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1 Introduction
Let Q be a bounded open set of R”, n > 2. We consider the second order divergence
type elliptic equation (also called A-harmonic equation or Leray-Lions equation)

divA(x, u(x), Vu(x)) = divf(x). (1.1)

where A : Q x R x R” - R” is a Carathéodory function satisfying the coercivity and
growth conditions: for almost all x € Q, all u € R, and £ € R”,

(i) (A, u, ), &) = o ],

(i) |A(x, u, O] < B [EF + Bo |ul™ + hix),

where o >0, f; and B, are some nonnegative constants, 1 < p < n,

n

p—1<m=<"""andn(x) e )PV (Q) f(x) € (Lfé(f*l)(fz)) for some s > r.

Suppose that y;, w, are any functions in Q with values in R U {t+eo}, and that 0 €
W (Q) with max{1, p - 1} < r < p. Let

Kyl () ={ve W'(Q): ¥y v <1, ae.andv—0 € Wy'(Q)}.

The functions y, y, are two obstacles and 6 determines the boundary values.

For any u,ve Kz’;wz(ﬂ), we introduce the Hodge decomposition for
T
V(v —u)|""V(v— u) € L—p+1, see [1]:

V(v— ”)|va(v —u) = Vyu+hyu (1.2)

.
where B € W;'f*PJr1 (Q) Ny € Lr—;ﬂ Q) is a divergence-free vector field and the

following estimates hold:

r—p+1

||V¢v,u|| T =c “V(v —u) ||r ’ (1.3)

r—p+1
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r—p+1

[houl 7 =elo =D V@ =u)], "
r—p+1

(1.4)

where ¢ = ¢(n, p) is a constant depending only on # and p.

Definition 1.1. A very weak solution to the KZ';wz(Q)—double obstacle problem for

the A-harmonic Equation (1.1) is a function u € Kz’lr,%(Q) such that

/(A(x, u, Vu), |V(v—u)|"?V(v—u)—h)dx > / (), IV(v—u) "V (v—u)—h)dx, (1.5)

Q

r

whenever v € KZ’MI& (2).

The obstacle problem has a strong background, and has many applications in physics
and engineering. The local boundedness for solutions of obstacle problems plays a central
role in many aspects. Based on the local boundedness, we can further study the regularity
of the solutions. In [2], Gao et al. first considered the local boundedness for very weak
solutions of obstacle problems to the A-harmonic equation in 2010. Precisely, the authors
considered the local boundedness for very weak solutions of K, (Q)-obstacle problems
to the A-harmonic equation div A(x, Vu(x)) = 0 with the obstacle function y > 0, where
operator A satisfies conditions (A(x, &), & > a|¢]¥ and |A(x, &)| < B|&P™ with A(x, 0) = 0.
For the property of weak solutions of nonlinear elliptic equations, we refer the reader to
[3-6].

In this article, we continue to consider the local boundedness property. Under some
general conditions (i) and (ii) given above on the operator A, we obtain a local bounded-
ness result for very weak solutions of Kz’lr,%—double obstacle problems to the A-harmonic
Equation (1.1).

Theorem. Let operator A satisfies conditions (i) and (ii). Suppose that
Y1, ¥, € WIIOO‘C”(Q) Then a very weak solution u to the K@’;%(Q)—obstacle problem of
(1.1) is locally bounded.

Remark. Since we have assumed that operator A satisfies the conditions (ii), in the
proof of the theorem, we have to estimate the integral of some power of |u#| by means
of |vu|. To deal with this difficulty, we will make use of the Sobolev inequality that
was used in [4].

