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Abstract

In this article, we define the notion of statistical convergence, statistical Cauchy and
strongly p-Cesàro summability in a paranormed space. We establish some relations
between them.
AMS subject classification (2000): 41A10; 41A25; 41A36; 40A05; 40A30.

Keywords: density, statistical convergence, statistical Cauchy, para-normed space,
strongly p-Cesàro summability.

1 Introduction and preliminaries
The concept of statistical convergence for sequences of real numbers was introduced

by Fast [1] and Steinhaus [2] independently in the same year 1951 and since then sev-

eral generalizations and applications of this notion have been investigated by various

authors, namely [3-11]. This notion was defined in normed spaces by Kolk [12] and in

locally convex Hausdorff topological spaces by Maddox [13]. Çakalli [14] extended this

notation to topological Hausdorff groups. Recently, in [15,16], the concept of statistical

convergence is studied in probabilistic normed space and in intuitionistic fuzzy

normed spaces, respectively. In this article, we shall study the concept of statistical

convergence, statistical Cauchy, and strongly p-Cesàro summability in a paranormed

space.

Let K be a subset of the set of natural numbers N. Then the asymptotic density of K

denoted by δ(K), is defined as δ(K) = limn
1
n |{k ≤ n : k ∈ K}|, where the vertical bars

denote the cardinality of the enclosed set.

A number sequence x = (xk) is said to be statistically convergent to the number L if

for each � > 0, the set K(�) = {k ≤ n: |xk - L| >�} has asymptotic density zero, i.e.,

lim
n

1
n

|{k ≤ n : |xk − L|}| = 0.

In this case we write st-lim x = L.

A number sequence x = (xk) is said to be statistically Cauchy sequence if for every

� > 0, there exists a number N = N(�) such that

lim
n

1
n

∣∣{j ≤ n :
∣∣xj − xN

∣∣ ≥ ε}∣∣ = 0.

The concept of paranorm is a generalization of absolute value (see [17]).
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A paranorm is a function g: X ® ℝ defined on a linear space X such that for all x, y,

z Î X

(P1) g(x) = 0 if x = θ

(P2) g(-x) = g(x)

(P3) g(x + y) ≤ g(x) + g(y)

(P4) If (an) is a sequence of scalars with an ® a0 (n ® ∞) and xn, a Î X with

xn ® a (n ® ∞) in the sense that g(xn - a) ® 0 (n ® ∞), then anxn ® a0a

(n ® ∞), in the sense that g(anxn - a0a) ® 0 (n ® ∞).

A paranorm g for which g(x) = 0 implies x = θ is called a total paranorm on X, and

the pair (X, g) is called a total paranormed space.

Note that each seminorm (norm) p on X is a paranorm (total) but converse need not

be true.

In this article, we define and study the notion of convergence, statistical convergence,

statistical Cauchy, and strong summability by a modulus function in a paranormed

space.

Let (X, g) be a paranormed space.

Definition 1.1. A sequence x = (xk) is said to be convergent (or g-convergent) to the

number ξ in (X, g) if for every ε > 0, there exists a positive integer k0 such that g(xk - ξ)

<ε whenever k ≥ k0. In this we write g-lim x = ξ, and ξ is called the g-limit of x.

Definition 1.2. A sequence x = (xk) is said to be statistically convergent to the num-

ber ξ in (X, g) (or g(st)-convergent) if for each � > 0,

lim
n

1
n

∣∣{k ≤ n : g(xk − ξ) > ε}∣∣ = 0.

In this case, we write g(st)-lim x = ξ. We denote the set of all g(st)-convergent

sequences by Sg.

Definition 1.3. A number sequence x = (xk) is said to be statistically Cauchy

sequence in (X, g) (or g(st)-Cauchy) if for every � > 0 there exists a number N = N(�)

such that

lim
n

1
n

∣∣{j ≤ n : g(xj − xN) ≥ ε}∣∣ = 0.

2 Main results
Theorem 2.1. If a sequence x = (xk) is statistically convergent in (X, g) then g(st)-limit

is unique.

Proof. Suppose that g(st)-lim x = ξ1 and g(st)-lim x = ξ2. Given ε > 0, define the

following sets as:

K1(ε) = {n ∈ N : g(xn − ξ1) ≥ ε/2},
K2(ε) = {n ∈ N : g(xn − ξ2) ≥ ε/2}.

