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Abstract

A special case of Mahler volume for the class of symmetric convex bodies in ℝ3 is
treated here. It is shown that a cube has the minimal Mahler volume and a cylinder
has the maximal Mahler volume for all generalized cylinders. Further, the Mahler
volume of bodies of revolution obtained by rotating the unit disk in ℝ2 is presented.
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1 Introduction
Throughout this article a convex body K in Euclidean n-space ℝn is a compact convex

set that contains the origin in its interior. Its polar body K* is defined by

K∗ = {x ∈ Rn : x · y ≤ 1, for all y ∈ K},

where x·y denotes the standard inner product of x and y in ℝn.

If K is an origin symmetric convex body, then the product

V(K)V(K∗)

is called the volume product of K, where V (K) denotes n-dimensional volume of K,

which is known as the Mahler volume of K, and it is invariant under linear

transformation.

One of the main questions still open in convex geometric analysis is the problem of

finding a sharp lower estimate for the Mahler volume of a convex body K (see the sur-

vey article [1]).

A sharp upper estimate of the volume product is provided by the Blaschke-Santaló

inequality: For every centered convex body K in ℝn

V(K)V(K∗) ≤ ω2
n ,

with equality if and only if K is an ellipsoid centered at the origin, where ωn is the

volume of the unit ball in ℝn (see, e.g., [2-5]).

The Mahler conjecture for the class of origin-symmetric bodies is that:

V(K)V(K∗) ≥ 4n

n!
(1:1)

Yan Journal of Inequalities and Applications 2012, 2012:3
http://www.journalofinequalitiesandapplications.com/content/2012/1/3

© 2012 Yan; licensee Springer. This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

mailto:huyan12@126.com
mailto:huyan12@126.com
http://creativecommons.org/licenses/by/2.0


with equality holding for parallelepipeds and their polars. For n = 2, the inequality is

proved by Mahler himself [6], and in 1986, Reisner [7] showed that parallelograms are

the only minimizers. Reisner [8] established inequality (1.1) for a class of bodies that

have a high degree of symmetry, known as zonoids, which are limits of finite Min-

kowski sums of line segments. Lopez and Reisner [9] proved the inequality (1.1) for n

≤ 8 and the minimal bodies are characterized. Recently, Nazaeov et al. [10] proved that

the cube is a strict local minimizer for the Mahler volume in the class of origin-sym-

metric convex bodies endowed with the Banach-Mazur distance.

Bourgain and Milman [11] have proved that there exists a constant c >0 independent

of the dimension n, such that for all origin-symmetric bodies K,

V(K)V(K∗) ≥ cnω2
n ,

which is now known as the reverse Santaló inequality. Recently, Kuperberg [12]

found a beautiful new approach to the reverse Santaló inequality. What’s especially

remarkable about Kuperberg’s inequality is that it provides an explicit value for c.

However, the Mahler conjecture is still open even in the three-dimensional case, Tao

[13] made an excellent remark about the open question.

In the present article, we treat a special case of Mahler volume in ℝ3. We now intro-

duce some notations: A real-valued function f(x) is called concave, if for any x, y Î [a,

b] and any l Î [0, 1], they have

f (λx + (1 − λ)y) ≥ λf (x) + (1 − λ)f (y).

Definition 1 In three-dimensional Cartesian coordinate system OXYZ, if C′ is an ori-

gin-symmetric convex body in coordinate plane YOZ, then the set:

C = {(x, y, z)| − 1 ≤ x ≤ 1, (0, y, z) ∈ C′} (1:2)

is defined as a generalized cylinder in ℝ3.

Definition 2 In the coordinate plane XOY, let

D = {(x, y)| − a ≤ x ≤ a, |y| ≤ f (x)}, (1:3)

where f(x) ([-a, a], a >0), is a nonnegative concave and even function. Rotating D

about the X-axis in ℝ3, we can get a geometric object

R = {(x, y, z)| − a ≤ x ≤ a, (y2 + z2)

1
2 ≤ f (x)}. (1:4)

We define the geometric object R as a body of revolution generated by the function f(x)

(or by the domain D), and call the function f(x) as the generated function of R and D as

the generated domain of R.

