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Abstract

In this article, we establish a class of small deviation theorems for functionals of
random fields and the strong law of large numbers for the ordered couple of states
for arbitrary random fields on homogenous trees. A known result is generalized in
this article.
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1 Introduction
By a tree, T we mean an infinite, locally finite, connected graph with a distinguished

vertex o called the root and without loops or cycles. We only consider trees without

leaves. That is, the degree of each vertex (except o) is required to be at least two. Let

s, τ be vertices of a tree. Write τ ≤ s if τ is on the unique path connecting o to s, and
|s| for the number of edges on this path. For any two vertices, s, τ, denote by s ∧ τ

the vertex farthest from o satisfying s ∧ τ ≤ s,s ∧ τ ≤ τ.

Some tree models have been introduced in the literature. We say a homogeneous

tree, namely, a Bethe tree, on which each vertex has N + 1 neighboring vertices.

Another homogeneous tree is a rooted Cayley tree TC,N–the root has N neighbors, and

the other vertices have N + 1 neighbors.

The set of all vertices with distance n from the root o is called the nth generation (or

nth level) of T, which is denoted by Ln, L0 = {o}. We denote by T(n)
(m) the subtree of a

tree T containing the vertices from level m to level n, especially T(n) the subtree of a

tree T containing the vertices from level 0 to level n. Let t be a vertex of T, predeces-

sor of the vertex t is another vertex which is the nearest from t on the unique path

from root o to t. We denote the predecessor of t by 1t, the predecessor of 1t by 2t, the

predecessor of nt by (n + 1)t, and 0t = t, where n = 0,1, 2,.... We also say that nt is the

nth predecessor of t. XA = {Xt, t Î A} is a stochastic process indexed by a set A, and

denoted by |A| the number of vertices of A; xA is the realization of XA.

Let (�,F) be a measurable space, and {Xt, t Î T} be a collection of random variables

defined on (�,F) and take value in states space S.

Definition 1 (Tree-indexed Markov chains ) Let T be a tree, S be a finite space, and

{Xs, s Î T} be a collection of S-valued random variables defined on the probability

space (�,F ,P). Let
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p = {p(x), x ∈ S} (1)

be a distribution on S, and

(P(y |x )), x, y ∈ S, t ∈ T (2)

be stochastic matrices on S2. If for each vertex t Î T,

P(Xt = y
∣∣X1t = x and Xs for t ∧ s ≤ 1t)

= P(Xt = y
∣∣X1t = x ) = P(y |x ), x, y ∈ S

(3)

and

P(xo = x) = p(x), x ∈ S, (4)

then {Xt, t Î T} will be called S-value Markov chains indexed by tree with the initial

distribution (1) and transition matrix (2), or called tree-indexed Markov chains.

The above definition is the extension of the definitions of Tree-indexed homoge-

neous Markov chains [1].

We say a distribution p > 0 if p(x) > 0 for all x Î S; a stochastic matrix (P(y|x))x,yÎS
is positive if P(y|x) > 0 for all x,y Î S. Denote the distribution of {Xt,t Î T} under the

probability measure P by P(xT
(n)
) = P(XT(n)

= xT
(n)
) . It is easy to see that if {Xt, t Î T}

is a S-valued Markov chains indexed by a tree defined as above, then

P(xT
(n)
) = P(XT(n)

= xT
(n)
) = p(xo)

∏
t∈Tn

(1)

P(x1
∣∣x1t ). (5)

Definition 2 [2] Let {Xs, s Î T} be a collection of S-valued random variables defined

on (�,F), p > 0, (P(y |x ))x,y∈S be a positive stochastic matrix, μ, P be two probability

measure on (�,F), and {Xs, s Î T} be Markov chains indexed by tree T under prob-

ability measure P. Assume that μ(xT
(n)
) is always strictly positive. Let

ϕn(ω) =
μ(XT(n)

)

P(XT(n) )
(6)

ϕ(ω) = lim sup
n→∞

1∣∣T(n)
∣∣ ln ϕn(ω), (7)

then �(ω) will be called the asymptotic logarithmic likelihood ratio.

