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Abstract

In this article, we consider a class of parametric generalized vector quasi-variational-
like inequality problem (for short, (PGVQVLIP)) in Hausdorff topological vector spaces,
where the constraint set K and a set-valued mapping T are perturbed by different
parameters, and establish the nonemptiness and upper semicontinuity of the
solution mapping S for (PGVQVLIP) under some suitable conditions. By virtue of the
gap function, sufficient conditions for the H-continuity and B-continuity of the
solution mapping S of (PGVQVLIP) are also derived. Moreover, examples are provided
for illustrating the presented results.
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1 Introduction
In 1980, Giannessi [1] first introduced vector variational inequality problems in finite

dimensional Euclidean spaces. Since Giannessi, vector variational inequalities were

investigated by many authors in abstract spaces and widely applied to transportation,

finance, and economics, mathematical physics, engineering sciences and many others

(see, for instance, [2-18] and the reference therein).

The stability analysis of solution mappings for vector variational inequality problems is

an important topic in optimization theory and applications. Especially, some authors

have tried to discuss the upper and lower semi-continuity of solution mappings (see, for

instance, [19-28] and the reference therein). Khanh and Luu [29] studied a parametric

multi-valued quasi-variational inequalities and obtained the semi-continuity of the solu-

tion sets and approximate solution sets. Zhong and Huang [30] studied the solution sta-

bility of parametric weak vector variational inequalities in reflexive Banach spaces and

obtained the lower semi-continuity of the solution mapping for the parametric weak

vector variational inequalities with strictly C-pseudo-mapping and also proved the lower

semi-continuity of the solution mapping by degree-theoretic method. Aussel and

Cotrina [31] discussed the continuity properties of the strict and star solution mapping

of a scalar quasi-variational inequality in Banach spaces. Zhao [32] obtained a sufficient

and necessary condition (H1) for the Hausdorff lower semi-continuity of the solution

mapping to a parametric optimization problems. Under mild assumptions, Kien [33]

also obtained the sufficient and necessary condition (H1) for the Hausdorff lower semi-

continuity of the solution mapping to a parametric optimization problems. By using a
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condition (Hg) similar to it given in [32], Li and Chen [21] proved that (Hg) is also suffi-

cient for the Hausdorff lower semi-continuity of the solution mapping to a class of weak

vector variational inequality.

Very recently, Chen et al. [34] further studied the Hausdorff lower semi-continuity of

the solution mapping to the parametric weak vector quasi-variational inequality in

Hausdorff topological vector spaces. Zhong and Huang [35] also derived a sufficient

and necessary condition (Hg)’ for the Hausdorff lower semi-continuity and Hausdorff

continuity of the solution mapping to a parametric weak vector variational inequalities

in reflexive Banach spaces. Lalitha and Bhatia [36] presented various sufficient condi-

tions for the upper and lower semi-continuity of solution sets as well as the approxi-

mate solution sets to a parametric quasi-variational inequality of the Minty type.

Motivated and inspired by the studies reported in [29-37], the aim of this article is to

investigate a class of (PGVQVLIP) in Hausdorff topological vector spaces, where the

constraint set K and a set-valued mapping T are perturbed by different parameters.

We establish the nonemptiness and upper semi-continuity of the solution mapping for

(PGVQVLIP) under some suitable conditions. By virtue of the gap function, sufficient

conditions for the H-continuity and B-continuity of the solution mapping of the

(PGVQVLIP) are also derived. Moreover, some examples are provided for illustrating

the presented results. The results presented in this article develop, extend and improve

the some main results given in [29-35,37].

This article is organized as follows. In Section 2, we introduce the problem

(PGVQVLIP), recall some basic definitions and some of their properties. In Section 3,

we investigate the sufficient conditions for the upper semi-continuity nonemptiness

and continuity of the solution mapping for (PGVQVLIP) in Hausdorff topological vec-

tor spaces.

2 Preliminaries
Throughout this article, let ∨ and ∧ (the spaces of parameters) be two Hausdorff topo-

logical vector spaces and X, Y be two locally convex Hausdorff topological vector

spaces. Let L(X, Y) be the set of all linear continuous operators from X into Y, denoted

〈t, x〉 by the value of a linear operator t Î L(X, Y) at x Î X, and C : X ® 2Y be a set-

valued mapping such that C(x) is a proper closed convex cone for all x Î X with

int C(x) �= ∅. Let T : X × ∨ ® 2L(X,Y) and K : ∧ ® 2X be two set-valued mappings, h :

X × X ® X and j : X × X ® Y be two vector-valued mappings. We always assume

that 〈⋅,⋅〉 is continuous and 2X denotes the family of all nonempty subsets of X.

We consider the following parametric generalized vector quasi-variational-like

inequality problem (for short, (PGVQVLIP)): Find x Î K (l) such that

〈T(x,μ), η(y, x)〉 + φ(y, x) �⊆ −int C(x), ∀y ∈ K(λ), (2:1)

where 〈T(x, μ), h (y, x)〉 + j(y, x) = ∪ξÎT(x,μ) 〈ξ, h(y, x)〉 + j(y, x).
It is easy to see that (PGVQVLIP) is equivalent to find x Î K (l) and ξ Î T(x, μ)

such that

〈ξ , η(y, x)〉 + φ(y, x) /∈ −int C(x), ∀y ∈ K(λ). (2:2)

Special cases of the problem (2.1) are as follows:
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(I) If T is a single-valued mapping, then the problem (2.1) is reduced to the following

parametric vector quasi-variational-like inequality problem (for short, (PVQVLIP)):

Find x Î K(l) such that

〈t(x,μ), η(y, x)〉 + φ(y, x) /∈ −int C(x), ∀y ∈ K(λ), (2:3)

where t : X × ∨ ® L(X, Y) is a vector-valued mapping.

