Open Access

New inequalities for hyperbolic functions and their applications

Ling Zhu^{*}

*Correspondence: zhuling0571@163.com Department of Mathematics, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P.R. China

Abstract

In this paper, we obtain some new inequalities in the exponential form for the whole of the triples about the four functions $\{1, (\sinh t)/t, \exp(t \coth t - 1), \cosh t\}$. Then we generalize some well-known inequalities for the arithmetic, geometric, logarithmic, and identric means to obtain analogous inequalities for their *p*th powers, where *p* > 0. **MSC:** 26E60; 26D07

Keywords: hyperbolic sine; hyperbolic cosine; hyperbolic cotangent; geometric mean; logarithmic mean; identric mean; arithmetic mean; best constants

1 Introduction

Let $\sinh t$, $\cosh t$, and $\coth t$ be the hyperbolic sine, hyperbolic cosine, and hyperbolic cotangent, respectively. It is well known that (see [1-6])

$$1 < \frac{\sinh t}{t} < e^{t \coth t - 1} < \cosh t \tag{1.1}$$

holds for all $t \neq 0$.

In the recent paper [7], we have established the following Cusa-type inequalities of exponential type for the triple $\{1, (\sinh t)/t, \cosh t\}$ described as follows.

Theorem 1.1 (Cusa-type inequalities [7, Part (i) of Theorem 1.1]) Let $p \ge 4/5$, and $t \ne 0$. Then the double inequality

$$(1-\lambda) + \lambda(\cosh t)^p < \left(\frac{\sinh t}{t}\right)^p < (1-\eta) + \eta(\cosh t)^p \tag{1.2}$$

holds if and only if $\eta \ge 1/3$ *and* $\lambda \le 0$ *.*

On the other hand, the author of this paper [8] obtains the following inequalities of exponential type for the triple $\{1, \exp(t \coth t - 1), \cosh t\}$.

Theorem 1.2 ([8, Theorem 2]) Let p > 0, and $t \neq 0$. Then (1) if 0 , the double inequality

$$\alpha(\cosh t)^{p} + (1 - \alpha) < e^{p(t \coth t - 1)} < \beta(\cosh t)^{p} + (1 - \beta)$$
(1.3)

holds if and only if $\alpha \leq 2/3$ and $\beta \geq (2/e)^p$;

© 2012 Zhu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(2) if $p \ge 2$, the double inequality

$$\alpha(\cosh t)^p + (1-\alpha) < e^{p(t\coth t-1)} < \beta(\cosh t)^p + (1-\beta)$$

$$(1.4)$$

holds if and only if $\alpha \leq (2/e)^p$ and $\beta \geq 2/3$.

Next, we do the work for each of the triples $\{(\sinh t)/t, \exp(t \coth t - 1), \cosh t\}$ and $\{1, (\sinh t)/t, \exp(t \coth t - 1)\}$, and obtain the following two new results.

Theorem 1.3 *Let* 0 ,*and* $<math>t \ne 0$. *Then*

$$\alpha(\cosh t)^p + (1-\alpha)\left(\frac{\sinh t}{t}\right)^p < e^{p(t\coth t-1)} < \beta(\cosh t)^p + (1-\beta)\left(\frac{\sinh t}{t}\right)^p \tag{1.5}$$

holds if and only if $\alpha \leq 1/2$ and $\beta \geq (2/e)^p$.

Theorem 1.4 *Let* $p \ge 286/693$, *and* $t \ne 0$. *Then*

$$\alpha + (1-\alpha)e^{p(t\coth t-1)} < \left(\frac{\sinh t}{t}\right)^p < \beta + (1-\beta)e^{p(t\coth t-1)}$$
(1.6)

holds if and only if $\beta \leq 1/2$ *and* $\alpha \geq 1$ *.*

In this paper, we shall give the elementary proofs of Theorem 1.3 and Theorem 1.4. In the last section, we apply Theorems 1.1-1.4 to obtain some new results for four classical means.