Since g(st)-lim x = ξ1, we have δ(K1(ε)) = 0. Similarly, g(st)-lim x = ξ2 implies that

δ(K2(ε)) = 0. Now, let K(ε) = K1(ε)∪K2(ε). Then δ(K(ε)) = 0 and hence the compliment

KC(ε) is a nonempty set and δ(KC(ε)) = 1. Now if k Î N\K(ε), then we have g(ξ1-ξ2) ≤ g

(xn-ξ1)+g(xn-ξ2) <ε/2+ε/2 = ε.
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Since ε > 0 was arbitrary, we get g(ξ1 - ξ2) = 0 and hence ξ1 = ξ2.

Theorem 2.2. If g-lim x = ξ then g(st)-lim x = ξ but converse need not be true in

general.

Proof. Let g-lim x = ξ. Then for every ε > 0, there is a positive integer N such that

g(xn − ξ) < ε

for all n ≥ N. Since the set A(�):= {k Î N: g(xk - ξ) ≥ ε} ⊂ {1, 2, 3, ...}, δ(A(�)) = 0.

Hence g(st)-lim x = ξ.

The following examle shows that the converse need not be true.

Example 3.1. Let X = ℓ(1/k): = {x = (xk): ∑k |xk|
1/k < ∞} with the paranorm g(x) = (∑k

|xk|
1/k). Define a sequence x = (xk) by

xk :=
{
k, if k = n2,n ∈ N;
0, otherwise;

and write

K(ε) := {k ≤ n : g(xk) ≥ ε}, 0 < ε < 1.

We see that

g(xk) :=
{
k1/k, if k = n2,n ∈ N;
0, otherwise;

and hence

lim
k

g(xk) :=
{
1, if k = n2,n ∈ N;
0, otherwise;

Therefore g-lim x does not exist. On the other hand δ(K(ε)) = 0, that is, g(st)-lim x =

0.

Theorem 2.3. Let g(st)-lim x = ξ1 and g(st) - lim y = ξ2. Then

(i) g(st)-lim(x ± y) = ξ1 ± ξ2,

(ii) g(st)-lim ax = aξ1, a Î ℝ.

Proof. It is easy to prove.

Theorem 2.4. A sequence x = (xk) in (X, g) is statistically convergent to ξ if and only

if there exists a set K = {k1 <k2 < ... <kn < ... } ⊆ N with δ(K) = 1 such that

g(xkn − ξ) → 0(n → ∞).

Proof. Suppose that g(st)-lim x = ξ. Now, write for r = 1, 2, ....

Kr := {n ∈ N : g(xkn − ξ) ≤ 1 − 1
r
},

and

Mr := {n ∈ N : g(xkn − ξ) >
1
r
}.

Then δ(Kr) = 0,

M1 ⊃ M2 ⊃ . . . ⊃ Mi ⊃ Mi+1 ⊃ . . . , (2:4:1)
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and

δ(Mr) = 1, r = 1, 2, . . . (2:4:2)

Now we have to show that for n Î Mr, (xkn) is g-convergent to ξ. On contrary sup-

pose that (xkn) is not g-convergent to ξ. Therefore there is ε > 0 such that

g(xkn − ξ) ≤ ε for infinitely many terms. Let Mε := {n ∈ N : g(xkn − ξ) > ε} and

ε > 1
r , r ∈ N. Then

δ(Mε) = 0, (2:4:3)

and by (2.4.1), Mr ⊂ Mε. Hence δ(Mr) = 0, which contradicts (2.4.2) and we get that

(xkn) is g-convergent to ξ.

Conversely, suppose that there exists a set K = {k1 <k2 <k3 < ... <kn < ...} with δ(K) =

1 such that g − limn→∞xkn = ξ. Then there is a positive integer N such that g(xn - ξ) <ε

for n >N. Put Kε(t): = {n Î N: g(xn-ξ) ≥ ε} and K’: = {kN+1, kN+2, ...}. Then δ(K’) = 1 and

Kε ⊆ N-K’ which implies that δ(Kε) = 0. Hence g(st)-lim x = ξ.

Theorem 2.5. Let (X, g) be a complete paranormed space. Then a sequence x = (xk)

of points in (X, g) is statistically convergent if and only if it is statistically Cauchy.

Proof. Suppose that g(st)-lim x = ξ. Then, we get

δ(A(ε)) = 0, (2:5:1)

where A(ε): = {n Î N: g(xn - ξ) ≥ ε/2}. This implies that

δ(AC(ε)) = δ
({
n ∈ N : g(xn − ξ) < ε

})
= 1.