(II) If, for each pair of parameters (l, μ) Î ∧ × ∨, h (y, x) = y - x, T(x, μ) = T(x) and

j(y, x) = 0 for all x, y Î K (l) = K, then the problem (2.1) is reduced to the following

vector quasi-variational inequality problem: Find x Î K such that

〈T(x), y − x〉 �⊆ −int C(x), ∀y ∈ K, (2:4)

where K is a nonempty subset of X, T : X ® 2L(X,Y), which has been studied by

Ansari et al. [4].

(III) If, for each pair of parameters (l, μ) Î ∧ × ∨, C(x) = C, h(y, x) = y - x and j(y, x) =
0 for all x, y Î K (l), where C is a proper closed convex cone, then the problem (2.1) is

reduced to the following vector quasi-variational inequality problem: Find x Î K (l)
such that

〈T(x,μ), y − x〉 �⊆ −int C, ∀y ∈ K(λ), (2:5)

which has been studied by Zhong and Huang [30].

(IV) If, for each pair of parameters (l, μ) Î ∨ × ∧, h(y, x) = 0 for all x, y Î K(l), then
the problem (2.1) is reduced to the following vector equilibrium problem: Find x Î K

(l) such that

φ(y, x) /∈ −int C(x), ∀y ∈ K(λ). (2:6)

(V) If, for each pair of parameters (l, μ) Î ∨ × ∧, h (y, x) = 0 and j(y, x) = f(y)-f(x)

for all x, y Î K (l), where f : X ® Y, then the problem (2.1) is reduced to the following

vector optimization problem:

min
y∈K(λ)

f (y). (2:7)

For each pair of parameters (l, μ) Î ∧ × ∨, we denote the solutions set of the pro-

blem (2.1) by S(l, μ), i.e.,

S(λ,μ) = {x ∈ K(λ) : 〈T(x,μ), η(y, x)〉 + φ(y, x) �⊆ −int C(x), ∀y ∈ K(λ)}.

So, S : ∧ × ∨ ® 2X is a set-valued mapping, which is called the solution mapping of

the problem (2.1).

We first recall some definitions and lemmas which are needed in our main results.

Definition 2.1 [9,10]. The nonlinear scalarization function ξe : X × Y ® R is defined

by

ξe(x, y) = inf{z ∈ R : y ∈ ze(x) − C(x)}, ∀(x, y) ∈ X × Y,

where e : X ® Y is a vector-valued mapping and e(x) Î intC(x) for all x Î X.

Example 2.1 [34]. If Y = Rn, e(x) = e and C(x) = Rn
+ for any x Î X, where

e = (1, 1, ..., 1)T ∈ int Rn
+, then the function ξe(x,y) = max1≤i≤n{yi} is a nonlinear scalari-

zation function for all x Î X, y = (y1, y2,...,yn)
T Î Y.
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Definition 2.2 [34,35]. Let Γ be a Hausdorff topological space and X be a locally

convex Hausdorff topological vector space. A set-valued mapping F : Γ ® 2X is said

to be:

(1) upper semi-continuous in the sense of Berge (for short, (B-u.s.c)) at g0 Î Γ if, for

each open set V with F(g0) ⊂ V, there exists δ > 0 such that

F(γ ) ⊂ V, ∀γ ∈ B(γ0, δ);

(2) lower semi-continuous in the sense of Berge (for short, (B-l.s.c)) at g0 Î Γ if, for

each open set V with F(γ0) ∩ V �= ∅, there exists δ > 0 such that

F(γ ) ∩ V �= ∅, ∀γ ∈ B(γ0, δ);

(3) upper semi-continuous in the sense of Hausdorff (for short, (H-u.s.c)) at g0 Î Γ if,

for each � > 0, there exists δ > 0 such that

F(γ ) ⊂ U(F(γ0), ε), ∀γ ∈ B(γ0, δ);

(4) lower semi-continuous in the sense of Hausdorff (for short, (H-l.s.c)) at g0 Î Γ if,

for each � > 0, there exists δ > 0 such that

F(γ0) ⊂ U(F(γ ), ε), ∀γ ∈ B(γ0, δ);

(5) closed if the graph of F is closed, i.e., the set G(F) = {(g, x) Î Γ × X : x Î F(g)} is
closed in Γ × X.

We say that F is H-l.s.c (resp., H-u.s.c, B-l.s.c, B-u.s.c) on Γ if it is H-l.s.c (resp., H-u.

s.c, B-l.s.c, B-u.s.c) at each g Î Γ. F is called continuous (resp., H-continuous) on Γ if

it is both B-l.s.c (resp., H-l.s.c) and B-u.s.c (resp., H-u.s.c) on Γ.

By [9, Theorem 2.1], [34, Propositions 2.2 and 2.3], and [35, Lemma 2.3], the non-

linear scalarization function ξe(⋅,⋅) has the following properties.

