
RESEARCH Open Access

Refinements for mean-inequalities via the
stabilizability concept
Mustapha Raïssouli

Correspondence:
raissouli_10@hotmail.com
Department of Mathematics,
Faculty of Science, Taibah
University, Al Madinah Al
Munawwarah, P.O. Box 30097, Zip
Code 41477, Kingdom of Saudi
Arabia

Abstract

Exploring the stabilizability concept, recently introduced by Raïssouli, we give an
approach for obtaining refinements of mean-inequalities in a general point of view.
Our theoretical study will be illustrated by a lot of examples showing the generality
of our approach and the interest of the stabilizability concept.
AMS Subject Classification: 26E60.

Keywords: means, refinements of mean-inequalities, stable and stabilizable means

1 Introduction
Stability and stabilizability concepts for binary means have been recently introduced by

Raïssouli [1]. The aim of this article is to show that the above concepts are useful tool

from the theoretical point of view as well as for practical purposes. Let us first recall

some basic notions about binary means that will be needed throughout the article. We

understand by mean a binary map m between positive real numbers satisfying the fol-

lowing statements.

(i) m(a, a) = a, for all a > 0;

(ii) m(a, b) = m(b, a), for all a, b > 0;

(iii) m(ta, tb) = tm(a, b), for all a, b, t > 0;

(iv) m(a, b) is an increasing function in a (and in b);

(v) m(a, b) is a continuous function of a and b.

The set of all means can be equipped with a partial ordering, called point-wise order,

defined by, m1 ≤ m2 if and only if m1(a, b) ≤ m2(a, b) for every a, b > 0. We write m1

<m2 if and only if m1(a, b) <m2(a, b) for all a, b > 0 with a ≠ b. Clearly, m1 <m2

implies m1 ≤ m2.

The standard examples of means satisfying the above requirements are recalled in

the following.

A := A(a, b) =
a + b
2

;G := G(a, b) =
√
ab;H := H(a, b) =

2ab
a + b

;

L := L(a, b) =
b − a

ln b − ln a
, L(a, a) = a; I := I(a, b) =

1
e

(
bb

aa

)1/(b−a)

, I(a, a) = a,

(1:1)

respectively called the arithmetic, geometric, harmonic, logarithmic, and identric

means. These means satisfy the following inequalities
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min < H < G < L < I < A < max, (1:2)

where min and max are the trivial means (a, b) ↦ min(a, b) and (a, b) ↦ max(a, b).

For a given mean m, we set

m∗(a, b) =
(
m(a−1, b−1)

)−1
, (1:3)

and it is easy to see that m* is also a mean, called the dual mean of m. The symme-

try and homogeneity axioms (ii), (iii) yield

m∗(a, b) =
ab

m(a, b)
(1:4)

for all a, b > 0, which we briefly write m* = G2/m. Every mean m satisfies m** = m

and, if m1 and m2 are two means such that m1 ≤ m2 (resp. m1 <m2) then m∗
1 ≥ m∗

2

(resp. m∗
1 > m∗

2). It is clear that the arithmetic and harmonic means are mutually dual

and the geometric mean is the unique self-dual mean. We recall that, the mean-map

m ↦ m* is point-wise convex in the sense that the following inequality [1](
(1 − t)m1 + tm2

)∗ ≤ (1 − t)m∗
1 + tm∗

2 (1:5)

holds true for every real number t Î [0, 1] and all means m1 and m2. Further, the

inequality (1.5) is strict (in the above sense) if and only if t Î(0, 1) and m1 ≠ m2.

The dual of the logarithmic mean is given by

L∗ := L∗(a, b) = ab
ln b − ln a

b − a
, L∗(a, a) = a, (1:6)

while that of the identric mean is

I∗ := I∗(a, b) = e
(
ab

ba

)1/b−a

, I∗(a, a) = a. (1:7)

The following inequalities are immediate from the above.

min < H < I∗ < L∗ < G < L < I < A < max. (1:8)

A mean m is called strict if m(a, b) is strictly monotonic increasing in a (and in b).

Every strict mean m satisfies that, m(a, b) = a ⇒ a = b. It is easy to see that if m is a

strict mean then so is m*. The means min and max are not strict while H, G, A, L, L*,

I, I* are strict means.

In the literature, there are some families of means, called power means, which

include the above familiar means. Precisely, let p be a real number, we recall the fol-

lowing:

• The power binomial mean:⎧⎪⎪⎨
⎪⎪⎩
Bp(a, b) := Bp =

(
ap + bp

2

)1/p

,

B−1 = H, B1 = A, B0 := lim
p→0

Bp = G.
(1:9)
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• The power logarithmic mean:⎧⎪⎨
⎪⎩
Lp(a, b) = Lp =

(
ap+1 − bp+1

(p + 1)(a − b)

)1/p

, Lp(a, a) = a,

L−2 = G, L−1 = L, L0 = I, L1 = A.