2 Preliminary knowledge and lemmas
We give some symbols and preliminary lemmas used in the proof. If xo € € and ¢ >0,
then B, denotes the ball of radius ¢ centered at x,. For a function u#(x) and k >0, let

Ap={x e Q:|u(x)] >k}, A ={xeQ:u(x)>k}
Ak,t = Ak n B[, A;Z—,[ = A;z— n Bt~

Moreover, if s < n, s* is always the real number satisfying 1/s* = 1/s - 1/n. Let () =
min{u, k}.
Lemma 2.1. [7] Let f{r) be a nonnegative bounded function defined for 0 < Ry < ¢ <

R;. Suppose that for Ry < 7 < t < Ry one has
f(r) <A(t —1)* +B +0f(1),
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where A, B, o, 0 are nonnegative constants and 6 <1. Then there exists a constant
¢ = c(a, ), depending only on o and 6, such that for every p, R, Ry < p < R < R;, one
has

f(p) =clA(R —p)™ +BJ.

Definition 2.2. [8] A function u € W™ (2) belongs to the class B(Q, ¥, m, ko), if for

lo ¢

all k > ko, ko >0 and all B, = B, (xo), Bp-ps = Bp-ps (*0), Br = Br(xo), one has

/ [Vu|™dx <y a"”p"”/(u—k)mdx +A; ¢
A A

k.p—po

for R/2 < p - po < p < R, m < n, where |A; | is the n-dimensional Lebesgue measure

of the set A} .
Lemma 2.3. [8] Suppose that u(x) is an arbitrary function belonging to the class B
(Q, 7, m, ky) and Br €€ Q. Then one has

maxu(x) <,
Bgrj2

in which the constant ¢ is determined only by ¥, m, ko, R, || Vu||n
3 Proof of theorem
Proof. Let u be a very weak solution to the Kz,/lr,%(Q)—obstaCle problem for the A-har-

monic Equation (1.1). Let B, CC Qand 0 < R1/2 < 7 < ¢t < Ry be arbitrarily fixed. Fix
a cutoff function ¢ € C3°(Bg, ), such that

suppp C B, 0<¢p <1, ¢ =1inB,, |[V¢| <2(t —1)" L. (3.1)
If v, is an arbitrary function in Q) with values in R U {+oo}, consider the function
v=u— ¢ (u— ), (32)
where
Y1 = min{max{y1, t,(u)}, ¥2}, te(u) = min{u, k}, k> 0.
It is easy to see y; < yi < wo. Now, v € KZ’IT'%(Q); indeed, since u € Kg:wz(ﬁ) and
¢ € C3°(R2), then

v—0=u—0—¢" (u—1yr) € W, (),
v—yY1=u—yY1—p'(u—yr) > (1—9¢")(u—1v1) >0aeing, (3.3)
V= Ya=u— 2 — @' (u— ) < (1-¢")(u— ) < Oaein.

For any fixed k > 0, let

_fuifu <k,
Yo = v, ifu > k.

It is easy to see that vy € Kxi'lr,x//z(Q)' Then by Definition 1.1 we have

/ (A(x, u, Vu), |V (vo—u)["PV (vo—u)—h,,,)dx > / (F(x), 1V (vo—1)|" "V (vo—tt) —y,, ) dx. (3.4)
Q

Q



Tong et al. Journal of Inequalities and Applications 2012, 2012:43
http://www.journalofinequalitiesandapplications.com/content/2012/1/43

If u < k, then f,,, = 0, Véy, = 0 If u >k, then f,,, = hy,p uy = dyu 1t's derived from

