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Abstract

In this article, we have introduced the Riesz convergence and Riesz core of double
sequences and determined the necessary and sufficient conditions on a four-
dimensional matrix A to yield PR - core{Ax} ⊆ P - core{x} and PR - core{Ax} ⊆ st2 - core
{x} for all x ∈ �2∞.
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1. Introduction

A double sequence x = [xjk]∞j,k=0 is said to be convergent in the Pringsheim sense or P-

convergent if for every ε >0 there exists an N Î N such that | xjk - ℓ | <ε whenever j, k

> N, [1]. In this case, we write P-lim x = ℓ. By c2, we mean the space of all P-conver-

gent sequences.

A double sequence x is bounded if

‖x‖ = sup
j,k≥0

∣∣xjk∣∣ < ∞.

By �2∞ we denote the space of all bounded double sequences.

Note that, in contrast to the case for single sequences, a convergent double sequence

need not be bounded. So, we denote by c∞2 the space of double sequences which are

bounded and convergent.

Let E ⊆ N × N and E(m, n) = {(j, k):j ≤ m,k ≤ n}. Then, the double natural density of

E is defined by

δ2(E) = P − lim
m,n

∣∣E(m,n)
∣∣

mn

if the limit on the right hand side exists; where the vertical bars denotes the cardinal-

ity of the set E(m,n).

A real double sequence x = [xjk] is said to be statistical (or briefly st-) convergent

[2] to the number L if for every ε >0, the set {(j,k): |xjk - L| > ε} has double natural

density zero. In this case, we write st2 - lim x = L. Let st2 be the space of all st-con-

vergent double sequences. Clearly, a convergent double sequence is also st-conver-
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gent but the converse it is not true, in general. Also, note that a st-convergent dou-

ble sequence need not be bounded. For example, consider the sequence x = [xjk]

defined by

xjk =

{
jk, if j and k are squares,

1, otherwise.
(1:1)

Then, clearly st2-lim x = 1. Nevertheless x neither convergent nor bounded. The st2-

lim sup and st2 - lim inf of a double sequence were introduced in [3] and also the sta-

tistical core of a double sequence was defined by the closed interval [st2 - lim sup, st2 -

lim inf].

Let A = [amn
jk ]∞j,k=0 be a four-dimensional infinite matrix of real numbers for all m,n =

0,1,.... The sums

ymn =
∞∑
j=0

∞∑
k=0

amn
jk xjk

are called the A- transforms of the double sequence x = [xjk]. We say that a sequence

x = [xjk] is A-summable to the limit ℓ if the A- transform of x = [xjk] exists for all m, n

= 0,1,... and is convergent to ℓ in the Pringsheim sense, i.e.,

lim
p,q→∞

p∑
j=0

q∑
k=0

amn
jk xjk = ymn

and

lim
m,n→∞ ymn = �.

We say that a matrix A is bounded-regular if every bounded-convergent sequence x

is A-summable to the same limit and the A-means are also bounded. The necessary

and sufficient conditions for A to be bounded-regular or RH- regular are known (see

[4,5]).

A double sequence x = [xjk] of real numbers is said to be Cesáro convergent to a

number L if and only if there exists an L Î ℝ such that

lim
p,q→∞

1
(p + 1)(q + 1)

p∑
j=1

q∑
k=1

xmn
jk = L,

and is denoted by C1 - lim x = L. We denote the space of all Cesáro convergent dou-

ble sequences by C1. That is,

C1 = {x ∈ �2∞ : ∃L ∈ R � C1 − lim x = L}.

The concept core of single sequences (see [6]) was extended by Patterson [7] to the

double sequences by defining the Pringsheim core (or P-core) of a real bounded dou-

ble sequence x = [xjk] as the closed interval [P - lim inf x,P - lim sup x]. Later this con-

cept has been studied by many authors. For example we refer [2,8-10].
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Let

C∗
1(x) = lim sup

p,q→∞
1

(p + 1)(q + 1)

p∑
j=0

q∑
k=0

xjk.

The Cesáro core (or PC-core) of a real-valued bounded double sequence x = [xjk] has

been defined by the closed interval [−C∗
1(−x),C∗

1(x)] in [11]. Also; where an inequality

related to the PC and P-cores has been investigated.

In this article we have introduced the Riesz convergence and Riesz core of a double

sequence and also we have investigated some inequalities related to the P-, statistical

and Riesz cores.

2. Main results
Definition 2.1. Let (qi), (pj) be sequences of non-negative numbers which are not all

zero and Qm = q1 + q2 + · · · + qm, q1 >0, Pn = p1 + p2 + · · · + pn, p1 >0. Then, the

transformation given by

tqpmn(x) =
1
Qm

1
Pn

m∑
i=1

n∑
j=1

qipjxij

is called the Riesz mean of double sequence x = [xjk].

