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Abstract

The integral operator Jmp (λ, �)(λ > 0; � ≥ 0; p ∈ N;m ∈ N0 = N ∪ {0}, where N =
{1,2,...}) for functions of the form f (z) = zp +

∞∑
k=p+1

akzk which are analytic and p-valent
in the open unit disc U = {z Î ℂ: |z| < 1} was introduced by El-Ashwah and Aouf.
The object of the present article is to drive interesting argument results of p-valent
analytic functions defined by this integral operator.
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1 Introduction
Let A(p) denotes the class of functions of the form:

f (z) = zp +
∞∑

k=p+1

akz
k (p ∈ N = {1, 2, . . .}), (1:1)

which are analytic and p-valent in the open unit disc U = {z Î ℂ: |z| < 1}. We note

that A(1) = A, the class of univalent functions.

In [1], Catas defined the linear operator Jmp (λ, �)f (z) as follows:

Imp (λ, �)f (z) = zp +
∞∑

k=p+1

(
p + � + λ(k − p)

p + �

)m

akz
k

(λ ≥ 0; � ≥ 0; p ∈ N;m ∈ N0).

(1:2)

Also, El-Ashwah and Aouf [2] defined the integral operator Jmp (λ, �)f (z) as follows:

Jmp (λ, �)f (z) = zp +
∞∑

k=p+1

(
p + �

p + � + λ(k − p)

)m

akz
k

(λ ≥ 0; � ≥ 0; p ∈ N;m ∈ N0).

(1:3)

The operator Jmp (λ, �)f (z) was studied by Srivastava et al. [3] and Aouf et al. [4].

From (1.2) and (1.3), we observe that J−m
p (λ, �)f (z) = Imp (λ, �)f (z)(m > 0), so the

operator Jmp (λ, �)f (z) is well-defined for l ≥ 0, ℓ ≥ 0, p Î N and m Î ℤ = {..., -2,

-1,0,1,2,...}.
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From (1.3), it is easy to verify that (see, [2])

λz(Jm+1
p (λ, �)f (z))′ = (� + p)Jmp (λ, �)f (z) − [� + p(1 − λ)]Jm+1

p (λ, �)f (z)

(λ > 0; � ≥ 0; p ∈ N;m ∈ N0).
(1:4)

We note that:

(i) Jm1 (λ, 0)f (z) = I−m
λ f (z)(m ≥ 0) (see Patel [5]);

(ii) Jαp (1, 1)f (z) = Iαp f (z)(α > 0) (see Shams et al. [6]);

(iii) Jmp (1, 1)f (z) = Dmf (z) (see Patel and Sahoo [7]);

(iv) Jm1 (λ, 0)f (z) = Imλ f (z) (see Al-Oboudi and Al-Qahtani [8]);

(v) Jα1(1, 1)f (z) = Iαf (z)(α > 0) (see Jung et al. [9]);

(vi) Jm1 (1, 1)f (z) = Imf (z) (see Flett [10]);

(vii) Jm1 (1, 0)f (z) = Lmf (z) (see, Salagean [11]).

Also we note that:

(i) Jmp (1, 0)f (z) = Jmp f (z) = zp +
∞∑

k=p+1

(
p
k

)m

akzk(p ∈ N;m ∈ N0; z ∈ U);

(ii) Jmp (1, �)f (z) = Jmp (�)f (z) = zp +
∞∑

k=p+1

(
p + �

k + �

)m

akzk

(p ∈ N;m ∈ N0; � ≥ 0; z ∈ U).

In this article, we drive interesting argument results of p-valent analytic functions

defined by the integral operator Jmp (λ, �)f (z).

2 Main results
In order to prove our main results, we recall the following lemma.

Lemma 1 [12]. Let h(z) be analytic in U with h(0) ≠ 0 (z Î U). Further suppose that

a, b Î ℝ+ = (0, ∞) and

∣∣arg(h(z) + βzh′(z))
∣∣ <

π

2

(
α +

2
π

arctan(βα)
)

(α,β > 0), (2:1)

then

∣∣arg(h(z))∣∣ <
π

2
α (z ∈ U). (2:2)

Unless otherwise mentioned we shall assume throughout the article that a, g, δ Î ℝ+,

l > 0, ℓ ≥ 0, p Î N, m Î ℤ and the powers are understood as principle values.

Theorem 1. Let g(z) Î A(p). Suppose f(z) Î A(p) satisfies the following condition∣∣∣∣∣arg
({

Jmp (λ, �)f (z)

Jmp (λ, �)g(z)

}γ {
1 +

δ

λ

(
Jm−1
p (λ, �)f (z)

Jmp (λ, �)f (z)
− Jm−1

p (λ, �)g(z)

Jmp (λ, �)g(z)

)})∣∣∣∣∣
<

π

2

(
α +

2
π
arctan

[
δ

γ (� + p)
α

]) (2:3)

then∣∣∣∣∣arg
{
Jmp (λ, �)f (z)

Jmp (λ, �)g(z)

}γ ∣∣∣∣∣ <
π

2
α (z ∈ U). (2:4)
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Proof. Define a function

h(z) =

{
Jmp (λ, �)f (z)

Jmp (λ, �)g(z)

}γ

, γ �= 0 (2:5)

then h(z) = 1 + c1z + ..., is analytic in U with h(0) = 1 and h’(0) ≠ 0.