the uniqueness of Hodge decomposition. This means that

/ (A(x, u, V), hyy)dx + / (f(x), IV (vo — )|V (vo — u) — hyy)dx
i

AZ,L kit
< / (A(x, U, Vi), hy)dx + f (f(x), IV(vo — w)["PV (v — u) — hy,y)dx
Q Q
< / (A(x, u, Vu), |V(vo —u)|" PV (vo — u))dx
Q
(3.5)
= / + / (A(x, u, Vu), |V(vo —u)|" PV (vo — u))dx
QN{u<k} QN{u>k}
= / (A(x, u, Vu), |V(vo —u)|" PV (vo — u))dx
QN{u>k}
= / (A(x, u, Vu), |[V(v—u)|" "V (v —u))dx.
A
Let
E(v, u) = |¢"Vu|" P¢"Vu+ V(v —u)|""V(v—u). (3.6)
By an elementary inequality [[9], P. 271, (4.1)],
_ _ 1+e 1—
[1X]7°X — Y|77Y] 5281 IX-Y'% X, YeR, 0<e<1, (3.7)
—¢
Vv =Vu— ¢ (Vu— Vi) —rd Vo (u— ), (3.8)
one can derive that
—r+1
IE(, u)| < 20" 6"V Y — 1" Ve (u — yi) P (3.9)
r—p+1
We get from the definition of E(v, u) and (3.5) that
/(A(x, u, Vu), |¢"Vul"P¢" Vu)dx
AL
= / (A(x, u, Vu), E(v, u))dx — / (A(x, u, Vu), |V —uw)|"PV(v—u))dx
A}:,z Ak,t
< (3.10)
< [ (A(x, u, Vu), E(v, u))dx — | (A(x, u, Vu), hy)dx — | (f(x), E(v, u))dx
ALy Al A

+/ {f (%), |¢'Vu|r_p¢rVu)dx+/(f(x), o) dx
Py

A

+
kit kit

=11 +12+I3+I4+I5.

We now estimate the left-hand side and the right-hand side of (3.10), respectively.
Firstly,
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/(A(x, u, Vu), |¢"Vu|""P¢"Vu)dx > / (A(x, u, Vu), |Vu|" PVu)dx
Ay A
zoz/ |Vu|"dx,
AZVT

here we have used condition (i). Secondly, by condition (ii) and (3.9),

L - / (A, 1, Vu), Ev, u))dx

< / [B11VulP~" + Bolul™ + hi]|E(v, u)ldx
A

+
Tt

— 1
<P . f [B1IVulP™" + Bolul™ + hy]1¢" Vb, — 9™ ' Vb (u — )P

T—p+
A

Tt

Ci: / VUl VYl P+ Caf / IVl g Vg (u — )

+
Ah,r

AF

It

+Ci1 52 / ul™|¢" VP! + C1 B2 / [ul™ " Vep(u — )P+

+ +
Ak,t Ak,t

+CI/|h||¢TVv,uk|”"+l +c1/|h|}r¢'*1v¢(u—z/fk)|
o

A

T—p+1
A
kot
= Iy +Ip+ 113+ 14 + 115 + 116,

_ zpfr p—r+1

r—p+1- BY Young's inequality

where C;
ab < ea” + C(e, p)bPvalid fora, b>0, ¢ > 0Oand p > 1,

and ? :1 + H; *1 _ 1, we have the estimates

] < Cifs e/|Vu|’dx+C(e, p)/|wl|’+|wz|’dx ,

Ar Ar

Tt Tt

2 < Cigs | & f Vul'dx+ Cle, p) / 1" Ve (u — y)dx |,

+ +
Ak,L Ak,L

Is] < € ef|u|ﬂ—1dx+(:(e, P)/IVW1|T+IVWzIde ,

+ +
Ak,L Ak,L

where we have used |vyy| < |Yy| + |Vl in A,

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

We observe now that, if we W"”(B,) and |suppw| < 1/2|B|, then we have the Sobo-

lev inequality (see also [10]),

Page 5 of 11
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p/p*
f |w[P*dx <ci(np) / [Vw|Pdx. (3.16)

Set

_Ju ifu <k,
8 =10 ify > &,

Sincep—1<m=< ”(::TU by assumption, then " = prfrl < 1" (3.16) implies

[ ras= [ - g1 e

Ay, B,

’
rx

IA

"y
= g2 (B D (B/ |t — ge(u)|™dx
(3.17)
.

& ()l — g B e / IV (1 — gi(u))"dx

IA

mr

1T 1— N
e (m )l — g2 1B D / Vul dx,
A+

kit

provided that [supp(u — gx(u))Is,| < 1/2|B;|. Since sup p(u — g(u))|s, C A, then
|suppl sup p(u — ge(u))Is,| < |A;,l On the other hand, we have

ully p, = /ur dx 2/ [ul" dx > k" |A; |
B, AL

Thus, there exists a constant ky >0, such that for all k > &y, we have |A;{t| <1 / 2|B¢l.