Proposition 2.1. Let e : X ® Y be a continuous selection from the set-valued map-

ping intC(⋅). For any x Î X, y Î Y, and r Î R, the following hold:

(1) If the mappings C(⋅) and Y \ intC(⋅) are B-u.s.c on X, then ξe(⋅,⋅) is continuous
onX × Y;

(2) The mapping ξe(x, ⋅) : Y ® R is convex;

(3) ξe(x, y) <r ⇔ y Î re(x)-intC(x);

(4) ξe(x, y) ≥ r ⇔ y ∉ re(x)-intC(x);

(5) ξe(x, re(x)) = r, especially, ξe(x, 0) = 0.

Proposition 2.2 [9]. Let X, Y be two locally convex Hausdorff topological vector

spaces and C : X ® 2Y be a set-valued mapping such that, for each x Î X, C(x) is a

proper closed convex cone in Y with int C(x) �= ∅. Let e : X ® Y be a continuous selec-

tion from the set-valued mapping intC(⋅). Define a set-valued mapping V : X ® 2Y by

V(x) = Y \ intC(x) for all x Î X. Then the following hold:

(1) if V(⋅) is B-u.s.c on X, then ξe(⋅,⋅) is upper semicontinuous on X × Y;

(2) if C(⋅) is B-u.s.c on X, then ξe(⋅,⋅) is lower semicontinuous on X × Y.
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Definition 2.3 [38]. A set B ⊂ X is said to be balanced if rB ⊂ B for any r Î R with

|r| ≤ 1.

Definition 2.4. Let t : X × ∨ ® L(X, Y) be a vector-valued mapping and T : X × ∨ ®
2L(X,Y) be a set-valued mapping.

(1) The mapping t is called a selection of T on X × ∨ if

t(x,μ) ∈ T(x,μ), ∀(x,μ) ∈ X × ∨;

(2) The mapping t is called a continuous selection of T on X × ∨ if t is a selection

of T and continuous on X × ∨.

Definition 2.5. For any pair (l, μ) Î ∨ × ∧ of parameters and x Î K (l), the set-

valued mapping T : X × ∨ ® 2L(X,Y) is said to be:

(1) weakly (h, j, C(x))-pseudo-mapping on K (l) if, for any y Î K (l) and ξ’ Î T(x, μ),

ξ“ Î T(y, μ),

〈ξ ′, η(y, x)〉 + φ(y, x) /∈ −int C(x) ⇒ 〈ξ ′′, η(y, x)〉 + φ(y, x) /∈ −int C(x);

(2) (h, j, C(x))-pseudo-mapping on K (l) if, for any y Î K (l) and ξ’ Î T(x, μ), ξ“ Î
T(y, μ),

〈ξ ′, η(y, x)〉 + φ(y, x) �∈ −int C(x) ⇒ 〈ξ ′′, η(y, x)〉 + φ(y, x) ∈ C(x);

(3) strictly (h, j, C(x))-pseudo-mapping on K(l) if, for any y Î K(l) and ξ’ Î T(x, μ),

ξ“ Î T(y, μ),

〈ξ ′, η(y, x)〉 + φ(y, x) /∈ −int C(x) ⇒ 〈ξ ′′, η(y, x)〉 + φ(y, x) ∈ int C(x).

Remark 2.1. If h (y, x) = y - x, C(x) = C, and j (y, x) = 0 for all x, y Î K (l), then
(h, j, C(x))-pseudo-mapping (resp., strictly (h, j, C(x))-pseudo-mapping) is reduced to

C-pseudo-mapping (resp., strictly C-pseudo-mapping) in [30].

Remark 2.2. It is easy to see that every strictly (h, j, C(x))-pseudo-mapping is an (h,
j, C(x))-pseudo-mapping and weakly (h, j, C(x))-pseudo-mapping. Moreover, every (h,
j, C(x))-pseudo-mapping is also a weakly (h, j, C(x))-pseudo-mapping.

Definition 2.6. Let K be a nonempty subset of a Hausdorff topological vector space

X. A set-valued mapping F : K ® 2X is called a KKM mapping if, for each finite subset

{x1, x2,...,xm} of K, co{x1, x2, ..., xm} ⊆ ∪m
i=1F(xi), where co denotes the convex hull.

Definition 2.7. Let h : X × X ® X and j : X × X ® Y be two vector-valued map-

ping.

(1) h (x, y) is said to be affine with respect to the first argument if, for any y Î X,

η(ιx1 + (1 − ι)x2, y) = ιη(x1, y) + (1 − ι)η(x2, y), ∀x1, x2 ∈ X, ι ∈ R;

(2) j (x, y) is said to be C(x)-convex with respect to the first argument if, for any

y Î X,
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φ(ιx1 + (1 − ι)x2, y) ∈ ιφ(x1, y) + (1 − ι)φ(x2, y) − C(y), ∀x1, x2 ∈ X, ι ∈ [0, 1].

Lemma 2.1 [37]. Let K be a nonempty subset of a Hausdorff topological vector space

X and F : K ® 2X be a KKM mapping such that, for all y Î K, F(y) is closed and F(y*)

is compact for some y* Î K. Then ∩y∈KF(y) �= ∅.
Lemma 2.2 [38]. For each neighborhood V of 0X, there exists a balanced open neigh-

borhood ⊔ of 0X such that ⊔ + ⊔ + ⊔ ⊂ V.