Remark 1 If μ = P, �(ω) ≡ 0 holds. Lemma 1 will show that in general case �(ω) ≥ 0

μ- a.e.; hence, �(ω) can be regarded as a measure of the Markov approximation of the

arbitrary random field on T.

The tree models have recently drawn increasing interest from specialists in physics,

probability, and information theory. Benjamini and Peres [1] have given the notion of

the tree-indexed homogeneous Markov chains and studied the recurrence and ray-

recurrence for them. Berger and Ye [3] have studied the existence of entropy rate for

some stationary random fields on a homogeneous tree. Ye and Berger [4] have studied

the asymptotic equipar-tition property (AEP) in the sense of convergence in probability

for a PPG-invariant(A PPG is the group of graph automorphisms of T that preserve
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the parities of all vertices. A random field is said to be PPG-invariant if the probability

of any finite cylinder set remains invariant under any automorphism of PPG) and ergo-

dic random field on a homogeneous tree. Recently, Yang [5] have studied some strong

limit theorems for countable homogeneous Markov chains indexed by a homogeneous

tree and the strong law of large numbers and the AEP for finite homogeneous Markov

chains indexed by a homogeneous tree. Yang and Ye [6] have studied strong theorems

for countable nonhomogeneous Markov chains indexed by a homogeneous tree and

the strong law of large numbers and the AEP for finite nonhomogeneous Markov

chains indexed by a homogeneous tree. Small deviation theorems are a class of strong

limit theorems expressed by inequalities. They are the extensions of strong limit theo-

rems expressed by equalities. It is a new research topic introduced by Professor Liu

Wen [7]. Later, Liu and Yang [8] studied the small deviation theorems for the averages

of the bivariate functions of {Xn, n ≥ 0}. Liu and Wang [2] studied the small deviation

between the arbitrary random fields and the Markov chain fields on Cayley tree. Peng

et al [9] established the small deviation theorems for functional of the random fields

on homogeneous trees; some of the theorems partly generalized the result of [2].

In this article, the main result can completely generalize the result in [2](Corollary

3). We obtain the small deviation theorems for the random fields and the frequencies

of state-ordered couples for random fields on homogeneous trees. Both the result and

the method are apparently different from [9]. We arrange the rest of the article as

follows:

First, we introduce the asymptotic logarithmic likelihood ratio as a measure of

Markov approximation of the arbitrary random field on a homogeneous tree. Second,

by constructing a non-negative supermartingale, we obtain a class of small deviation

theorems for functionals of random fields on a homogeneous tree. Finally, we establish

the small deviation theorems for the frequencies of occurrence of states and ordered

couple of states for random fields on a homogeneous tree.

2 Some Lemmas
Lemma 1 [2] Let μ1, μ2 be two probability measures on (�,F), and D ∈ F , {τn,n ≥ 1}
be a sequence of positive random variables such that

lim inf
n→∞

τn∣∣T(n)
∣∣ > 0,μ1 − a.s. on D. (8)

Then,

lim sup
n→∞

1
τn

ln
μ2(XT(n)

)

μ1(XT(n) )
≤ 0,μ1 − a.s. on D. (9)

Remark 2 Let μ1 = μ, μ2 = P, by (9) there exists A ∈ F ,μ(A) = 1 such that

lim sup
n→∞

1∣∣T(n)
∣∣ ln P(XT(n)

)

μ(XT(n) )
≤ 0 ω ∈ A,

and hence we have �(ω) ≥ 0, ω Î A.
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Let k, l Î S, Sn(k, ω) (denoted by Sn(k)) be the number of k in the set of random

variables XT(n)
= {Xt : t ∈ T(n)}, and Sn (k, l,ω)(denoted by Sn (k, l)) be the number of

couple (k, l) in the set of random couples: {(X1t ,Xt), t ∈ T}, i.e.,

Sn(k) =
∑
t∈T(n)

δk(Xt) (10)

Sn(k, l) =
∑
t∈T(n)

(1)

δk(X1t)δl(Xt), (11)

where δk(.)(k Î S) is Kronecker δ-function:

δk(x) =
{
1, if x = k,
0, if x �= k.