Definition 2.2. If P − lim tqpmn(x) = s, s Î ℝ, then the sequence x = [xjk] is said to be

Riesz convergent to s.

If x = [xjk] is Riesz convergent to s, then we write PR- lim x = s. In what follows c2R
will denote the set of all Riesz convergent sequences. Since a Riesz convergent double

sequence need not be bounded, by c2,∞R we will denote the set of all bounded and

Riesz convergent double sequences. c2,∞0,R will denote the set of all double sequences

which bounded and Riesz convergent to zero.

Note that in the case qi= 1 for all i and pj = 1 for all j, the Riesz mean reduced to

the Cesáro mean and the Riesz convergence is said to be Cesáro convergence.

Now, we will give some lemmas characterized some classes of matrices related to the

c2,∞R .

Lemma 2.3. A matrix A = (amn
jk ) ∈ (�2∞, c2,∞0,R )if and only if

‖A‖ = sup
mn

∑
jk

∣∣∣amn
jk

∣∣∣ < ∞, (2:1)

P − lim
mn

α(m,n, r, s, q, p) = 0(r, s ∈ N), (2:2)

P − lim
mn

∑
r

∣∣α(m,n, r, s, q, p)
∣∣ = 0(s ∈ N), (2:3)

P − lim
mn

∑
s

∣∣α(m,n, r, s, q, p)
∣∣ = 0(r ∈ N), (2:4)

P − lim
mn

∑
rs

∣∣α(m,n, r, s, q, p)
∣∣ = 0,(2:5)
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where

α(m,n, r, s, q, p) =
1
Qr

1
Ps

r∑
j=1

s∑
k=1

qjpkamn
jk .

Proof. Let A = (amn
jk ) ∈ (�2∞, c2,∞0,R ). This means that Ax exists for all x = [xjk] ∈ �2∞ and

Ax ∈ c2,∞0,R which implies (2.1). Let us define a sequence y = [yrs] by

yrs =

{
sgn α(mi,nj, r, s, q, p), ri−1 < r < ri, sj−1 < s < sj

0 otherwise.

Then, the necessity of (2.5) follows from P − lim tqprs (Ax).

It is known by the assumption that

P − lim
∑
r,s

α(m,n, r, s, q, p)xjk = 0.

So; if we define the sequences ersij , e
r , es as follows

ersij =

{
1, (j, k) = (r, s)

0 otherwise,

er = Σs e
rs (s Î N) and es = Σr e

rs (r Î N), then the necessity of (2.2), (2.3), and (2.4)

follows from P − lim tqprs (Aers), P − lim tqprs (Aer) and P − lim tqprs (Aes), respectively.

Since the proof of the sufficiency part is routine, we omit the details.

Lemma 2.4. A matrix A = (amn
jk ) ∈ (c∞2 , c2,∞R )regif and only if (2.1)-(2.4) hold and

P − lim
mn

∑
rs

∣∣α(m,n, r, s, q, p)
∣∣ = 1. (2:6)

Proof. The necessity of the conditions can be shown by the same way used in the

proof of Lemma 2.3.

For the sufficiency let the conditions hold and x = [xjk] ∈ c∞2 with P - lim xjk = L,

(say). Then, there exists an N >0 such that |xjk| <|L| + ε for every whenever j, k > N.

Now; let us write

∑
rs

α(m,n, r, s, q, p)xrs =
N∑
r=0

N∑
s=0

α(m,n, r, s, q, p)xrs +
∞∑

r=N+1

N−1∑
s=0

α(m,n, r, s, q, p)xrs

+
N−1∑
r=0

∞∑
s=N+1

α(m,n, r, s, q, p)xrs

+
∞∑

r=N+1

∞∑
s=N+1

α(m,n, r, s, q, p)xrs
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which implies that
∣∣∣∣∣
∑
rs

α(m,n, r, s, q, p)xrs

∣∣∣∣∣ = ‖x‖
N∑
r=0

N∑
s=0

∣∣α(m,n, r, s, q, p)
∣∣ + ‖x‖

∞∑
r=N+1

N−1∑
s=0

∣∣α(m,n, r, s, q, p)
∣∣

+ ‖x‖
N−1∑
r=0

∞∑
s=N+1

∣∣α(m,n, r, s, q, p)
∣∣

+ (|L| + ε)

∣∣∣∣∣
∞∑

r=N+1

∞∑
s=N+1

α(m,n, r, s, q, p)

∣∣∣∣∣ .
So, by letting m,n ® ∞ under the light of the assumption, we get that

P − lim tqprs (Ax) = L.