Lemma 2.3 [39]. Let Γ be a Hausdorff topological space, X be a locally convex Haus-

dorff topological vector space and F : Γ ® 2X be a set-valued mapping. Then the fol-

lowing hold:

(1) F is B-l.s.c at g0 Î Γ if and only if, for any net {ga} ⊆ Γ with ga ® g0 and x0 Î F

(g0), there exists a net {xa} ⊆ X with xa Î F(ga) for all a such that xa ® x0;

(2) If F is compact-valued, then F is B-u.s.c at g0 Î Γ if and only if, for any net {ga}
⊆ Γ with ga ® g0 and {xa} ⊆ X with xa Î F(ga) for all a, there exists x0 Î F(g0)
and a subnet {xb} of {xa} such that xb ® x0;

(3) If F is B-u.s.c and closed-valued, then F is closed. Conversely, if F is closed and

X is compact, then F is B-u.s.c.

Lemma 2.4 [40]. Let Γ be a Hausdorff topological space, X be a locally convex Haus-

dorff topological vector space, F : Γ ® 2X be a set-valued mapping and g0 Î Γ be a

given point. Then the following hold:

(1) If F is B-u.s.c at g0, then F is H-u.s.c at g0. Conversely, if F is H-u.s.c at g0 and F

(g0) is compact, then F is B-u.s.c at g0;
(2) If F is H-l.s.c at g0, then F is B-l.s.c at g0. Conversely, if F is B-l.s.c at g0 and cl(F

(g0)) is compact, then F is H-l.s.c at g0.

3 Main results
In this section, we investigate the stability of solutions of (PGVQVLIP), that is, the

upper and lower semi-continuity of the solution mapping S(l, μ) for (PGVQVLIP) cor-

responding to a pair (l, μ) of parameters in Hausdorff topological vector spaces.

Theorem 3.1. Let T : X × ∨ ® 2L(X,Y) be a set-valued mapping with nonempty values,

C : X ® 2Y be a set-valued mapping such that, for each x Î X, C(x) is a pointed closed

and convex cone in Y and int C(x) �= ∅, η : X × X → X and j : X × X ® Y be two

vector-valued mappings. Assume that the following conditions are satisfied:

(a) h (x, x) = 0 and j(x, x) = 0 for all x Î X;

(b) h (x, y) is continuous and affine with respect to the first argument;

(c) j (x, y) is continuous and C(x)-convex with respect to the first argument;

(d) T (x, μ) is weakly (h, j, C(x))-pseudo-mapping with respect to the first argu-

ment and B-u.s.c with compact-values on X × ∨;
(e) there is a continuous selection tof T on X × ∨;
(f) the mapping W (⋅) = Y\ -intC(⋅) such that the graph Gr(W) of W is weakly

closed in X × Y;

(g) K : ∧ ® 2X is B-u.s.c and B-l.s.c with weakly compact and convex-values.
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Then the following hold:

(1) The solution mapping S(⋅,⋅) is nonempty and closed on ∧ × ∨;
(2) The solution mapping S(⋅,⋅) is B-u.s.c on ∧ × ∨.

Proof. For any (l, μ) Î ∧ × ∨, we first show that S(l, μ) is nonempty. Since T has a

continuous selection t and T(x, μ) is weakly (h, j, C(x))-pseudo-mapping with respect

to the first argument on X × ∨, we know that t(x, μ) is also weakly (h, j, C(x))-
pseudo-mapping with respect to the first argument on X × ∨.
Now, we define two set-valued mappings ϒ1, ϒ2 : K(l) ® 2K(l) as follows: for all y Î

K(l),

ϒ1(y) = {x ∈ K(λ) : 〈t(x,μ), η(y, x)〉 + φ(y, x) /∈ −int C(x)}

and

ϒ2(y) = {x ∈ K(λ) : 〈t(y,μ), η(y, x)〉 + φ(y, x) /∈ −int C(x)}.

Since h(x, x) = 0 and j (x, x) = 0 for all x Î X, we have y Î ϒ1(y) and y Î ϒ2(y) and

so ϒ1(y) and ϒ2(y) are nonempty for any y Î K(l). By virtue of the weakly (h, j, C(x))-
pseudo-mapping of t(x, μ) with respect to the first argument, we have

ϒ1(y) ⊆ ϒ2(y), ∀y ∈ K(λ). (3:1)

First, we assert that ϒ1 is a KKM mapping. Suppose that there exists a finite subset

{y1, y2,...,ym} ⊆ K(l) such that

co{y1, y2, ..., ym} �⊆
m⋃
i=1

ϒ1(yi).

Then there exists ȳ ∈ co{y1, y2, ..., ym}, i.e., ȳ = ∑m
i=1 ιiyi ∈ K(λ) for some nonnegative

real number ιi with 1 ≤ i ≤ m and
∑m

i=1 ιi = 1 such that ȳ /∈ ⋂m
i=1 ϒ1(yi). Moreover,

ȳ /∈ ϒ1(yi) for 1 ≤ i ≤ m. This yields that

〈t(ȳ,μ), η(yi, ȳ)〉 + φ(yi, ȳ) ∈ −int C(ȳ)

and so

n∑
i=1

ιi(〈t(ȳ,μ), η(yi, ȳ)〉 + φ(yi, ȳ)) ∈ −int C(ȳ).

