ ε1‖x‖p
|2| |k|p , if p, q > 2;∥∥∥∥f (x) − f (0)

k + 1
− Q2(x)

∥∥∥∥ ≤ ε1‖x‖p
|2| |k|P ≤ ε1‖x‖p

|2| |k|2 , if 0 < p, q < 2.

for all x Î X.

Proof. Taking ψ(x, y) = ε1║x║p+ ε2║y║q and applying Theorems 4.1 and 4.2, we

obtain the desired approximations.

Corollary 4.4. Let ε be a nonnegative real number. If a mapping f : X ® Y satisfies

the inequality∥∥Dkf (x, y)
∥∥ ≤ ε

for all x, y Î X, then there exists a unique quadratic mapping Q1 : X ® Y which

satisfies Equation (4) and the inequality∥∥∥∥f (x) − f (0)
k + 1

− Q1(x)

∥∥∥∥ ≤ ε

|2|

for all x Î X.

We remark that stability results of the Euler-Lagrange-type quadratic equation (4) in

normed spaces are very different from those of Equation (4) in non-Archimedean

normed spaces, of which stability results in non-Archimedean normed spaces maybe

come from the opposite direction to stability results in normed spaces in view of Cor-

ollaries 4.3 and 4.4.
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