This completes the proof.

Lemma 2.5. A matrix A = (amn
jk ) ∈ (st2 ∩ �2∞, c2,∞R )regif and only if

A = (amn
jk ) ∈ (c∞2 , c2,8R )reg (2:7)

P − lim
mn

∑
r,s∈E

∣∣α(m,n, r, s, q, p)
∣∣ = 0 (2:8)

for every E ⊂ N × N with δ2(E) = 0.

Proof. If A = (amn
jk ) ∈ (st2 ∩ �2∞, c2,∞R )reg, the necessity of (2.7) follows from the fact

that c∞2 ⊂ st2 ∩ �2∞. For the necessity of the condition (2.8), let us choose a sequence z

= [zrs] by

zrs =

{
xrs, r, s ∈ E

0, otherwise,

where x = [xrs] ∈ �2∞ and E ⊂ N × N with δ2 (E) = 0. Then; it is easy to see that st2 -

lim z = 0 and

tqprs (Az) =
∑
r,s∈E

α(m,n, r, s, q, p)xrs .

So; a matrix B = [bmn
rs ] defined by

bmn
rs =

{
α(m,n, r, s, q, p), r, s ∈ E

0, otherwise,

for every q,p is in the class (�2∞, c2,∞0,R ). Therefore, the necessity of (2.8) follows from

the condition (2.5) of Lemma 2.3.

For the converse take a sequence x = [xrs] ∈ st2 ∩ �2∞ with st2 - lim x = l. Then; it is

known that δ2 = δ2({(r, s): |xrs - l| ≥ ε}) = 0 and |xrs - l| < ε whenever r,s ∉ E. Now,

write ∑
r,s

α(m,n, r, s, q, p)xrs =
∑
r,s

α(m,n, r, s, q, p)(xrs − 1) + l
∑
r,s

α(m,n, r, s, q, p). (2:9)
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The inequality

∣∣∣∣∣
∑
r,s

α(m,n, r, s, q, p)(xrs − l)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
r,s∈E

α(m,n, r, s, q, p)(xrs − 1) +
∑
r,s�∈E

α(m,n, r, s, q, p)(xrs − 1)

∣∣∣∣∣∣
≤ ‖xrs − l‖

∑
r,s∈E

∣∣α(m,n, r, s, q, p)
∣∣ + ε ‖A‖

and condition (2.8) implies that

P − lim
mn

∑
r,s

α(m,n, r, s, q, p)(xrs − l) = 0.

So; by letting m, n ® ∞ in (2.9) we have P − lim tqprs (Ax) = l and this completes the

proof.

Definition 2.6. The Riesz core (or PR-core) of a double sequence x = [xjk] is the closed

interval [P − lim infm,nt
qp
mn(x),P − lim supm,nt

qp
mn(x)]..

Note that in the case qi = 1 for all i and pj = 1 for all j, Riesz core is reduced to the

Cesáro core, [11].

Now; we are ready to give some inequalities related to the P-, PR- and st2-core of

double sequences.

Theorem 2.7. Let ║A║ < ∞. Then,

P − lim suptqprs (Ax) ≤ P − lim sup(x), (2:10)

for all x ∈ �2∞if and only if A ∈ (c∞2 , c2,∞R )regand

P − lim
m,n

∑
r,s

∣∣α(m,n, r, s, q, p)
∣∣ = 1. (2:11)

Proof. Let (2.10) holds for all x ∈ �2∞. Then, it is easy to get that

−P−lim sup(−x) ≤ −P−lim sup tqprs (−Ax) ≤ P−lim sup tqprs (Ax) ≤ P−lim sup(x).

Since - P - lim sup(-x) = P - lim inf(x) and

−P − lim sup tqprs (−Ax) = P − lim inf tqprs (Ax), by choosing x ∈ c∞2 , we reach that

P − lim tqprs (Ax) = P − lim(x). Since x is arbitrary, this means that A ∈ (c∞2 , c2,∞R )reg.

By Lemma 3.1 of Patterson [7], there exists a y ∈ �2∞ with || y || ≤ 1 such that

P − lim sup tqprs (Ay) = P − lim sup
∑
r,s

∣∣α(m,n, r, s, q, p)
∣∣ .