Lemma 2 [2] Let μ be a probability measure on (�,F), and �(ω) be denoted by (7),

0 ≤ c < ln(1 - ak)
-1 be a constant, and

D(c) = {ω : ϕ(ω) ≤ c} (12)

Mk = max{[ln 1 − ak
1 − λ

+ c]/ ln
λ(1 − ak)
bk(1 − λ)

, 0 < λ ≤ 1 + (ak − 1)ec}, (13)

where ak = max{P(k|i), i Î S}, bk = min{P(k|i), i Î S}. Then,

lim inf
n→∞

Sn−1(k)∣∣T(n)
∣∣ ≥ Mk

N
μ − a.e. on D(c). (14)

Lemma 3 Let 0 <fn(x, y) ≤ 1 be real functions. Then for all l > 0, we have

λfn(x,y) ≤ 1 + (λ − 1)fn(x, y).

Proof It is easy to verify that λfn(x,y) − (λ − 1)fn(x, y) − 1 ≤ 0 for all l > 0, the above

inequality holds immediately.

Lemma 4 Let μ, P be two probability measures on (�,F), p > 0, (P(y |x ))x,y∈S be a

positive stochastic matrix, {Xs,s Î T} be Markov chains indexed by T under probabil-

ity measure P, 0 <fn(x, y) ≤ 1 be real functions defined on S2, L0 = {o}(o is the root of

the tree T), Fn = σ (XT(n)
), and l be a real number. Let

Fn(ω) =
∑
t∈T(n)

(1)

fn(X1t ,Xt) (15)

tn(λ,ω) =
λFn(ω)∏

t∈T(n)
(1)

[
1 + (λ − 1)EP(fn(X1t ,Xt)

∣∣X1t )
] P(XT(n)

)

μ(XT(n) )
, (16)

where EP is the expectation under probability measure P. Then, (tn(λ,ω),Fn,n ≥ 1)

is a non-negative supermartingale under probability measure μ.
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Proof By Lemma 3, we have

Eμ(tn(λ,ω) |Fn−1 )

= tn−1(λ,ω)
∑
xLn

∑
λt∈Ln

fn(X1t , xt)∏
t∈Ln

[
1 + (λ − 1)EP(fn(X1t ,Xt)

∣∣X1t )
]

∏
t∈Ln

P(xt
∣∣X1t )

μ(XLn = xLn
∣∣XT(n−1) )

×

μ(XLn = xLn
∣∣∣XT(n−1)

)

= tn−1(λ,ω)
∑
xLn

∏
t∈Ln

λfn(X1t ,xt)P(xt
∣∣X1t )∏

t∈Ln

[
1 + (λ − 1)EP(fn(X1t ,Xt)

∣∣X1t )
]

= tn−1(λ,ω)

∏
t∈Ln

∑
xt

λfn(X1t ,xt)P(xt
∣∣X1t )∏

t∈Ln

[
1 + (λ − 1)EP(fn(X1t ,Xt)

∣∣X1t )
]

= tn−1(λ,ω)
∏
t∈Ln

EP(λfn(X1t ,Xt)
∣∣X1t )[

1 + (λ − 1)EP(fn(X1t ,Xt)
∣∣X1t )

]
= tn−1(λ,ω)

∏
t∈Ln

EP(λfn(X1t ,Xt)
∣∣X1t )

EP
[
1 + (λ − 1)fn(X1t ,Xt)

∣∣X1t

]
≤ tn−1(λ,ω) μ − a.e.,

and hence (tn(λ,ω),Fn) is a non-negative supermartingale under probability measure

μ.