Taking into account (b) and (c) that〈
t(ȳ,μ), η

(
m∑
i=1

ιiyi, ȳ

)〉
+ φ

(
m∑
i=1

ιiyi, ȳ

)
= 〈t(ȳ,μ), η(ȳ, ȳ)〉 + φ(ȳ, ȳ) ∈ −int C(ȳ). (3:2)

Again, from (a) together with (3.2), we have 0 ∈ −int C(ȳ), which is a contradiction.

Hence ϒ1 is a KKM mapping. It follows from (3.1) that ϒ2 is also a KKM mapping.

Second, we show that
⋂

y∈K(λ) ϒ2(y) �= ∅. Taking any net {xb} of ϒ2(y) such that {xb}

is weakly convergent to a point x̃ ∈ K(λ). Then, for each b, one has

〈t(y,μ), η(y, xβ)〉 + φ(y, xβ) /∈ −int C(xβ).
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From (b)-(e), it follows that

(xβ , 〈t(y,μ), η(y, xβ)〉 + φ(y, xβ)) → (x̃, 〈t(y,μ), η(y, x̃)〉 + φ(y, x̃)) ∈ Gr(W).

Consequently, we get

〈t(y,μ), η(y, x̃)〉 + φ(y, x̃) ∈ Y\(−int C(x̃)),

that is,

〈t(y,μ), η(y, x̃)〉 + φ(y, x̃) /∈ −int C(x̃).

Therefore, x̃ ∈ ϒ2(y) and so ϒ2(y) is weakly closed set for any y Î K(l). By the com-

pactness of K(l), ϒ2(y) is weakly compact subset of K(l). From Lemma 2.1, it follows

that ⋂
y∈K(λ)

ϒ2(y) �= ∅,

i.e., there exists x̄ ∈ K(λ) such that

〈t(y,μ), η(y, x̄)〉 + φ(y, x̄) /∈ −int C(x̄), ∀y ∈ K(λ). (3:3)

Third, we prove that x̄ ∈ ⋂
y∈K(λ) ϒ1(y). For any y Î K(l), set xr = (1 − r)x̄ + ry for all

r Î (0,1).

Then xr Î K(l). So, from (3.3), we have

〈t(xr ,μ), η(xr , x̄)〉 + φ(xr , x̄) /∈ −int C(x̄), ∀y ∈ K(λ). (3:4)

Note that

〈t(xr ,μ), η(xr , x̄)〉 + φ(xr, x̄) − r(〈t(xr ,μ), η(y, x̄)〉 + φ(y, x̄))

= 〈t(xr ,μ), η(xr , x̄)〉 + φ(xr, x̄) − r(〈t(xr ,μ), η(y, x̄)〉 + φ(y, x̄))

− (1 − r)(〈t(xr ,μ), η(x̄, x̄)〉 + φ(x̄, x̄))

∈ −int C(x̄).

It follows from (3.4) that

r(〈t(xr ,μ), η(y, x̄)〉 + φ(y, x̄)) /∈ −int C(x̄), ∀y ∈ K(λ),

and so

〈t(xr ,μ), η(y, x̄)〉 + φ(y, x̄) /∈ −int C(x̄), ∀y ∈ K(λ).

Since t is continuous, we have

(xr , 〈t(xr ,μ), η(y, x̄)〉 + φ(y, x̄)) → (x̄, 〈t(x̄,μ), η(y, x̄)〉 + φ(y, x̄)) ∈ Gr(W)

as r ® 0. Therefore, by the weak closedness of Gr (W), we have

〈t(x̄,μ), η(y, x̄)〉 + φ(y, x̄) ∈ Y\(−int C(x̄)),

that is,

〈t(x̄,μ), η(y, x̄)〉 + φ(y, x̄) /∈ −int C(x̄), ∀y ∈ K(λ). (3:5)

By the condition (e) and (3.5), there exist x̄ ∈ K(λ) and ξ ∈ T(x̄,μ) such that

〈ξ , η(y, x̄)〉 + φ(y, x̄) /∈ −int C(x̄), ∀y ∈ K(λ) (3:6)
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and so S(l, μ) is nonempty for any (l, μ) Î ∧ × ∨.
Fourth, we show that the solution mapping S(⋅,⋅) is B-u.s.c on ∧ × ∨. Suppose that

there exist (l0, μ0) Î ∧ × ∨ such that S(⋅,⋅) is not B-u.s.c at (l0, μ0). Then there exist

an open set V with S(l0, μ0) ⊂ V, a net {(la, μa)} and xa Î S (la, μa) such that (la,
μa) ® (l0, μ0) and xa ∉ V for all a. Since xa Î S(la, μa), it follows that xa Î K(la).
By the condition (g), K(⋅) is B-u.s.c with compact-values at l0. Then there exists x0 Î
K(l0) such that xa ® x0 (here we may take a subnet {xb} of {xa} if necessary). Suppose

that x0 ∉ S(l0, μ0), that is, for any ξ̄ ∈ T(x0,μ0), there exists ȳ ∈ K(λ0) such that

〈ξ̄ , η(ȳ, x0)〉 + φ(ȳ, x0) ∈ −int C(x0). (3:7)

Since xa Î S (la, μa), there exist ξ ′
α ∈ T(xα ,μα) such that

〈ξ ′
α , η(zα , xα)〉 + φ(zα, xα) /∈ −int C(xα), ∀zα ∈ K(λα).