If the generated domain of R is a rectangle and a diamond, R is called a cylinder and

a bicone, respectively.

Let C denotes the set of all generalized cylinders. In this article, we proved that

among the generalized cylinders, a cube has the minimal Mahler volume and a cylinder

has the maximal Mahler volume, theorem as following:

Theorem 1 For C ∈ C, we have
V(C0)V(C∗

0) ≤ V(C)V(C∗) ≤ V(C1)V(C∗
1), (1:5)
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where C0 = [-1, 1] × [-1, 1] × [-1, 1] is a cube and C1 = [-1, 1] × B2 is cylinder.

Further, we get the following theorem:

Theorem 2 For a class of bodies of revolution obtained by rotating the “unit disk” in

planar XOY, where the “unit disk” is the following set:

U = {(x, y)||x|p + |y|p ≤ 1}, p ≥ 1, (1:6)

the Mahler volume is increasing for 1 ≤ p ≤ 2 and decreasing for 2 ≤ p ≤ +∞.

More interrelated notations, definitions, and their background materials are exhibited

in the following section.

2 Definition and notation
The setting for this article is n-dimensional Euclidean space ℝn. Let Kn denotes the set

of convex bodies (compact, convex subsets with non-empty interiors), Kn
o denotes the

subset of Kn that contains the origin in their interiors. As usual, Bn denotes the unit

ball centered at the origin, Sn-1 the unit sphere, o the origin, and ||·|| the norm in ℝn.

If u Î Sn-1 is a direction, u⊥ is the (n - 1)-dimensional subspace orthogonal to u. For

x, y Î ℝn, x·y is the inner product of x and y, and [x, y] denotes the line segment with

endpoints x and y.

If K is a set, ∂K is its boundary, int K is its interior, and conv K denotes its convex

hull. V (K) denotes n-dimensional volume of K. Let K|S be the orthogonal projection

of K into a subspace S.

Let K ∈ Kn and H = {x Î ℝn|x·v = d} denotes a hyperplane, H+ and H- denote the

two closed halfspaces bounded by H.

Associated with each convex body K in ℝn, its support function hK : ℝn - [0, ∞), is

defined for x Î ℝn, by

hK(x) = max{x · y : y ∈ K},

and its radial function rK : ℝn\{0} ® (0, ∞), is defined for x ≠ 0, by

ρK(x) = max{λ ≥ 0 : λx ∈ K}.

From the definitions of the support and radial functions and the definition of the

polar bodies, it follows that (see [4])

hK∗(u) =
1

ρK(u)
and ρK∗(u) =

1
hK(u)

, u ∈ Sn−1,

K∗ = {x ∈ Rn : hK(x) ≤ 1},
K∗∗ = K.

If P is a polytope, i.e., P = conv{p1, ..., pm}, where pi (i = 1, ..., m) are vertices of poly-

tope P. By the definition of polar body, we have

P∗ = {x ∈ Rn : x · p1 ≤ 1, . . . , x · pm ≤ 1}

=
m⋂
i=1

{x ∈ Rn : x · pi ≤ 1},

which implies that P* is the intersection of m closed halfspace with exterior normal

vector pi and the distance of hyperplane {x Î ℝn : x·pi = 1} from the origin is 1/||pi||.
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For K ∈ Kn
o, if x = (x1, x2, ..., xn) Î K, x′ = (ε1x1, ..., εnxn) Î K for any signs εi = ± 1 (i

= 1, ..., n), then K is a 1-unconditional convex body. In fact, K is symmetric around all

coordinate hyperplanes.

To proof the inequality, we give the following definitions.