We can also suppose that k, such that
/ udx < 1.
AkU,t

For such values of k we then have inequality

mr

—r _ mr
/ "7 dx < Ca(m, )l — ge(@)l1E 1B 0D / Vul dx
A;’L A;L
mr
< Co(np)llu— g | STy f |Vu| dx

(3.18)
1 mr
< Cmp)) G- /Wurdx

A

2

=C3/ |Vu|"dx,

Ah,t
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here C3 = C3(n, m, p, r, ko, |Q2]). We derive from (3.15) and (3.18) that

hal = CiGae [ 1Vulds+ CiCe,p) [ 1901+ 190l ds 65.19)
Aje A

lha| < C1C38/ IVuI’dx+C1C(8,p)/ r¢" ' Vp(u — )| dhx. (3.20)
A A

kt kit

I;5 and I;4 can be estimated as follows:

151 5Clg/|h|P—1dx+C1C(a,p)f|V1p1|r+|V1p2|rdx. (3.21)
AI?[ A;;L

sl < Cie / |h|P=1dx + C1C(e, p) / r¢" Ve (u — yi)["dx. (3.22)
A* Af

kot kt

In conclusion, we derive from (3.12)-(3.14), (3.19)-(3.22) that

.
L] < (C1ﬁ18+C1ﬁ28+2C1C38)/IVuIde+2C18/|h|P*1dx

Ak,L Ak,L
+(C1/31 + 2Cl)C(8, P) / |V1ﬂ1|r + |V1ﬂ2|’dx (323)
Ak
+(Cofa + 200C(e, p) [ 118 9p(u = )l
Ar

kit

By [vo| < 2(t - 0" and |u -yy| < |u - k| ace. in A}, we have

] < C4£/ |Vu|rdx+2C18/ |h|P— 1dx+C5C(8, p)/ VY| + |V | dx

o
kit kl kl (324)
+CsC(e, p) f lu — k|"dx.
We now estimate |I,|. By condition (ii),
|Iz| = / (A(x, u/ Vu)/ hv/u)dx
ht
< [ 1ITuP + falul” + b, i 595)

-
AkL

<ﬁ1/|Vu|" 1|huu|dx+ﬂz/|u| |hvu|dx+f|h||hw|dx

kl kl

= 121 + 122 +Iz3.
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By Young’s inequality, Holder’s inequality and (1.4), I,; and I3 can be estimated as

r—p+1
r

p

-1
.
il < B [Vu| dx /|hu/u|”p+1dx
;,I ;l‘,t
p—1 r7¢;+1
r (3.26)
< FiGi(p—r1) /qulrdx /IV(v—u)I’dx

+ +
Tt Tt

B1C7(p —1)e / [Vul"dx + p1C7(p — r)C(e, p) / V(v —u)|"dx.

Ay Af

Tt Tt

A

IA

r—p+1

-1
ILs| < f|h|f’*1dx /|hu,u|ffv+1dx
: :
p—1 r—p+1
r ' ' (3.27)
<cip-n| fmrras| | [1ve-wra
:

¥
Tkt

<C;(p—r)e Ihll’i1 dx + C7(p—1)C(e,p) | V(v —u)l"dx.
/ /

-
Tt Ak,t

By (3.18), we know that if k > ko, then

p—1 r—p+1
ol <o [t | [ inalras
ot ot
p—1 r—p+1
_ p—1 —ur
< pCip-n)| [wrtas| | [190-wra .
ot ot
< BCi(p— T)E/ lulP=tdx + B2C7(p —1)C(e,p) | IV(v—u)l'dx
Aj g
kt
< $2Ca(p =G [ Valids poCap —1)Cep) [ V(0= e
A 4j,
Combining (3.25) with (3.26), (3.27), and (3.28), we obtain
Ll = (B1Ca + F2CiCa)(p e [ 1VuldsCatp—ne [ 1n="as
A A
+(B1Ca + P2Ca + Cq)(p — 1)C(e, p) / IV(v—u)["dx (3.29)

Ak,t

= Cg&/|Vu|rdx+C9/|h|P—1dx+C10(p—r)C(5,p)/IV(v—u)lrdx.
Al Al

¥
Ak,L kit Tt

Page 8 of 11
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We now estimate |3, |I4], and |I5|.