Let m Î AC(ε). Then g(xm - ξ) <ε/2. Now, let B(ε): = {n Î N: g(xm - xn) ≥ ε}. We

need to show that B(ε) ⊂ A(ε). Let n Î B(ε). Then g(xn - xm) ≥ ε and hence g(xn - ξ) ≥

ε/2, i.e. n Î A(ε). Otherwise, if g(xn - ξ) <ε then

ε ≤ g(xn − xm) ≤ g(xn − ξ) + g(xm − ξ) < ε
2 + ε

2 = ε,

which is not possible. Hence B(ε) ⊂ A(ε), which implies that x = (xk) is g(st)-

convergent.

Conversely, suppose that x = (xk) is g(st)-Cauchy but not g(st)-convergent. Then

there exists M Î N such that δ(G(ε) = 0,

where G(ε): = {n Î N: g(xn - xM) ≥ ε}, and δ(D(ε)) = 0, where D(ε): ={n Î N: g(xn - ξ)

<ε/2}, i.e., δ(DC(ε)) = 1. Since g(xn - xm) ≤ 2g(xn - ξ) <ε,

if g(xn - ξ) <ε/2. Therefore δ(GC(ε)) = 0, i.e., δ(G(ε) = 1, which leads to a contradic-

tion, since x = (xk) was g(st)-Cauchy. Hence x = (xk) must be g(st)-convergent.

3 Strong summability
In this section, we define the notion of strong summability by a modulus function and

establish its relation with statistical convergence in a paranormed space.

Definition 3.1. A sequence x = (xk) is said to be strongly p-Cesàro summable (0 <p < ∞)

to the limit ξ in (X, g) if

lim
n

1
n

n∑
j=1

(
g(xj − ξ)

)p = 0,

and we write it as xk ® ξ[C1, g]p. In this case ξ is called the [C1, g]p-limit of x.
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Theorem 3.1. (a) If 0 <p < ∞ and xk ® ξ[C1, g]p, then x = (xk) is statistically conver-

gent to ξ in (X, g).

(b) If x = (xk) is bounded and statistically convergent to ξ in (X, g) then xk ® ξ[C1,

g]p.

Proof. (a) Let xk ® ξ[C1, g]p, then

0 ← 1
n

n∑
k=1

(
g (xk − ξ)

)p ≥ 1
n

n∑
k = 1(

g (xk − ξ)
)p ≥ ε

(
g (xk − ξ)

)p

≥ εp

n
|Kε| ,

as n ® ∞. That is, limn→∞ 1
n |Kε| = 0 and so δ(Kε) = 0, where Kε: = {k ≤ n: (g(xk - ξ))

p

≥ ε} . Hence x = (xk) is statistically convergent to ξ in (X, g).

(b) Suppose that x = (xk) is bounded and statistically convergent to ξ in (X, g). Then

for ε > 0, we have δ(Kε) = 0. Since x Î l∞, there exists M > 0 such that g(xk - ξ) ≤ M

(k = 1, 2, ...). We have

1
n

n∑
k=1

(
g (xk − ξ)

)p = 1
n

n∑
k = 1
k /∈ Kε

(
g (xk − ξ)

)p + 1
n

n∑
k = 1
k ∈ Kε

(
g (xk − ξ)

)p = S1(n) + S2(n),

where

S1(n) =
1
n

n∑
k = 1
k /∈ Kε

(
g (xk − ξ)

)pand S2(n) =
1
n

n∑
k = 1
k ∈ Kε

(
g (xk − ξ)

)p.

Now if k ∉ Kε then S1(n) <ε
q. For k Î Kε, we have

S2(n) ≤ (
sup g (xk − ξ)

) (|Kε| /n
) ≤ M |Kε| /n → 0,

as n ® ∞, since δ(Kε) = 0. Hence xk ® ξ[C1, g]p.

This completes the proof of the theorem.

Recall that a modulus f is a function from [0, ∞) to [0, ∞) such that (i) f(x) = 0 if and

only if x = 0, (ii) f(x + y) ≤ f(x) + f(y) for all x, y ≥ 0, (iii) f is increasing, and (iv) f is

continuous from the right at 0.

Now we define the following:

Definition 3.2. Let f be a modulus. we say that a sequence x = (xk) is strongly

p-Cesàro summable with respect to f to the limit ξ in (X, g) if

lim
n

1
n

n∑
j=1

f
(
(g(xj − ξ))p

)
= 0,

(0 <p < ∞). In this case we write xk ® ξ(w(f, g, p)).

As in [13], it is easy to prove the following:

Theorem 3.2. (a) Let f be any modulus and xk ® ξ(w(f, g, p)). Then x = (xk) is statis-

tically convergent to ξ in (X, g).

(b) Sg = w(f, g, p) If and only if f is bounded.
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