(1:10)

• The power difference mean:⎧⎪⎨
⎪⎩
Dp(a, b) := Dp =

p
p + 1

ap+1 − bp+1

ap − bp
,Dp(a, a) = a,

D−2 = H,D−1 = L∗,D−1/2 = G,D0 = L,D1 = A.
(1:11)

• The power exponential mean:⎧⎪⎨
⎪⎩
Ip(a, b) := Ip = exp

(
−1
p
+
ap ln a − bp ln b

ap − bp

)
, Ip(a, a) = a,

I−1 = I∗, I0 = G, I1 = I.
(1:12)

• The second power logarithmic mean:⎧⎪⎨
⎪⎩
lp(a, b) := lp =

(
1
p

bp − ap

ln b − ln a

)1/p

, lp(a, a) = a,

l−1 = L∗, l0 = G, ll = L.

(1:13)

If mp stands for one of the above power means, it is well known that m−∞ = min and

m+∞ = max. Further, all the above power means (also called means of order p) are

strictly monotonic increasing in p, for fixed a, b > 0. Otherwise, it is easy to see that
B∗
p = B−p for all real number p. We notice that these power means are included in a

generalized family of means (not needed here), namely the Stolarsky mean of order 2,

see [2] for instance.

In the past years, enormous efforts by some authors has been devoted to refine var-

ious inequalities between means (called mean-inequalities), see [2-10] for instance and

the related references cited therein. Our fundamental goal in this article is to explore

the stabilizability concept for obtaining a game of mean-inequalities whose certain of

them have been differently discussed in the literature. Our approach stems its impor-

tance in the following items:

First, by a united procedure we find some known mean-inequalities and further other

ones in a short and nice manner.

Second, by the same procedure, starting from an arbitrary lower and/or upper

bounds of a stabilizable mean we show how to obtain in a recursive manner an infinity

of lower and/or upper bounds of this mean. We also give, throughout a lot of exam-

ples, sufficient conditions for ensuring that the new bounds are refinements of the

initial ones.
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2 Background material about stabilizable means
For the sake of simplicity for the reader, we will recall in this section some basic

notions and results stated by Raïssouli in an earlier article [1].

Definition 2.1. Let m1, m2, and m3 be three given means. For all a, b > 0, define

R(m1, m2, m3)(a, b) = m1
(
m2(a, m3(a, b)),m2(m3(a, b), b)

)
, (2:1)

called the resultant mean-map of m1, m2 and m3.

A study investigating the elementary properties of the resultant mean-map has been

stated in [1]. Here, we just recall the following result needed later.

Proposition 2.1. ([1], Proposition 1) The map (a, b) ↦ R(m1, m2, m3)(a, b) defines a

mean, with the following properties:

(i) For every means m1, m2, m3 we have(R(m1, m2, m3)
)∗ = R(m∗

1, m
∗
2, m

∗
3). (2:2)

(ii) The mean-map R is point-wisely increasing with respect to each its mean vari-

ables, that is,

(m1 ≤ m′
1,m2 ≤ m′

2,m3 ≤ m′
3, ) ⇒ R(m1, m2, m3) ≤ R(m′

1, m
′
2, m

′
3). (2:3)

The following result, which the proof is straightforward, is also of interest in what

follows.

Proposition 2.2. ([1], Proposition 2) For all mean M , the mean-map

m �→ R(A,m,M)is point-wise affine in the sense that the mean-equality

R(A, (1 − t)m + tm′,M) = (1 − t)R(A, m, M) + tR(A, m′, M) (2:4)

holds for all real number t Î [0, 1] and all means m, m’.

Example 2.1. Simple computations lead to

R(H, H, A) =
(
1
2
A +

1
2
H

)∗
=

2AH
A +H

, R(H, A, A) =
3
4
A +

1
4
H. (2:5)

R(A, G, G) =
(
1
2
AG +

1
2
G2

)1/2

, R(A, A, G) =
1
2
A +

1
2
G. (2:6)

R(G, G, A) =
√
AG, R(G, A, A) =

(
3
4
A2 +

1
4
G2

)1/2

. (2:7)

The following lemma will be needed in the sequel.

Lemma 2.3. ([1], Example 5) Let m1 and m2 be two means, then the following equal-

ity

R(m1, m2, G)(a, b) = m1

(√
a,

√
b
)
m2

(√
a,

√
b
)
. (2:8)

holds for all a, b > 0.

As proved in [1], and will be again shown throughout this article, the resultant

mean-map stems its importance in the fact that it is a tool for introducing the stability

and stabilizability notions as recalled in the following.

Definition 2.2. A mean m is said to be:
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(a) Stable if R(m,m,m) = m.

(b) Stabilizable if there exist two nontrivial stable means m1 and m2 satisfying the

relation R(m1,m,m2) = m. We then say that m is (m1, m2)-stabilizable.