3]

] (@), Euudidx

+
It

2P / F|E Ve — 167 Vol — v dx

+
AkL

o f PVl dx+ Cy f F@)I[ré™ Ve (u — v d

+
Ak t

IA

IA

+
Ak t

Clé‘/ |f(x)|P—1dx+C1C(s,p)/ VY| + |V |dx (3.30)

IA

+C1C(e, p)/ lr¢" "IV (u — )| dx

At

k.t

Cre / F)1P dx + CLC(e, ) f VYT + [Vl

IA

+C1C(e, p) /Iu k|"dx.

] [ (), 16" Vul "¢ Vuydx

< / F@)IIVul dx (3.31)

Af,

t

<s/|Vu|’dx+C(s p)A/ |f(x)|P Ly,

kt

| = f (), hu)dx

p—1 r—p+1
= ‘/‘lflpildx f'hu,uvipﬂdx
b o (3.32)
p—1 r—p+1
< G- [ /IV(v—u)I’dx

< Cop— e f F1P1 dx + Gy (p — 1)C(e, ) f V(v - u)l'dx.

-
Ak t h,t
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By (3.8), we have

2'r
/|V(v—u)|rdx§/qulex+/|V1p1|T+|Vw2|de+ (t_r)rf|u—k|rdafg'33)
A

+ + +
Ak,t Ak,t Ak,t

Thus, the inequalities (3.10), (3.11), (3.24), and (3.29)-(3.33) imply that

/ |Vu|"dx
AL,

1
< {C48+C88+8+(C10+C7)(p—r)C(8,p)}/|Vu|’dx
o
Al
1 r
+ {2C18+C9}/|hlp_1dx
o

AF

1 o ) (3.34)
o Cre + Cle, p)+c7(p—r)s}/ 171 dx
A;/L
1
+a{C5C(8r p) + C1C(e, p) + (Cro + C7)(p — r)Cle, P)}/ VY™ + [V | dx

Ak,t

+ ! {CsC(e, p) + C1C(e, p) + (C10 + C7)(p — 1)C(e, p)} 2 ; / lu — k| dx.
[ (t—1)
A

Rkt

Choosing ¢ and p-r small enough such that, the summation & of the coefficients of
the first term in the right-handside of (3.34) is smaller than 1. Let p, R be arbitrarily
fixed with R;/2 < p < R < R;. Thus, from (3.34), we deduce that for every ¢ and 7,
such that R,/2 < 7 < t < Ry, we have

/Wurdxf (“;jl / (|w1|f+|vwz|f+|h|ﬂ—1 +|f|ﬂ—1>dx

Ajr A

R
C
v / |u—k|fdx+9/|w|’dx,
a(t—r1)
A;'R Af

Lt

(3.35)

where C;,C;, are some constants depending only on n, p, r, m, ko, |Q|, &, B; and Ss.

Applying Lemma 2.1, we conclude that

/|Vu|rdx§ cCu ,/|u—k|rdx
K. a(R—=p)" J

k.p kR

cC i r
w2 f (|w1|f+|wz|’+|h1|ﬂ1 +Ihz|"1>dx (3.36)

¥
Ak,R

cC cCy,C
< v / u—kldx+ "2 AL
a(R—p) o '
Air

where c is the constant given by Lemma 2.1 and

T T
Cis = |||VY1]" + [Via|" + |h|P=1 + |f]P7! . Thus u belongs to the class B with y =

Lee(Q)
max{cyc;/a, cycscg/oy and m = r. Lemma 2.3 yields

Page 10 of 11
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maxu(x) <c.
Bgrja

If y, is an arbitrary function in Q with values in R U {-}, noticing -y, < -u < -y,
we only use -« in place of u above.

These results together with the assumptions y; < u < y, and vy, ¥, € WI'OO(Q)

loc

yield the desired result.
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