Definition 3 In Definition 2, if the function

f (x) = kx + b, x ∈ [−a, 0],

where k and b are real constants, and f(-a) = 0, then the body of revolution is defined

as a bicone. In three-dimensional Cartesian coordinate system OXYZ, if C′ is an origin-

symmetric convex body in coordinate plane YOZ and points A = (-a, 0, 0) and A′ = (a,

0, 0), then the set.

B = conv{C′,A,A′} (2:1)

is defined as a generalized bicone in ℝ3.

3 Proof of the main results
In this section, we only consider convex bodies in three-dimensional Cartesian coordi-

nate system with origin O, and its three coordinate axes are denoted by X-, Y -, and Z-

axis.

Let C be a generalized cylinder as following:

C = {(x, y, z)| − 1 ≤ x ≤ 1, (0, y, z) ∈ C′},

where C′ is an origin-symmetric convex body in coordinate plane Y OZ.

We require the following lemmas to prove our main result.

Lemma 1 If K ∈ K3
o, for any u Î S2, then

K∗ ∩ u⊥ = (K|u⊥)∗. (3:1)

On the other hand, if K ′ ∈ K3
o satisfies

K ′ ∩ u⊥ = (K|u⊥)∗,

for any u ∈ S2 ∩ v⊥0 (v0 is a fixed vector), then

K ′ = K∗. (3:2)

Proof First, we prove (3.1).

Let x Î u⊥, y Î K and y′ = y|u⊥, since the hyperplane u⊥ is orthogonal to the vector y

- y′, then

y · x = (y′ + y − y′) · x = y′ · x + (y − y′′) · x = y′ · x.

If x Î K* | u⊥, for any y′ Î K | u⊥, there exists y Î K such that y′ = y|u⊥, then x·y′ =

x·y ≤ 1, and x Î (K|u⊥)*. Hence,

K∗ ∩ u⊥ ⊆ (K|u⊥)∗.

If x Î (K|u⊥)*, then for any y Î K and y′ = y|u⊥, x·y = x·y′ ≤ 1, thus x Î K*, and since

x Î u⊥, thus x Î K* | u⊥. Then,

(K|u⊥)∗ ⊆ K∗ ∩ u⊥.
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Next, we prove (3.2).

Let S1 = S2 ∩ v⊥0 . For any direction vector v Î S2, there always exists a u Î S1 satisfy-

ing v Î u⊥. Since

K ′ ∩ u⊥ = (K|u⊥)∗,

and by (3.1)

K∗ ∩ u⊥ = (K|u⊥)∗,

thus

K ′ ∩ u⊥ = K∗ ∩ u⊥.

Then, we get

ρK ′(v) = ρK∗(v).

By the arbitrary of direction v, we obtain the desired result. ■
For any C ∈ C and any u Î B2 | v⊥ (v = (1, 0, 0)), C|u⊥ is a rectangle by the above defi-

nition. We study the polar body of a rectangle in the planar. From Figure 1, if C|u⊥ =

[-1, 1]×[-a, a], its polar body in planar XOY is a diamond (vertices are (-1, 0), (1, 0), (0,

-1/a), (0, 1/a)), thus we can get the following Lemma 2.

Lemma 2 For any C ∈ C, if
C = {(x, y, z)| − 1 ≤ x ≤ 1, (0, y, z) ∈ C′},

Figure 1 Rectangle and its polar body in planar XOY.
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where C′ is an origin-symmetric convex body in coordinate plane YOZ, then C* is a

generalized bicone with vertices (-1, 0, 0) and (1, 0, 0) and the base (C′)*.

Proof Let v0 = (1, 0, 0), S1 = S2 ∩ v⊥0 . By Lemma 1, we have

C∗ ∩ u⊥ = (C|u⊥)∗

for any u Î S1. Because that (C|u⊥)* is a diamond with vertices (-1, 0, 0) and (1, 0,

0), C* | u⊥ is a diamond with vertices (-1, 0, 0) and (1, 0, 0) for any u Î S1, which

implies that C* is a bicone with vertices (-1, 0, 0) and (1, 0, 0).