In [1], Raïssouli stated a developed study about the stability and stabilizability of the

standard and power means. In particular, he proved that if m is stable then so is m*,

and if m is (m1, m2)-stabilizable then m* is (m∗
1,m

∗
2)-stabilizable. About the power stan-

dard means, the summarized results stated in [1] are recited in the following theorem.

Theorem 2.4. ([1], Theorems 1,3,4,5) For all real number p, the following statements

are met:

(1) The power binomial mean Bp is stable.

(2) The power logarithmic mean Lp is (Bp, A)-stabilizable, while the power difference

mean Dp is (A, Bp)-stabilizable.

(3) The power exponential mean Ip is (G, Bp)-stabilizable, while the second power

logarithmic mean lp is (Bp, G)-stabilizable.

The following result, needed in the sequel, is immediate from the above.

Corollary 2.5. With the above, the following assertions are met:

(1) The arithmetic, geometric, and harmonic means A, G and H are stable.

(2) The logarithmic mean L is (H, A)-stabilizable and (A, G)-stabilizable while the

identric mean I is (G, A)-stabilizable.

(3) The mean L* is (A, H)-stabilizable and (H, G)-stabilizable while I* is (G, H)-

stabilizable.

N.B. Throughout the article, we investigate some results of mean-inequalities, under

convenient assumptions, for the strict symbol < (in the above sense). By similar man-

ner, all stated results remain still true when we replace < by ≤ in the hypotheses as in

the related conclusions. Of course, this is not immediate since m1 <m2 is, as hypothesis

and as conclusion, stronger than m1 ≤ m2.

3 Refinements for mean-inequalities: general approach
As already pointed before, this section displays some important applications of the

above concepts for refining mean-inequalities in a general point of view. Particular

examples illustrating the generality of our approach and the interest of this study will

be discussed. We first state the following result which is an improvement of that of

Proposition 2.1.

Theorem 3.1. Let m1,m′
1, m2,m′

2, m3, and m′
3be means such that

m1 ≤ m′
1,m2 ≤ m′

2 andm3 ≤ m′
3. (3:1)

Assume that one of the following three statements holds:

(i) m1 < m′
1,m

′
2and m′

3are strict means,

(ii) m2 < m′
2,m1and m′

3are strict means,

(iii) m3 < m′
3, m1 and m2 are strict means.

Then we have

R(m1, m2, m3) < R(m′
1,m

′
2,m

′
3), (3:2)

in the sense that

R(m1, m2, m3)(a, b) < R(m′
1,m

′
2,m

′
3)(a, b) (3:3)
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holds for all a, b > 0 with a ≠ b.

Proof. Assume that (3.1) holds:

(i) Without loss the generality, let a, b > 0 with a <b. Then we have

R(m1, m2, m3)(a, b) = m1
(
m2(a, m3(a, b)), m2(m3(a, b), b)

)
≤ m1

(
m′

2(a,m′
3(a, b)),m′

2(m′
3(a, b), b)

)
.

(3:4)

Since m′
3 and m′

2 are assumed strict means then we have, respectively,

a < m′
3(a, b) < b andm′

2(a,m
′
3(a, b)) < m′

2(m
′
3(a, b), b). (3:5)

This, with m1 < m′
1, yields the desired result.

(ii), (iii) Similar to (i). We left the detail to the reader as simple exercise. □
Now, we are in position to state the following result which gives a refinement of a

mean-inequality m1 <m < m2 when m is (m1, m2)-stabilizable or (m2, m1)-stabilizable.

Theorem 3.2. Let m be a (m1, m2)-stabilizable mean with m1 and m2 are strict

means. Assume that m1 <m < m2, then the following refinement holds

m1 < R(m1, m1, m2) < m < R(m1, m2, m2) < m2. (3:6)

If m2 <m < m1 then the role of m1 and m2 in the above inequalities is reversed.

Proof. According to Theorem 3.1, with m1 <m < m2 and the fact that m1 and m2 are

strict means, we obtain

R(m1, m1, m1) < R(m1, m1, m2) < R(m1, m, m2)

< R(m1, m2, m2) < R(m2, m2, m2).
(3:7)

This, with the fact that m1 and m2 are stable and m is (m1, m2)-stabilizable, yields

the desired result. □
Now, let us observe the following particular examples illustrating the situation of the

above theorem.

Example 3.1. Knowing that H < L < A with L is (H, A)-stabilizable, the above theo-

rem gives

H < R(H, H, A) < L < R(H, A, A) < A. (3:8)

This, with (2.5), gives the following refinement of the arithmetic-logarithmic-harmo-

nic mean inequality

H <
2G2

A +H
< L <

3
4
A +

1
4
H < A. (3:9)

Example 3.2. Starting from G <L <A with L is (A, G)-stabilizable, Theorem 3.2

implies that

G < R(A, G, G) < L < R(A, A, G) < A. (3:10)

According to (2.6), we obtain the following inequalities which refine the arithmetic-

logarithmic-geometric mean inequality

G <

(
1
2
AG +

1
2
G2

)1/2

< L <
1
2
A +

1
2
G < A. (3:11)
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Example 3.3. Now, consider the known inequalities G <I <A with I is (G, A)-

stabilizable.