Differentiating (2.5) logarithmically with respect to z and multiplying by z, we have

1
γ

zh′(z)
h(z)

=

{
z(Jmp (λ, �)f (z))

′

Jmp (λ, �)f (z)
− z(Jmp (λ, �)g(z))

′

Jmp (λ, �)g(z)

}
. (2:6)

Using (1.4) in (2.6), we obtain

h(z)+
δ

γ (� + p)
zh′(z) =

{
Jmp (λ, �)f (z)

Jmp (λ, �)g(z)

}γ {
1 +

δ

λ

(
Jm−1
p (λ, �)f (z)

Jmp (λ, �)f (z)
− Jm−1

p (λ, �)g(z)

Jmp (λ, �)g(z)

)}
. (2:7)

By using Lemma 1, the proof of Theorem 1 is completed.

Remark 1. Putting l = δ = p = 1, ℓ = m = 0, and g(z) = z, in Theorem 1, we obtain

the result obtained by Lashin [12, Theorem 2.2].

Putting g = 1 and g(z) = zp in Theorem 1, we obtain the following corollary:

Corollary 1. If f(z) Î A(p) satisfies the following condition∣∣∣∣∣arg
{

δ

λ

Jm−1
p (λ, �)f (z)

zp
+ (1 − δ

λ
)
Jmp (λ, �)f (z)

zp

}∣∣∣∣∣ <
π

2

(
α +

2
π
arctan

[
δ

(� + p)
α

])
(2:8)

then∣∣∣∣∣arg
(
Jmp (λ, �)f (z)

zp

)∣∣∣∣∣ <
π

2
α (z ∈ U). (2:9)

Next, putting p = 1 in Corollary 1, we obtain the following corollary:

Corollary 2. If f(z) Î A satisfies the following condition∣∣∣∣∣arg
{

δ

λ

Jm−1
1 (λ, �)f (z)

z
+

(
1 − δ

λ

)
Jm1 (λ, �)f (z)

z

}∣∣∣∣∣ <
π

2

(
α +

2
π
arctan

[
δ

(� + 1)
α

])
(2:10)

then∣∣∣∣arg
(
Jm1 (λ, �)f (z)

z

)∣∣∣∣ <
π

2
α (z ∈ U). (2:11)

Remark 2. Putting l = 1 and ℓ = m = 0 in Corollary 2 we obtain the result obtained

by Lashin [12, Example 2.2].

Finally, putting g = 1 and f(z) = zp in Theorem 1, we obtain the following corollary:

Corollary 3. Let
zp

Jmp (λ, �)g(z)
�= 0, g(z) ∈ A(p) and δ ≥ 0. Suppose that

∣∣∣∣∣arg
{(

1 +
δ

λ

)
zp

Jmp (λ, �)g(z)
− δ

λ

Jm−1
p (λ, �)g(z)

Jmp (λ, �)g(z)

(
zp

Jmp (λ, �)g(z)

)}∣∣∣∣∣
<

π

2

(
α +

2
π
arctan

[
δ

(� + p)
α

]) (2:12)
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then∣∣∣∣∣arg
(

zp

Jmp (λ, �)g(z)

)∣∣∣∣∣ <
π

2
α. (2:13)

Theorem 2. Let 0 <δ ≤ 1. Suppose f(z) Î A(p) satisfies the following condition∣∣∣∣∣arg
(
Jmp (λ, �)f (z)

zp

)∣∣∣∣∣ <
π

2

(
α +

2
π
arctan

[
δ

γ (� + p)
α

])
(z ∈ U) (2:14)

then we have∣∣∣∣∣∣∣arg
⎛
⎜⎝γ (� + p)

δ
z
−

γ (� + p)
δ

z∫
0

t

γ (� + p) − δ(p + 1)
δ Jmp (λ, �)f (t)dt

⎞
⎟⎠

∣∣∣∣∣∣∣ <
π

2
α. (2:15)

Proof. Consider the function

h(z) =
γ (� + p)

δ
z
−

γ (� + p)
δ

z∫
0

t

γ (� + p) − δ(p + 1)
δ Jmp (λ, �)f (t)dt (2:16)

then h(z) = 1 + c1z + ..., is analytic in U with h(0) = 1 and h’(0) ≠ 0.

Differentiating (2.16) with respect to z, we have

h(z) +
δ

γ (� + p)
zh′(z) =

Jmp (λ, �)f (z)

zp
. (2:17)

By using Lemma 1, the proof of Theorem 2 is completed.

Putting p = δ = g = 1 and m = 0 in Theorem 2 we obtain the following corollary:

Corollary 4. Let f(z) Î A satisfies the following condition∣∣∣∣arg
(
f (z)
z

)∣∣∣∣ <
π

2

(
α +

2
π
arctan

[ α

� + 1

])
(2:18)

then∣∣∣∣∣∣arg
⎛
⎝ � + 1
z(�+1)

z∫
0

t(�−1)f (t)dt

⎞
⎠

∣∣∣∣∣∣ <
π

2
α(z ∈ U). (2:19)

Remark 3. (i) Putting ℓ = 0 in Corollary 4 we obtain the result obtained by Goyal

and Goswami [13, Corollary 3.6].

(ii) By specifying the parameters p, l, ℓ, and m we obtain various results for different

operators reminded in the introduction.
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