2 Lemmas

Lemma 2.1 ([9–11]) Let $f,g:[a,b] \to \mathbb{R}$ be two continuous functions which are differentiable on (a, b). Further, let $g' \neq 0$ on (a, b). If f'/g' is increasing (or decreasing) on (a, b), then the functions $(f(x) - f(b^{-}))/(g(x) - g(b^{-}))$ and $(f(x) - f(a^{+}))/(g(x) - g(a^{+}))$ are also increasing (or decreasing) on (a, b).

Lemma 2.2 Let $t \in (0, +\infty)$. Then the inequality

$$D(t) \triangleq t \sinh^5 t + 2t \sinh^3 t + t^4 \cosh t - \sinh^4 t \cosh t - t^3 \sinh^3 t - 2t^3 \sinh t > 0$$

holds.

Proof Using the power series expansions of the functions $\sinh^5 t$, $\sinh^3 t$, $\cosh t$, $\sinh^4 t \times$ cosh *t*, and sinh *t*, we have

-

$$D(t) = \frac{1}{16}t(\sinh 5t - 5\sinh 3t + 10\sinh t) + \frac{1}{2}t(\sinh 3t - 3\sinh t) + t^{4}\cosh t$$
$$-\frac{1}{16}(\cosh 5t - 3\cosh 3t + 2\cosh t) - \frac{1}{4}t^{3}(\sinh 3t - 3\sinh t) - 2t^{3}\sinh t$$
$$= \frac{1}{16}\sum_{n=0}^{\infty}\frac{5^{2n+1} - 5\cdot 3^{2n+1} + 10}{(2n+2)!}t^{2n+1} + \frac{1}{2}\sum_{n=0}^{\infty}\frac{3^{2n+1} - 3}{(2n+1)!}t^{2n+2} + \sum_{n=0}^{\infty}\frac{1}{(2n)!}t^{2n+4}$$

$$-\frac{1}{16}\sum_{n=0}^{\infty}\frac{5^{2n}-3\cdot 3^{2n}+2}{(2n)!}t^{2n}-\frac{1}{4}\sum_{n=0}^{\infty}\frac{3^{2n+1}-3}{(2n+1)!}t^{2n+4}-2\sum_{n=0}^{\infty}\frac{1}{(2n+1)!}t^{2n+4}$$
$$=\frac{1}{16}\sum_{n=3}^{\infty}\frac{l_n}{(2n+4)!}t^{2n+4},$$

where

$$\begin{split} l_n &= (2n+4) \left(5^{2n+3} - 5 \cdot 3^{2n+3} + 10 \right) + 8(2n+4) \left(3^{2n+3} - 3 \right) \\ &+ 16(2n+4)(2n+3)(2n+2)(2n+1) - \left(5^{2n+4} - 3 \cdot 3^{2n+4} + 2 \right) \\ &- 4(2n+4)(2n+3)(2n+2) \left(3^{2n+1} - 3 \right) - 32(2n+4)(2n+3)(2n+2) \\ &= (250n-125)25^n + \left(279 - 462n - 432n^2 - 96n^3 \right) 9^n \\ &+ 256n^4 + 1,120n^3 + 1,520n^2 + 532n - 154, \quad n = 3, 4, \ldots. \end{split}$$

Using a basic differential method, we can easily prove

$$f(x) \triangleq (250x - 125)25^{x} + (279 - 462x - 432x^{2} - 96x^{3})9^{x} + 256x^{4} + 1,120x^{3} + 1,520x^{2} + 532x - 154 > 0$$

on $[3, \infty)$. This leads to $l_n > 0$ for n = 3, 4, ..., and <math>D(t) > 0. So, the proof of Lemma 2.2 is complete.