Similarly to the above we obtain

G < R(G, G, A) < I < R(G, A, A) < A. (3:12)

This, when combined with (2.7), implies a refinement of the arithmetic-identric-geo-

metric mean inequality given by

G <
√
AG < I <

(
3
4
A2 +

1
4
G2

)1/2

< A. (3:13)

Refinements of mean-inequalities, even stronger than that of the above examples, are

largely studied in the literature, see [2] and the related reference cited therein. As

already pointed before, our approach gives a united procedure having a general point

of view when we have to refine a mean double inequality m1 ≤ m ≤ m2 where the

intermediary mean m is (m1, m2)-stabilizable or (m2, m1)-stabilizable. Further, the next

theorem shows that our approach can be successively repeated in the aim to obtain

more lower and/or upper bounds of a given stabilizable mean.

Theorem 3.3. Let m be a (m1, m2)-stabilizable mean with m1 and m2 are strict

means. Let

m3 and m4 be two means such that

m3 < m < m4. (3:14)

Then we have the following mean-inequalities

R(m1, m3, m2) < m < R(m1, m4, m2). (3:15)

Proof. By Theorem 3.1, with m3 <m <m4, we have

R(m1, m3, m2) < R(m1, m, m2) < R(m1, m4, m2). (3:16)

This, with the fact that m is (m1, m2)-stabilizable, gives the desired result. □
As pointed in the above, Theorem 3.3 starts from an arbitrary lower and upper

bounds of a stabilizable mean m for giving other lower and upper bounds of the mean

m, and so we can iterate the same procedure for obtaining an infinity of lower and

upper bounds of m. An important question arises from this latter situation: Under

what general conditions, (3.16) is a refinement of (3.15), that is,

m3 < R(m1, m3, m2) andR(m1, m4, m2) < m4? (3:17)

This makes appear in (3.17) weak conditions of stabilizability, which we call sub-sta-

bilizability and super-stabilizability of m3 and m4, see [11]. For the moment, we will

not give any answer about general sufficient conditions for ensuring the above refine-

ment, but we just discuss (in the sections below) the response for some particular

cases.

N.B. Let mp Î {lp, Lp, Ip, Dp} be a power mean. Henceforth, when we say

“Let m1 and m2 be two means such that m1 <mp < m2 for some p“, it should be

understood in the following sense,

“Let p be a real number and assume that there exist two means m1 := m1(p) and m2 :

= m2(p) satisfying that m1 <mp < m2“.
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4 Refinements for bounding the means lp and L
Since lp is (Bp, G)-stabilizable, we then will be interested by bounds of lp in terms of Bp

and G.

It is worth noticing that, for given p, bounds of lp in the form Bα
p G

1−α (resp., aBp +

(1 − a)G) exist for some a Î [0, 1]. This follows from (1.2) with the relationships

L(a2, b2) = L(a, b)A(a, b), (lp(a, b))p = L(ap, bp), ; (Bp(a, b))p = A(ap, bp) (4:1)

valid for all a, b > 0 and p ≠ 0.

We begin by regarding bounds of lp in a convex-geometric form Bα
p G

1−α as well:

Theorem 4.1. Let a, b Î [0, 1] be such that

Bα
p G

1−α < lp < Bβ
p G

1−β (4:2)

for some p. Then there holds

G
1−α
2 B

1+α
2

p/2 = G
1−α
2

(
Bp
p + Gp

2

) 1+α
2

< lp < G
1−β

2

(
Bp
p + Gp

2

) 1+β

2p

= G
1−β

2 B
1+β

2
p/2 . (4:3)

Proof. Since lp is (Bp, G)-stabilizable then Theorem 3.2 gives

R(Bp, Bα
p G

1−α , G) < lp < R(Bp, B
β
p G

1−β , G). (4:4)

According to Lemma 2.3 we have, for all a, b > 0,

R(Bp, Bα
pG

1−α , G)(a, b) = Bp(
√
a,

√
b)(Bα

p G
1−α)(

√
a,

√
b)

= B1+α
p

(√
a,

√
b
)
G1−α

(√
a,

√
b
)
.

(4:5)

For all a, b > 0, we can write G(
√
a,

√
b) = G1/2(a, b) and it is easy to verify that,

Bp

(√
a,

√
b
)
=

(
Bp
p + Gp

2

)1/2p

(a, b) = B1/2
p/2(a, b), (4:6)

from which the desired double inequality (4.3) follows. □
Corollary 4.2. Let a, b Î [0, 1] be two real numbers such that

AαG1−α < L < AβG1−β . (4:7)

Then there holds

G
1−α
2

(
A + G
2

)1+α
2

< L < G
1−β

2
(
A + G
2

) 1+β

2
. (4:8)

Proof. Taking p = 1 in the above theorem, with the fact that l1 = L and B1 = A, we

immediately obtain the announced result. □
Let us now examine the following examples in the aim to illustrate the above theore-

tical results.