So; we have from assumption that

P − lim sup
∑
r,s

∣∣α(m,n, r, s, q, p)
∣∣ = p − lim sup tqprs (Ay) ≤ P − lim sup(y) ≤ ∥∥y∥∥ ≤ 1. (2:12)

By the same way, one can see that

P − lim inf
∑
r,s

∣∣α(m,n, r, s, q, p)
∣∣ ≥ 1. (2:13)

Therefore, by combining the inequalities (2.12) and (2.13), we obtain the necessity of

(2.11).
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Conversely; suppose that A ∈ (c∞2 , c2,∞R )reg and (2.11) holds. For any arbitrary

bounded sequence x = [xrs], there exists M, N >0 such that xrs ≤ P - lim sup x + ε

whenever r > M, s > N. Now, we can write the following inequality,∣∣∣∣∣
∞∑
r=0

∞∑
s=0

α(m,n, r, s, q, p)xrs

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
r=0

∞∑
s=o

(∣∣α(m,n, r, s, q, p)
∣∣ + α(m,n, r, s, q, p)

2

−
∣∣α(m,n, r, s, q, p)

∣∣ − α(m,n, r, s, q, p)

2

)
xrs

∣∣∣∣∣
≤

∞∑
r=0

∞∑
s=0

∣∣α(m,n, r, s, q, p)
∣∣ |xrs|

+
∞∑
r=0

∞∑
s=0

∣∣(∣∣α(m,n, r, s, q, p)
∣∣ − α(m,n, r, s, q, p))xrs

∣∣

≤ ‖x‖
M∑
r=0

N∑
s=0

∣∣α(m,n, r, s, q, p)
∣∣

+ ‖x‖
∞∑

r=M+1

N∑
s=0

∣∣α(m,n, r, s, q, p)
∣∣

+ ‖x‖
∞∑
r=0

N∑
s=N+1

∣∣α(m,n, r, s, q, p)
∣∣

+ (P − lim sup x + ε)
∞∑

r=M+1

∞∑
s=N+1

∣∣α(m,n, r, s, q, p)
∣∣

+ ‖x‖
∞∑
r=0

∞∑
s=0

(
∣∣α(m,n, r, s, q, p)

∣∣ − α(m,n, r, sq, p)).

Using the conditions characterized the class (c∞2 , c2,∞R )reg and (2.11), we reach that

P − lim sup tqprs (Ax) ≤ P − lim sup(x) and this completes the proof of the theorem.

Theorem 2.8. Let ║A║ < ∞. Then,

P − lim sup tqprs (Ax) ≤ st2 − lim sup(x), (2:14)

for all x Î x ∈ �2∞if and only if A ∈ (st2 ∩ �2∞, c2,∞R )regand (2.11) holds.

Proof. Let (2.14) holds for all x ∈ �2∞. Then, by the same argument used in Theorem

2.7, one can see that A ∈ (st2 ∩ �2∞, c2,∞R )reg. On the other since st2 - lim sup(x) ≤ P -

lim sup(x) for all x ∈ �2∞, the necessity of (2.11) follows from Theorem 2.7.

For the converse suppose that A ∈ (st2 ∩ �2∞, c2,∞R )reg and (2.11) holds. If

x = [xrs] ∈ �2∞,, it is known that for every ε >0,

δ2(E) = δ2({(r, s) : xrs > st2 − lim sup(x) + ε}) = 0

and xrs ≤ st2 - lim sup(x) + ε whenever r, s ∉ E. Taking this knowledge in the mind,

let us write
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∑
r,s

α(m,n, r, s, q, p)xrs ≤
∣∣∣∣∣
∑
r,s

∣∣α(m,n, r, s, q, p)xrs
∣∣ + α(m,n, r, s, q, p)xrs
2

+
∑
r,s

∣∣α(m,n, r, s, q, p)xrs
∣∣ − α(m,n, r, s, q, p)xrs
2

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
r,s∈E

α(m,n, r, s, q, p)xrs +
∑
r,s�∈E

α(m,n, r, s, q, p)xrs

∣∣∣∣∣∣
+ ‖x‖

∑
r,s

(
∣∣α(m,n, r, s, q, p)

∣∣ − α(m,n, r, s, q, p))

≤ ‖x‖
∑
r,s∈E

∣∣α(m,n, r, s, q, p)
∣∣

+ (st2 − lim sup(x) + ε)
∑
r,s�∈E

|α(m,n, r, s, q, p)

+ ‖x‖
∑
r,s

(∣∣α(m,n, r, s, q, p)
∣∣ − α(m,n, r, s, q, p)

)
.

So, the conditions characterized the class (st2 ∩ �2∞, c2,∞R )reg and (2.11) imply that

P − lim sup tqprs (Ax) ≤ st2 − lim sup(x) + ε. Since ε was arbitrary, this completes the

proof.
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