Since K is B-l.s.c at l0, it follows that, for any net {la} ⊆ ∧ with la ® l0 and z0 Î K

(l0), there exists za Î K(la) such that za ® z0. Again, from the condition (d), T is B-

u.s.c with compact-values at (x0, μ0) and, for any net {(xa, μa)} ⊆ X × ∨ with (xa, μa)

® (x0, μ0), there exists ξ0 Î T(z0, μ0) such that ξ ′
α → ξ0.

Therefore, from (b), (c) and (f), we have

(xα , 〈ξ ′
α , η(zα , xα)〉 + φ(zα , xα)) → (x0, 〈ξ0, η(z0, x0)〉 + φ(z0, x0)) ∈ Gr(W).

Furthermore, we have

〈ξ0, η(z0, x0)〉 + φ(z0, x0) /∈ −int C(x0), ∀z0 ∈ K(λ0),

which contradicts (3.7). So, x0 Î S (l0, μ0) ⊂ V, which is a contradiction. Since xa ∉
V for all a, it follows that xa ® x0 and V is open. Consequently, the solution mapping

S(⋅,⋅) is B-u.s.c at any (l0, μ0) Î ∧ × ∨.
Finally, we show that S(⋅,⋅) is closed at any (l0, μ0) Î ∧ × ∨. Taking xa Î S(la, μa)

with (la, μa) ® (l0, μ0) and xa ® x0. Then xa Î K(la). By (g), x0 Î K(l0). By the

same proof as above, we have x0 Î S (l0, μ0), which implies that the solution mapping

S(⋅,⋅) is closed on ⋀ × M. This completes the proof.

Remark 3.1. From Lemma 2.4, we know that, if all the conditions of Theorem 3.1

are satisfied, then the solution mapping S(⋅,⋅) is H-u.s.c on ∧ × ∨.
From Theorem 3.1, we can conclude the following:

Corollary 3.2. Let (l0, μ0) Î ∧ × ∨ be a point, K(l0) be a compact set, T : X × ∨ ®
2L(X,Y) be a set-valued mapping with nonempty values, C : X ® 2Y be a set-valued

mapping such that, for each x Î X, C(x) is a pointed closed and convex cone in Y and

int C(x) �= ∅, η : X × X → X and j :X × X ® Y be two vector-valued mappings.

Assume that the conditions (a)-(c) and (f) in Theorem 3.1 and the following conditions

are satisfied:

(d)’ T(x, μ) is weakly (h, j, C(x))-pseudo-mapping with respect to the first argu-

ment and B-u.s.c with compact-values on X × {μ0};

(e)’ there is a continuous selection t of T on X × {μ0}.

Then the following hold:
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(1) The solution mapping S(⋅,⋅) is nonempty and weakly compact at (l0, μ0);
(2) The solution mapping S(⋅,⋅) is B-u.s.c at (l0, μ0).

If the set-valued mapping K : ∧ ® 2X is unbounded-values, then we have the

following:

Theorem 3.3. Let T : X × ∨ ® 2L(X,Y) be a set-valued mapping with nonempty values,

C : X ® 2Y be a set-valued mapping such that, for each x Î X, C(x) is a pointed closed

and convex cone in Y and int C(x) �= ∅, η : X × X → X and j : X × X ® Y be two vec-

tor-valued mappings. Assume that conditions (a)-(f) in Theorem 3.1 and the following

conditions are satisfied:

(g)’ K : ∧ ® 2X is B-u.s.c and B-l.s.c with closed and convex-values;

(h) for any (l,μ) Î ∧ × ∨, there exists a weakly compact subset Δ(l) of X and z0 Î
Δ(l) ⋂ K(l) such that

〈t(z0,μ), η(z0, x)〉 + φ(z0, x) ∈ −int C(x), ∀x ∈ K(λ)\
(λ).

Then the following hold:

(1) The solution mapping S(⋅,⋅) is nonempty and closed on ∧ × ∨;
(2) The solution mapping S(⋅,⋅) is B-u.s.c on ∧ × ∨.

Proof. By the proof of Theorem 3.1, we only need to prove that ϒ2(z0) is weakly

compact. Since ϒ2(z0) ⊆ Δ(l) and ϒ2(z0) is closed, it follows that ϒ2(z0) is weakly com-

pact and S(l, μ) ⊆ Δ(l) for each (l, μ) Î ∧ × ∨. This completes the proof.

Remark 3.2. In Theorems 3.1 and 3.3, if the condition (d) is replaced by the condi-

tion that T(x, μ) is (strictly) (h, j, C(x))-pseudo-mapping with respect to the first argu-

ment and B-u.s.c with compact-values on X × ∨, then Theorems 3.1 and 3.3 still hold.

Inspired the results in Chen et al. [34], we introduce the following function by the

nonlinear scalarization function ξe. Suppose that K(l) is a compact set for any l Î ∧,
T(x, μ) is also a compact set for any (x, μ) Î X × ∨, h (x, x) = j (x, x) = 0 for all x Î
X, V(⋅) =: Y\ intC(⋅) and C(⋅) are B-u.s.c on X. We define a function g: X × ∧ × ∨ ® R

as follows:

g(x,λ,μ) =: max
ζ∈T(x,μ)

min
y∈K(λ)

ξe(x, 〈ζ , η(y, x)〉 + φ(y, x)), ∀x ∈ K(λ). (3:8)

Since K(l) and T(x, μ) are compact sets and ξe(⋅,⋅) is continuous, g(x, l, μ) is well-

defined. Forward, we use the function g(x, l, μ) to discuss the continuity of the solu-

tion mapping of (PGVQVLIP).