3 Small deviation theorem
Small deviation theorems are a class of strong limit theorems expressed by inequalities.

They are the extensions of strong limit theorems expressed by equalities. It is a new

research topic proposed by Professor Liu Wen [9].

In this section, we will establish a class of small deviation theorem for functionals of

random fields on homogenous trees. As corollary, we obtain the frequencies of state-

ordered couples for random fields on homogeneous trees.

Theorem 1 Let T be a homogeneous tree (Bethe tree or Cayley tree), μ, P be two

probability measures on (�,F), p > 0, (P(y |x ))x,y∈S be a positive stochastic matrix, {Xs,

s Î T} be Markov chains indexed by T under probability measure P, 0 <fn(x, y) ≤ δl
(x)δk(y) be real functions defined on S2, and l be a real number. Let � (ω) and Fn(ω)

be denoted by (7) and (15), respectively. Let c ≥ 0,

D(c) = {ω : ϕ(ω) ≤ c} (17)

Gn(ω) =
∑
t∈T(n)

(1)

EP(fn(X1t ,Xt)
∣∣X1t ). (18)

Then,

lim sup
n→∞

Fn(ω) − Gn(ω)
NSn−1(k)

≤
√
2cP(l |k)

Mk
+

c
Mk

μ − a.e. on D(c). (19)
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When 0 <c <P (l|k)Mk,

lim inf
n→∞

Fn(ω) − Gn(ω)
NSn−1(k)

≥ −
√
2cP(l |k)

Mk
μ − a.e. on D(c). (20)

Proof Let tn (l, ω) be defined by (16). By Lemma 4, (tn(λ,ω),Fn,n ≥ 1) is a non-

negative supermartingale under probability measure μ. By Doob’s martingale conver-

gence theorem, we have

lim
n→∞ tn(λ,ω) = t(λ,ω) < ∞μ − a.e..

Hence,

lim sup
n→∞

1∣∣T(n)
∣∣ ln tn(λ,ω) = lim sup

n→∞
1∣∣T(n)

∣∣ ln t(λ,ω) ≤ μ − a.e..

By (14), we get

lim sup
n→∞

ln tn(λ,ω)
NSn−1(k)

≤ lim sup
n→∞

∣∣T(n)
∣∣

NSn−1(k)
lim sup
n→∞

1∣∣T(n)
∣∣ ln tn(λ,ω) ≤ 0,μ−a.e. on D(c). (21)

We have by (15), (16) and (21)

lim sup
n→∞

1
NSn−1(k)

⎡
⎢⎢⎣
Fn(ω) ln λ −

∑
t∈T(n)

(1)

ln[1 + (λ − 1)EP(fn(X1t ,Xt)
∣∣X1t )] − ln

μ(XT(n)
)

P(XT(n) )

⎤
⎥⎥⎦

≤ 0μ − a.e. on D(c).

(22)

By (6), (7), (17), (22), and 0 ≤ c < ln(1 - ak)
-1, we have

lim sup
n→∞

1
NSn−1(k)

⎡
⎢⎣Fn(ω) lnλ −

∑
t∈T(n)

(1)

ln[1 + (λ − 1)EP(fn(X1t ,Xt)
∣∣X1t )]

⎤
⎥⎦

≤ c
Mk

μ − a.e. on D(c).

(23)

By (23) and the inequality lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn, we have

lim sup
n→∞

Fn(ω) ln λ

NSn−1(k)
≤ lim sup

n→∞
1

NSn−1(k)

∑
t∈T(n)

(1)

ln[1 + (λ − 1)EP(fn(X1t ,Xt)
∣∣X1t )] +

c
Mk

μ − a.e. on D(c).

(24)

Let l > 1, we have by (24),

lim sup
n→∞

Fn(ω) − Gn(ω)
NSn−1(k)

≤ lim sup
n→∞

∑
t∈T(n)

(1)

ln[1 + (λ − 1)]EP(fn(X1t ,Xt)
∣∣X1t )] − Gn(ω) lnλ

NSn−1(k) ln λ

+
c

Mk lnλ
μ − a.e. on D(c).