Example 4.1. It is not hard to verify that G < lp < Bp for every p > 0, with reversed

double inequality for p <0. Theorem 4.1 immediately gives (with a = 0, b = 1 for p >

0; a = 1, b = 0 for p < 0)
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G1/2

(
Bp
p + Gp

2

)1/2p

< lp <

(
Bp
p + Gp

2

)1/p

(4:9)

for each real number p ≠ 0. It is easy to verify that the double inequality (4.9) refines

the initial one. In particular, we have

G <

(
AG + G2

2

)1/2

< L <
A + G
2

< A, (4:10)

which refines the arithmetic-logarithmic-geometric mean inequality G <L <A.

Theorem 4.3. Let a Î [0, 1] be such that

Bα
p G

1−α < (>)lp (4:11)

for some p > (<)0, respectively. Then one has

B
1+α
4

p G
3−α
4 < (>)lp. (4:12)

If moreover a <(>)1/3 then (4.12) refines (4.11).

Proof. Assume that

Bα
pG

1−α < lp (4:13)

for some p > 0. According to Theorem 4.1, the first inequality of (4.3) holds and the

arithmetic-geometric mean inequality gives

(
Bp
p + Gp

2

) 1+α
2p

> B
1+α
4

p G
1+α
4 . (4:14)

The desired inequality follows after a simple reduction. Further, the inequality

Bα
p G

1−α < B
1+α
4

p G
3−α
4 (4:15)

for p > 0 is reduced to

G
1−3α
4 < B

1−3α
4

p
(4:16)

which holds when a <1/3. For the reversed inequalities, the same arguments as pre-

vious study, so completes the proof. □
If we get p = 1 in the above theorem, we immediately obtain the following result.

Corollary 4.4. Let a Î [0, 1] be a real number satisfying that

AαG1−α < L. (4:17)

Then one has

A
1+α
4 G

3−α
4 < L. (4:18)

If moreover a <1/3 then (4.18) refines (4.17).

Theorem 4.3 tells us that every given bound of lp in a convex-geometric form yields

another bound of lp in an analogs, but different, form. Illustrating this latter point, we
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will deduce a better bound of lp than the above ones. Precisely, we may state the next

result.

Theorem 4.5. Let p be a real number. If p > 0 then one has

B1/3
p G2/3 < lp. (4:19)

If p <0 then the above inequality is reversed. In particular the following inequality

holds true

A1/3G2/3 < L. (4:20)

Proof. Assume that p > 0. Starting from G <lp (see Example 4.1), we are in the situa-

tion of Theorem 4.3 with a = 0, and so we have B1/4
p G3/4 < lp. Let us iterate succes-

sively this procedure: if in the step n, we have

Bαn
p G1−αn < lp (4:21)

then in the step n + 1, we obtain

B
1+αn
4

p G
3−αn
4 < lp, (4:22)

that is,

Bαn+1
p G1−αn+1 < lp with αn+1 =

1 + αn

4
,α0 = α. (4:23)

It is easy to see that the real sequences (an)n converges to 1/3 for every given initial

data a0 Î [0, 1]. The desired inequality follows by letting n ® +∞ in the recursive

inequality

Bαn
p G1−αn < lp. (4:24)

The proof is similar for p <0. Taking p = 1 in (4.19) we obtain (4.20), so completes

the proof. □
To understand the interest of the above theorem, let us observe the following

example.

Example 4.2. Let us apply Theorem 4.3 to the previous inequality B1/3
p G2/3 < (>)lp.

Then, the next inequality

l3pp > Gp

(
Bp
p + Gp

2

)2

(4:25)

holds true for each real number p (p ≠ 0). In particular, taking p = 1 we obtain

G
(
A + G
2

)2

< L3, (4:26)

which refines A1/3G2/3 <L.

Remark 4.1. The inequality (4.20) was proved by Leach and Sholander [6], while

(4.26) has been shown by Sāndor [10]. These two inequalities were proved by different

methods therein while together obtained here via the same approach. In the same

sense, other examples will be seen later (see Remarks 4.4, 4.5, and 5.1).
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Remark 4.2. As well known, inequality (4.20) is the best possible in the sense that the

constant a = 1/3 cannot be improved in AaG1−a <L. This latter point rejoins the fact

that if we apply Corollary 4.4 to (4.20) we obtain the same inequality.

Remark 4.3. By virtue of the relationships (4.1), it has been possible to begin by stat-

ing and proving the results of the above corollaries and then to deduce those of the

corresponding theorems (with discussion on p). Details of this latter point are omitted

for the reader.