First, we discuss the relations between g(⋅,⋅,⋅) and the solution mapping S(⋅,⋅).
Lemma 3.1. (1) g(x0, l0, μ0) = 0 if and only if x0 Î S (l0, μ0);

(2) g(x, l, μ) ≤ 0 for all x Î K(l).

Proof. The proof is similar to the proof of Proposition 4.1 [34] and so the proof is

omitted.

Remark 3.3. We say that the function g is a parametric gap function for

(PGVQVLIP) if and only if (1) and (2) of Lemma 3.1 are satisfied. In fact, the gap
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functions are widely applied in optimization problems, equation problems, variational

inequalities problems and others. The minimization of the gap function is an effectively

approach for solving variational inequalities. Many authors have investigated the gap

functions and applied to construct some algorithms for variational inequalities and

equilibrium problems (see, for instance, [8,14,41]).

Lemma 3.2. Let K(l) be nonempty compact for any l Î ∧. Assume that the follow-

ing conditions are satisfied:

(a) T(⋅,⋅) is B-l.s.c with compact-values on X × ∨;
(b) C(⋅) is B-u.s.c on X, and e(⋅) Î intC(⋅) is continuous on X.

Then g(⋅,⋅,⋅) is a lower semi-continuous function.

Proof. The proof is similar to the proof of Lemma 4.2 [34] and so the proof is

omitted.

If the conditions of Lemma 3.2 are strengthened, then we can get the continuity of g.

Lemma 3.3. Let K(l) be nonempty compact for any l Î ∧. Assume that the follow-

ing conditions are satisfied:

(a) T(⋅,⋅) is B-continuous with compact-values on X × ∨;
(b) C(⋅) and V(⋅) = Y\ intC(⋅) are B-u.s.c on X and e(⋅) Î intC(⋅) is continuous on X.

Then g(⋅,⋅,⋅) is continuous.
Proof. By Lemma 3.2, we only need to prove that g is upper semi-continuous. We

can show that -g is lower semi-continuous. The proof method of the lower semi-conti-

nuity of -g is similar to that of the upper semi-continuity of g and so the proof is

omitted.

Motivated by the hypothesis (H1) of [32,33], (Hg) of [21,34] and (Hg)’ of [35], by vir-

tue of the parametric gap function g, we also introduce the following key assumption:

(Hg)” For any (l0, μ0) Î ∧ × ∨ and � > 0, there exist ϱ > 0 and δ > 0 such that, for

any (l, μ) Î B((l0, μ0), δ) and x Î Δ(l, μ, �) = K(l) \ U(S(l, μ), �),

g(λ,μ, x) ≤ −�.

Remark 3.4. It is easy to see that, if ∧ and ∨ are the same spaces and ∧ is a metric

space, C(x) ≡ C for all x Î X and μ = l, then the hypothesis (Hg)” is reduced to the

hypothesis (Hg)’ of [35].

Remark 3.5. As pointed in [21,32,34,35], the hypothesis (Hg)” can be explained by

the geometric properties that, for any small positive number �, one can take two small

positive real number ϱ and δ such that, for all problems in the δ-neighborhood of a

pair parameters (l0, μ0), if a feasible point x is away from the solution set by a distance

of at least �, then a “gap” by an amount of at least -ϱ will be generated. As mentioned

out in [32], the above hypothesis (Hg)” is characterized by a common theme used in

mathematical analysis. Such a theme interprets a proposition associated with a set in

terms of other propositions related with the complement set. Instead of looking for

restrictions within the solution set, the hypothesis (Hg)” puts restrictions on the beha-

vior of the parametric gap function on the complement of solution set. As showed in
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[34], the hypothesis (Hg)” seems to be reasonable in establishing the Hausdorff conti-

nuity of S(⋅,⋅) because of the complexity of the problem structure.

Theorem 3.4. Assume that (Hg)” and all the conditions of Theorem 3.1 holds and

the following conditions are satisfied:

(a) T(⋅,⋅) is B-continuous mapping with compact-values on X × ∨;
(b) C(⋅) is B-u.s.c on X and e(⋅) Î intC(⋅) is continuous on X.

Then the following hold:

(1) The solution mapping S(⋅,⋅) is nonempty and closed on ∧ × ∨;
(2) The solution mapping S(⋅,⋅) is H-continuous on ∧ × ∨.

Proof. By Theorem 3.1 and Lemma 2.2, we know that the solution mapping S(⋅,⋅) is
nonempty closed and H-u.s.c on ∧ × ∨.
Now, we only need to prove that the solution mapping S(⋅,⋅) is H-l.s.c on ∧ × ∨. Sup-

pose that there exists (l0, μ0) Î ∧ × ∨ such that the solution mapping S is not H-l.s.c

at (l0, μ0). Then there exist a neighborhood V of 0X, nets {(la, μa)} ⊂ ∧ × ∨ with (la,
μa) ® (l0, μ0) and {xa} such that

xα ∈ S(λ0,μ0)\(S(λα ,μα) + V). (3:9)

By Corollary 3.2, S(l0, μ0) is a compact set. Without loss of generality, assume that

xa ® x0 Î S(l0, μ0). For V and any � > 0, there exists a balanced open neighborhood

V(�) of 0X such that V (�)+ V (�)+ V (�) ⊂ V. It is easy to see that, for all � > 0,

(x0 + V(ε)) ∩ K(λ0) �= ∅.