(25)
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By (17), (25) and inequality 1 - 1/x ≤ ln x ≤ x - 1 (x > 0), we have

lim sup
n→∞

Fn(ω) − Gn(ω)
NSn−1(k)

≤ (λ−1) lim sup
n→∞

Gn(ω)
NSn−1(k)

+
λc

(λ − 1)Mk
μ−a.e. on D(c). (26)

By 0 <fn (x, y) ≤ δl (x) δk(y), we have lim sup
n→∞

Gn(ω)/[NSn−1(k)] ≤ P(l |k ). By (26) we

get

lim sup
n→∞

Hn(ω) − Gn(ω)
NSn−1(k)

≤ (λ − 1)P(l |k) + λc
(λ − 1)Mk

μ − a.e. on D(c). (27)

Let g(l) = (l - 1)P(l|k) + lc/[(l - 1)Mk] (l > 1). In the case c > 0, (19) holds by (27)

because g(l) attains its smallest value g(1 +
√
c/[P(l |k)Mk]) = 2

√
P(l |k )c/Mk + c/Mk on

the interval (1,+∞); In the case c = 0, (19) also holds by choosing li ® 1 + 0(i ® ∞)

in (27).

Let 0 <l < 1, we have by (24) then

lim sup
n→∞

Fn(ω) − Gn(ω)
NSn−1(k)

≥ lim inf
n→∞

∑
t∈T(n)

(1)

ln[1 + (λ − 1)EP(fn(X1t ,Xt)
∣∣X1t )] − Gn(ω) lnλ

NSn−1(k) ln λ

+
c

Mk ln λ
μ − a.e. on D(c).

(28)

By (17), (28), and inequality 1 - 1/x ≤ ln x ≤ x - 1 (x > 0), we have

lim inf
n→∞

Fn(ω) − Gn(ω)
NSn−1(k)

≥ (λ − 1)P(l |k) + c
(λ − 1)Mk

μ − a.e. on D(c). (29)

Let h(l) = (l-1)P(l|k)+c/[(l - 1)Mk] (0 <l < 1). In the case c > 0, (20) holds by (29)

because h (l) attains its largest value h(1 −
√
c/[P(l |k )Mk]) = −2

√
cP(l |k )/Mk on the

interval (0,1); In the case c = 0, (20) also holds by choosing li ® 1 - 0(i ® ∞) in (29).

This is the end of the proof.

Corollary 1 Under the assumption of Theorem 1, we have

lim
n→∞

Hn(ω) − Gn(ω)
NSn−1(k)

= 0, μ − a.e. on D(0). (30)

Proof (30) holds by setting c = 0 in Theorem 1.

Corollary 2 Under the assumption of Theorem 1, we have

lim
n→∞

Hn(ω) − Gn(ω)
NSn−1(k)

= 0, P − a.e.. (31)

Proof Let μ = P in Theorem 1, then �n (ω) ≡ 0, D (0) = Ω, and (31) follows

immediately.

Corollary 3 (see [2]) Under the assumption of Theorem 1, we have

lim sup
n→∞

[
Sn(k, l)

NSn−1(k)
− P(l |k )

]
≤ 2

√
cP(l |k)
Mk

+
c
Mk

μ − a.e. on D(c), (32)
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and when 0 ≤ c ≤ Mk P(l|k), we have

lim inf
n→∞

[
Sn(k, l)

NSn−1(k)
− P(l |k)

]
≥ −2

√
cP(l |k )
Mk

μ − a.e. on D(c). (33)

Proof Let fn(x, y) = δl(x) δk (y) in Theorem 1, then Fn(ω) = Sn(k, l), Gn(ω) = NSn-1(k)P

(l|k), and (32) and (33) hold obviously.
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