Now, we will be interested by bounds of lp in a convex-arithmetic expression as well:

Theorem 4.6. Let a, b Î [0, 1] be two real numbers such that

αBp + (1 − α)G < lp < βBp + (1 − β)G, (4:27)

for some real number p. Then there holds

α

(
Bp
p + Gp

2

)1/p

+ (1 − α)G1/2

(
Bp
p + Gp

2

)1/2p

< lp

< β

(
Bp
p + Gp

2

)1/p

+ (1 − β)G1/2

(
Bp
p + Gp

2

)1/2p

.

(4:28)

Proof. By the same arguments as previous, we have

R(Bp,αBp + (1 − α)G,G) < lp < R(Bp,βBp + (1 − β)G,G). (4:29)

Again, thanks to Lemma 2.3, we obtain

α
(
Bp(

√
a,

√
b)

)2
+ (1 − α)G1/2Bp

(√
a,

√
b
)

< lp

< β
(
Bp(

√
a,

√
b)

)2
+ (1 − β)G1/2Bp

(√
a,

√
b
)
.

(4:30)

By virtue of the identity (4.6), we obtain the desired result after simple manipula-

tions. □
As in the above, taking p = 1 in the latter theorem we immediately obtain the follow-

ing result.

Corollary 4.7. Let a, b Î [0, 1] be two real numbers such that

αA + (1 − α)G < L < βA + (1 − β)G. (4:31)

Then there holds

α

(
A + G
2

)
+ (1 − α)

(
AG + G2

2

)1/2

< L

< β

(
A + G
2

)
+ (1 − β)

(
AG + G2

2

)1/2

.

(4:32)

Theorem 4.6 has many interesting consequences. For instance, we give the two fol-

lowing corollaries.

Corollary 4.8. Let a Î [0, 1] be such that

L < αA + (1 − α)G. (4:33)
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Then we have

L <
1 + α

4
A +

3 − α

4
G. (4:34)

If a > 1=3 then (4.34) refines (4.33).

Proof. According to Theorem 4.6, we have

L < α

(
A + G
2

)
+ (1 − α)

(
AG + G2

2

)1/2

. (4:35)

If we write

(
AG + G2

2

)1/2

= G1/2
(
A + G
2

)1/2
(4:36)

and we apply the arithmetic-geometric mean inequality, i.e.,

G1/2
(
A + G
2

)1/2

<
1
2
G +

1
2
A + G
2

, (4:37)

we obtain the announced result after substituting this latter inequality in (4.35). If a
> 1/3, it is easy to see by similar manner as previous that (4.34) refines (4.33) and the

proof is completed. □
Corollary 4.9. The following inequality holds true

L <
1
3
A +

2
3
G. (4:38)

Proof. Similarly to the above, it is sufficient to see that the sequence (an) defined by

αn+1 =
1 + αn

4
, with α0 ∈ [0, 1], (4:39)

converges to 1/3 and the desired result follows as previous. We omit the routine

detail here. □
Remark 4.4. The inequality (4.38) was differently proved by Carlson [12] and here

obtained by the same approach as (4.20) and (4.26).

Let us illustrate the above theoretical examples with the following examples.

Example 4.3. Consider the above mean-inequality L <(1/3)A + (2/3)G which corre-

sponds to a = 1/3 in Corollary 4.8. With this, the obtained refinement is given by

L <
1
3

(
A + G
2

)
+
2
3

(
AG + G2

2

)1/2

<
1
3
A +

2
3
G. (4:40)

Of course, we can combine some the above results to improve the lower and upper

bounds of L. The following example explains this situation.

Example 4.4. Let us consider the following double inequality

A1/3G2/3 < L <
1
3
A +

2
3
G. (4:41)
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Combining Theorems 4.1 and 4.6 we immediately obtain

G1/3
(
1
2
A +

1
2
G

)2/3

< L <
1
3

(
1
2
A +

1
2
G

)
+
2
3

(
1
2
AG +

1
2
G2

)1/2

. (4:42)

The reader can easily verify that this latter double inequality refines the initial one,

so proving our desired aim.

Theorem 4.10. Let a Î [0, 1] be such that

lp < αBp + (1 − α)G (4:43)

for some p ≤ 1. Then there holds

lp <
1 + α

4
Bp +

3 − α

4
G. (4:44)

Proof. If (4.43) holds then Theorem 4.6 gives

lp < α

(
Bp
p + Gp

2

)1/p

+ (1 − α)G1/2

(
Bp
p + Gp

2

)1/2p

. (4:45)

This, with p ≤ 1 and the monotonicity of power means, yields

lp < α

(
Bp + G

2

)
+ (1 − α)G1/2

(
Bp + G

2

)1/2

. (4:46)

The arithmetic-geometric mean inequality gives

G1/2
(
Bp + G

2

)1/2

<
1
2
G +

1
2

Bp + G

2
, (4:47)

and the desired inequality follows by combining (4.46) and (4.47) with a simple

reduction. □
Taking p = −1 in the above theorem, with the fact that l−1 = L* = G2/L and B−1 = H

= G2/A, we immediately obtain the next result.