Since K (⋅) is B-l.s.c at l0, there exists b1 such that

(x0 + V(ε)) ∩ K(λβ) �= ∅, ∀β ≥ β1.

For any � Î (0,1], assume that yb Î (x0 + V(�))⋂K(lb). Then yb ® x0. We assert that

yb ∉ S(lb, μb)+V(�). Suppose that yb Î S(lb, μb) + V(�). Then there exists zb Î S(lb,
μb) such that yb - zb Î V(�). Note that xa ® x0 Î S(l0, μ0). Without loss of generality,

we may assume that xb - x0 Î V(�). Therefore, one has

xβ − zβ = (xβ − x0) + (x0 − yβ) + (yβ − zβ) ∈ V(ε) + V(ε) + V(ε) ⊂ V.

This yields that xb Î S(lb, μb) + V, which contradicts (3.9). Thus yb ∉ S(lb, μb) +
V(�). In the light of (Hg)”, there exist two positive real numbers ϱ >0 and δ > 0 such

that, for any (lb, μb) Î B((l0, μ0), δ) and yb ∉ S(lb, μb) + V(�),

g(yβ ,λβ ,μβ) ≤ −�. (3:10)

By Lemma 3.2, g is lower semi-continuous. So, it follows that, for any real number

s > 0,

g(yβ ,λβ ,μβ) ≥ g(x0,λ0,μ0) − σ . (3:11)

Without loss of generality, assume that s < ϱ. Then, from (3.10) and (3.11), it follows

that
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g(x0,λ0,μ0) ≤ σ − � < 0,

that is,

g(x0,λ0,μ0) = max
ζ∈T(x0,μ0)

min
y∈K(λ0)

ξe(x0, 〈ζ , η(y, x0)〉 + φ(y, x0)) < 0.

Hence there exist ŷ0 ∈ K(λ0) and ζ0 Î T(x0, μ0) such that

ξe(x0, 〈ζ0, η(ŷ0, x0)〉 + φ(ŷ0, x0)) < 0.

From Proposition 2.1, it follows that

〈ζ0, η(ŷ0, x0)〉 + φ(ŷ0, x0) ∈ −int C(y0),

which contradicts x0 Î S(l0, μ0). Therefore, the solution mapping S is H-l.s.c on ∧ × ∨.
This completes the proof.

Now, we give two examples to validate Theorems 3.1 and 3.4.

Example 3.1. Let ∧ = ∨ = (-1,1),X = R,Y = R2 and let C(x) = R2
+ and

e(x) = (1, 1)T ∈ int R2
+ for all x Î X. Define the set-valued mappings K : ∧ ® 2X and

T : X × ∨ ® 2Y as follows: for any x Î X, μ Î ∨ and l Î ∧,

K(λ) =:
[
−λ

2
, |λ|

]
, T(x,μ) =: {(0, �)T : 1 ≤ � ≤ +μ2}.

It is easy to see that the conditions (a)-(g) of Theorem 3.1 and the conditions (a) and

(b) of Theorem 3.4 are satisfied. From simple computation, we get

S(λ,μ) = K(λ) =
[
−λ

2
, |λ|

]
for all (l, μ) Î ∧ × ∨. Therefore, S(⋅,⋅) is H-continuous on

∧ × ∨.
The following example illustrate the assumption (Hg)” in Theorem 3.4 is essential.

Example 3.2. Let ∧ = ∨ = [0,1], X = R, Y = R2 and let h (y, x) = y - x, j (y, x) = 0

and C(x) = R2
+ for all x, y Î X. Define the set-valued mappings K : ∧ ® 2X and T : X ×

∨ ® 2Y by

K(λ) =: [−1, 1], T(x,λ) =: {(4, x2 + λ)T}, ∀x ∈ X,λ ∈ ∧.

It is easy to see that the conditions (a)-(g) of Theorem 3.1 and the conditions (a) and

(b) of Theorem 3.4 are satisfied. From simple computation, one has

S(λ) =
{ {−1, 0}, if λ = 0,

{−1}, otherwise.

Therefore, S(⋅,⋅) is not H-continuous at l = 0. Let us show that the assumption (Hg)”

is not satisfied at 0. Put e(x) = (1, 1)T ∈ int R2
+. Then, from Example 2.1,

g(x,λ) = max
ζ∈T(x,λ)

min
y∈K(λ)

ξe(x, 〈ζ , η(y, x)〉 + φ(y, x))

= min
y∈K(λ)

max{4(y − x), (x2 + λ)(y − x)}

= (x2 + λ)(−1 − x).

It is easy to see that g is a parametric gap function for (PGVQVLIP). Take � Î (0,1)

and, for any ϱ > 0, set ln ® 0 with 0 <ln < ϱ and xn = 0 Î Δ(ln, �) = K(ln) \ U(S

(ln),�) for all n ≥ 1. Then we have
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g(xn,λn) = −λn > −�.

Hence the assumption (Hg)” fails to hold at 0.

From Lemma 2.4, Remark 3.1 and Theorems 3.1 and 3.4, we can get the following:

Corollary 3.5. Assume that all the conditions of Theorem 3.4 are satisfied. Then the

solution mapping S(⋅,⋅) is B-continuous.
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