In view of

C∗ ∩ v⊥0 = (C|v⊥0 )∗

and C|v⊥0 = C′, then, the base of C* is (C′)*. ■
In the following, we will restate and prove Theorem 1.

Theorem 1 For C ∈ C, we have
V(C0)V(C∗

0) ≤ V(C)V(C∗) ≤ V(C1)V(C∗
1), (3:3)

where C0 = [-1, 1] × [-1, 1] × [-1, 1] is a cube and C1 = [-1, 1] × B2 is cylinder.

Proof Let v = (1, 0, 0), and V (C) = V (C0) by linear transformation, thus V (C ∩ v⊥) =
V (C0 ∩ v⊥).

In planar v⊥, since the square has the minimal Mahler volume in ℝ2, thus

V(C0 ∩ v⊥)V((C0 ∩ v⊥)∗) ≤ V(C ∩ v⊥)V((C ∩ v⊥)∗),

we get

V((C0 ∩ v⊥)∗) ≤ V((C ∩ v⊥)∗),

then

V(C∗
0) =

1
3
V((C0 ∩ v⊥)∗) × 2

≤ 1
3
V((C ∩ v⊥)∗) × 2

= V(C∗),

where the equality holds if and only if C ∩ v⊥ is a square. Hence,

V(C0)V(C∗
0) ≤ V(C)V(C∗).

Similarly, let V (C) = V (C1) for any C ∈ C by linear transformation, then V (C ∩ v⊥)

= V (C1 ∩ v⊥).

Since C1 ∩ v⊥ is a disk, which has the maximal Mahler volume in ℝ2, thus

V(C1 ∩ v⊥)V((C1 ∩ v⊥)∗) ≥ V(C ∩ v⊥)V((C ∩ v⊥)∗),

we get

V((C1 ∩ v⊥)∗) ≥ V((C ∩ v⊥)∗).

Hence, V(C∗
1) ≥ V(C∗), which implies

V(C1)V(C∗
1) ≥ V(C)V(C∗).

■
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Theorem 1 implies that among the generalized cylinders, a cube has the minimal

Mahler volume and a cylinder has the maximal Mahler volume.

4 Mahler volume of a special class of bodies of revolution
In this section, we study a special case in the coordinate plane XOY, and define the

“unit disk” in planar XOY as following set:

U = {(x, y)||x|p + |y|p ≤ 1}, p ≥ 1. (4:1)

We need the following lemmas to prove our result.

Lemma 3 Let P is a 1-unconditional convex body and P* is its polar body in the

coordinate plane XOY. Let R and R′ are two bodies of revolution obtained by rotating P

and P*, respectively. Then R′ = R*.

Proof Let v0 = {1, 0, 0} and S1 = S2 ∩ v⊥0 , for any u Î S1, we have

R|u⊥ = R ∩ u⊥.

Since R′ ∩ u⊥ = (R ∩ u⊥)* for any u Î S1, we get

R′ ∩ u⊥ = (R|u⊥)∗,

for any u Î S1. By Lemma 1, we have R′ = R*. ■
Lemma 4 If

1
p
+
1
q
= 1,

then the polar body of

U = {(x, y)||x|p + |y|p ≤ 1}, p ≥ 1

is the following set:

U′ = {(x, y)||x|q + |y|q ≤ 1}, q ≥ 1. (4:2)

Proof For any (x, y) Î U and (x′, y′) Î U′, we have

xx′ + yy′ ≤ |xx′| + |yy′| ≤ (|x|p + |y|p)
1
p (|x′|q + |y′|q)

1
q ≤ 1,

which implies U′ ⊂ U*.

If a point A′ = (x′, y′) ∉ U′, then

|x′|q + |y′|q > 1.