Corollary 4.11. Let a Î [0, 1] be such that

1
L

<
α

A
+
1 − α

G
. (4:48)

Then one has

1
L

<
1 + α

4
1
A
+
3 − α

4
1
G
. (4:49)

If moreover a > 1/3 then (4.49) refines (4.48).

Theorem 4.12. For all real number p ≤ 1 with p ≠ 0, we have

lp <
1
3
Bp +

2
3
G. (4:50)

In particular, the following inequality holds

1
L

<
1
3
1
A
+
2
3
1
G
. (4:51)

Proof. We left it to the reader as an interesting exercise. □
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We end this section by stating another result showing how to obtain a lower bound

of the logarithmic mean L when we start from an upper bound of its dual L*. In fact,

since L* is (A, H)-stabilizable then we search bounds of L* in terms of A and H. Pre-

cisely, we have the following.

Theorem 4.13. Let a be a real number satisfying that

L∗ < αA + (1 − α)H. (4:52)

Then we have

L∗ <

(
1 + α

4

)
A +

(
3 − α

4

)
H. (4:53)

If moreover a > 1/3 then (4.53) refines (4.52).

Proof. Since L* is (A, H)-stabilizable then we obtain, with Proposition 2.2,

L∗ < R(A,αA + (1 − α)H,H) = αR(A, A, H) + (1 − α)R(A, H, H). (4:54)

Thanks to relationships (2.5) for obtaining

L∗ < α

(
A +H
2

)
+ (1 − α)

(
3
4
A +

1
4
H

)∗
. (4:55)

Due to the point-wise convexity of the mean-map m ↦ m*, with A* = H and H* = A,

we obtain

L∗ < α

(
A +H
2

)
+ (1 − α)

(
3
4
H +

1
4
A
)
, (4:56)

which after reduction yields the desired result.

Corollary 4.14. The following inequality holds true

1
L

<
2
3
1
A
+
1
3
1
H
. (4:57)

Proof. Similarly to the same idea as in the above we have

L∗ <

(
1 + αn

4

)
A +

(
3 − αn

4

)
H, (4:58)

where (an)n is the sequence defined by the same recursive relation as in the proof of

Corollary 4.9. Letting n ® +∞ we obtain

L∗ <
1
3
A +

2
3
H. (4:59)

The general relation m* = G2/m valid for all mean m, gives in particular, L* = G2/L,

H = G2/A and A = G2/H. Substituting this in the latter inequality, we obtain the

desired result. □
Remark 4.5. The inequality (4.57) was differently proved by Chen [5] and shown here

by the same approach as (4.20), (4.26), and (4.38), so proving the interest of this study.

Further, we notice that it is easy to verify that (4.57) is stronger than (4.51).

5 Refinements for bounding the means Ip and I
In this section, we will state some refinements for the power exponential mean Ip in a

parallel manner to those for lp already presented in the above section. We immediately
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deduce some refinements for the identric mean I. The proofs of the results announced

here are often similar to that of the above and we omit the routine details to not

lengthen this article.

We begin by stating the following lemma which will be needed later.

Lemma 5.1. Let m1 and m2 be two means such that

m1 < Ip < m2 (5:1)

for some p. Then, for all a, b > 0, one has

m1(a, Bp)m1(Bp, b) < I2p (a, b) < m2(a, Bp)m2(Bp, b), (5:2)

where we set Bp := Bp(a, b) for the sake of simplicity.

Proof. Since Ip is (G, Bp)-stabilizable then Theorem 3.2 yields

R(G, m1, Bp) < Ip < R(G, m2, Bp). (5:3)

By computations as previous we easily deduce the desired result.

Starting from a double inequality m1 <Ip < m2, we may choose convenient means m1

and m2 giving easy computations with the fact that Ip is (G, Bp)-stabilizable. It is easy

to see that Bp < Ip < G for p <0, with reversed inequalities if p > 0. Then, as for lp,

bounds of Ip in the form Bα
p G

1−α (resp., aBp + (1 − a)G) exist for some a Î [0, 1].

The following result is an analog of Theorem 4.1 from lp to Ip.

Theorem 5.2. Let a, b Î [0, 1] be two real numbers such that

Bα
pG

1−α < Ip < Bβ
p G

1−β , (5:4)

for some p. Then the following double inequality holds

B1−α
p G1−α

(
3
4
B2p
p +

1
4
G2p

)α
p

< I2p < B1−β
p G1−β

(
3
4
B2p
p +

1
4
G2p

)β

p
. (5:5)

Proof. Since Ip is (G, Bp)-stabilizable then similarly to the above we have

R(G, Bα
p G

1−α , Bp) < Ip < R(G, Bβ
p G

1−β , Bp). (5:6)

Computing as previous and using Lemma 5.1 we obtain

B1−α
p G1−α

(
ap + Bp

p

2

)α/p(
bp + Bp

p

2

)α/p

< I2p

< B1−β
p G1−β

(
ap + Bp

p

2

)β/p(
bp + Bp

p

2

)β/p

.

(5:7)

The desired result follows after a simple reduction, with the fact that(
ap + Bp

p

2

)(
bp + Bp

p

2

)
=
3
4
B2p
p +

1
4
G2p, (5:8)

so completes the proof. □
Taking p = 1 in the above theorem, with the fact that B1 = A and I1 = I, we deduce

the

following result for bounding the identric mean I.
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Corollary 5.3. Let a, b be two real numbers such that

AαG1−α < I < AβG1−β . (5:9)

Then there holds

A1−αG1−α

(
3
4
A2 +

1
4
G2

)α

< I2 < A1−βG1−β

(
3
4
A2 +

1
4
G2

)β

. (5:10)

Example 5.1. Let p > 0 be a real number, then we have Ip < Bp and so the above the-

orem with b = 1 immediately implies that

I2pp <
3
4
B2p
p +

1
4
G2p. (5:11)

In particular, for p = 1 the double inequality (5.10) is reduced to

AG < I2 <
3
4
A2 +

1
4
G2, (5:12)

which refines the arithmetic-identric-geometric mean inequality G < I < A.

Theorem 5.4. Let a Î [0, 1] be such that

Bα
p G

1−α < (>)Ip (5:13)

for some p > (<)0, respectively. Then one has

B
2+α
4

p G
2−α
4 < (>)Ip. (5:14)

If moreover a <(>)2/3 then (5.14) refines (5.13).

Proof. Similar to that of the above. We left the detail for the reader as an interesting

exercise. □
As previously, taking p = 1 in the above theorem we immediately obtain the follow-

ing result.

Corollary 5.5. Let a be a real number satisfying that

AαG1−α < I. (5:15)

Then one has

A
2+α
4 G

2−α
4 < I. (5:16)

If moreover a < 2/3 then (5.16) refines (5.15).

Corollary 5.6. Let p be a real number. If p > 0 then one has

B2/3
p G1/3 < Ip. (5:17)

If p < 0 then the above inequality is reversed. In particular the following inequality

holds true

A2/3G1/3 < I. (5:18)

Proof. We proceed by similar manner as previous. The obtained sequence here is

(an)n such that
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αn+1 =
2 + αn

4
, with α0 = α, (5:19)

which converges to 2/3. We conclude by analogs arguments as previous. □
Remark 5.1. The inequality (5.18) has been proved by different methods, see [5] for

comparison. We left the reader to state analogs ways about inequality (5.17) as in

Remark 4.2.

As the reader can verify it, analog of Theorem 4.6 for Ip has length expression and

makes appear hard computations.

We left to the reader the routine task for considering other mean-inequalities, invol-

ving the standard means, in the aim to obtain more lower and/or upper bounds for a

stabilizable mean, eventually with some related refinements. As example, we can state

the following.

Theorem 5.7. Let a Î [0, 1] be a real number such that

AαG1−α < (>)Lp (5:20)

for some p ≥ (≤)0. Then there holds

A1−αG1−α

(
3
4
A2 +

1
4
G2

)α

< (>)L2p . (5:21)

Theorem 5.8. Let a, b Î [0, 1] be two real numbers such that

αA + (1 − α)G < Dp < βA + (1 − β)G (5:22)

for some p. Then we have

α
A + Bp

2
+ (1 − α)

(
1
2
ABp +

1
2
GBp

)1/2

< Dp

< β
A + Bp

2
+ (1 − β)

(
1
2
ABp +

1
2
GBp

)1/2

.

(5:23)

We omit the proofs of the above results here. Of course, for the proof of Theorem

5.7 we use the fact that Lp is (Bp, A)-stabilizable while that of Theorem 5.8 uses Dp is

(A, Bp)-stabilizable. Some consequences can also be derived from the above theorems

in a similar manner as previous. In particular for p = 0, Theorem 5.7 coincides with

Corollary 5.3 while Theorem 5.8 is reduced to Corollary 4.7. We left all these details

to the interested reader.

In summary, the stability and stabilizability concepts are good tool for obtaining a lot

of mean-inequalities in a short and nice manner. In particular, some mean-inequalities,

already differently proved by many authors in the literature, have been here obtained

as consequences via a procedure having a general point of view. This shows the inter-

est of this study derived from the stabilizability concept.

Finally, as the reader can remark it, some other means known in the literature have

not been mentioned in the above. As example, the Seiffert’s mean P defined by

P(a, b) =
b − a

4Arctan

√
b
a

− π

, P(a, a) = a,
(5:24)
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has not been considered here. In fact, Raïssouli [1] conjectured that the mean P

defined by (5.24) is not stabilizable and this problem remains open. In this direction,

we indicate a recent article [11] for further comments about this latter point.
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