Let A′
0 = (|x′|, |y′|), then A′

0 /∈ U′. There exists a real r >1 and a point A0 Î ∂U′ satis-

fying A′
0 = rA0. If A0 = (x0, y0), then x0 >0 and y0 >0. Let

x = x

q
p
0

and
y = y

q
p
0

, then

xp + yp = xq0 + yq0 = 1

and

xx0 + yy0 = x1+q/p0 + y1+q/p0 = xq0 + yq0 = 1,
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which implies (x, y) Î U and 〈(x, y), (|x′|, |y′|)〉 = r >1, thus A′
0 /∈ U∗. Because that U*

is a 1-unconditional convex body, we have A′ ∉ U*. Then, U* ⊂ U′. ■
Rotating U and U′, we can get two bodies of revolution R and R′. By Lemma 3, we

have R′ = R*. Let F(p) = V (R)V (R*).

In the following, we restate and prove Theorem 2.

Theorem 2 For a class of bodies of revolution obtained by rotating the “unit disk” in

planar XOY, where the “unit disk” is the following set:

U = {(x, y)||x|p + |y|p ≤ 1}, p ≥ 1, (4:3)

the Mahler volume is increasing for 1 ≤ p ≤ 2 and decreasing for 2 ≤ p ≤ +∞.

Proof By integration, we get VR(p) and VR*(q), which are volume functions of R and

R* about p and q as following:

VR(p) = 2π

∫ 1

0
(1 − xp)

2
p dx, p ≥ 1,

and

VR∗(q) = 2π
∫ 1
0 (1 − xq)

2
q dx,

1
p
+
1
q
= 1.

Thus, we have the Mahler volume V (R)V (R*), which is a function about p as follow-

ing:

F(p) = VR(p)VR∗(q) = 4π2
∫ 1
0 (1 − xp)

2
p dx

∫ 1
0 (1 − xq)

2
q dx,

(4:4)

where p ≥ 1, and 1
p +

1
q = 1.

Let 1 - xp = y, we have

∫ 1
0 (1 − xp)

2
p dx =

1
p

∫ 1
0 y

2
p (1 − y)

1
p

−1

dy =
1
p
B(

2
p
+ 1,

1
p
),

where B(·, ·) is Beta function. Thus we have

F(p) =
4π2

pq
B(

2
p
+ 1,

1
p
)B(

2
q
+ 1,

1
q
),

where p ≥ 1, and 1
p +

1
q = 1.

By the relationship between Gamma function and Beta function:

B(x, y) =
�(x)�(y)
�(x + y)

,

we have

F(p) =
4π2

pq
·
�( 2p + 1)�( 1p )

�( 3p + 1)
·
�( 2q + 1)�( 1q )

�( 3p + 1)
.
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And by the following properties of Gamma function:

�(z + 1) = z�(z) and �(1 − z)�(z) =
π

sin(πz)
,

we have

F(p) =
16π3

9
· (p − 1)(p − 2)
p(2p − 3)(p − 3)

·
sin(3π

p )

sin(2π
p ) sin(π

p )
, p ≥ 1.

We can easily prove

lim
p→1

F(p) = lim
p→+∞ F(p) =

4π2

3
, (4:5)

then R and R* are bicone and cylinder, or cylinder and bicone, and

lim
p→2

F(p) =
16π2

9
, (4:6)

then R and R* are the same unit ball, which have the maximal Mahler volume.

In fact, F(p) = F(q) holds when 1
p +

1
q = 1, so we just need to prove F (p) is increasing

when 1 ≤ p ≤ 2, which can be easily proved by F′(p) ≥ 0 when 1 ≤ p ≤ 2. Based on the

above conclusions, we have that a cylinder has the minimal Mahler volume and a ball

has the maximal Mahler volume in this special class of bodies of revolution. ■
We can draw the figure of the function F(p) by using MATLAB (see Figure 2). From

the figure, we see that function F(p) is increasing when 1 ≤ p ≤ 2 and decreasing when

2 ≤ p ≤ +∞, so F(2) is a maximum and F(1) = F(+∞) is a minimum.
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