3 Proof of Theorem 1.3

Let

$$F(t) \equiv \frac{\left(\frac{t}{\sinh t}e^{t\coth t-1}\right)^p - 1}{(t\coth t)^p - 1} = \frac{f_1(t) - f_1(0^+)}{g_1(t) - g_1(0^+)},$$

where $f_1(t) = (\frac{t}{\sinh t}e^{t\coth t-1})^p$ and $g_1(t) = (t\coth t)^p$. Then

$$k_1(t) \triangleq \frac{f_1'(t)}{g_1'(t)} = \frac{e^{p(t\coth t-1)}}{(\cosh t)^{p-1}} \cdot \frac{\sinh^2 t - t^2}{\sinh t(\sinh t\cosh t - t)}.$$

We compute

$$k'_{1}(t) = \frac{e^{p(t \coth t - 1)}}{(\cosh t)^{p}} \cdot \frac{u_{1}(t)}{(\sinh t)^{3}(\sinh t \cosh t - t)^{2}},$$

where

$$u_{1}(t) = 2t^{2} \sinh^{4} t \cosh t + \sinh^{4} t \cosh t - 4t \sinh^{5} t$$

- $3t \sinh^{3} t + 3t^{2} \sinh^{2} t \cosh t - t^{3} \sinh t$
- $p(t \sinh^{5} t + 2t \sinh^{3} t + t^{4} \cosh t - \sinh^{4} t \cosh t - t^{3} \sinh^{3} t - 2t^{3} \sinh t)$
= $2t^{2} \sinh^{4} t \cosh t + \sinh^{4} t \cosh t - 4t \sinh^{5} t$
- $3t \sinh^{3} t + 3t^{2} \sinh^{2} t \cosh t - t^{3} \sinh t - pD(t).$

If 0 , by Lemma 2.2 we have

$$5u_1(t) \ge 10t^2 \sinh^4 t \cosh t + 13 \sinh^4 t \cosh t - 28t \sinh^5 t$$
$$- 46t \sinh^3 t + 30t^2 \sinh^2 t \cosh t + 6t^3 \sinh t - 8t^4 \cosh t + 8t^3 \sinh^3 t$$
$$= \sum_{n=3}^{\infty} \frac{h_n}{16(2n+4)!} t^{2n+4},$$

where

$$\begin{split} h_n &= 10(2n+4)(2n+3)\left(5^{2n+2}-3\cdot3^{2n+2}+2\right) + 13\left(5^{2n+4}-3\cdot3^{2n+4}+2\right) \\ &\quad -28(2n+4)\left(5^{2n+3}-5\cdot3^{2n+3}+10\right) - 184(2n+4)\left(3^{2n+3}-3\right) \\ &\quad +120(2n+4)(2n+3)\left(3^{2n+2}-1\right) + 96(2n+4)(2n+3)(2n+2)(2n+1)2n \\ &\quad -128(2n+4)(2n+3)(2n+2)(2n+1) + 96(2n+4)(2n+3)(2n+2)\left(3^{2n}-1\right) \\ &= \left(1,000n^2-3,500n-2,875\right)25^n + \left(768n^3+6,696n^2+13,956n+4,113\right)9^n \\ &\quad + (2n+4)(2n+3)(2n+2)(2n+1)(192n-128) \\ &\quad - 96(2n+4)(2n+3)(2n+2) - 100(2n+4)(2n+3) + 272(2n+4) + 26 \\ &> 0 \end{split}$$

for n = 3, 4, ...

We have $u_1(t) > 0$ for $0 . So, <math>k'_1(t) > 0$ for t > 0, and $f'_1(t)/g'_1(t) = k_1(t)$ is increasing on $(0, +\infty)$. Hence, F(t) is increasing on $(0, +\infty)$ by Lemma 2.1. At the same time, $\lim_{t\to 0^+} F(t) = 1/2$ and $\lim_{t\to +\infty} F(t) = (2/e)^p$. So, the proof of Theorem 1.3 is complete.

4 Proof of Theorem 1.4

Let

$$S(t) \equiv \frac{(\frac{\sinh t}{t}e^{1-t\coth t})^p - 1}{e^{p(1-t\coth t)} - 1} = \frac{f_2(t) - f_2(0^+)}{g_2(t) - g_2(0^+)},$$

where $f_2(t) = (\frac{\sinh t}{t}e^{1-t\coth t})^p$ and $g_2(t) = e^{p(1-t\coth t)}$. Then

$$k_2(t) \triangleq \frac{f_2'(t)}{g_2'(t)} = \left(\frac{\sinh t}{t}\right)^{p-1} \frac{(\sinh t)^3 - t^2 \sinh t}{t^2(\sinh t \cosh t - t)},$$

and

$$k'_{2}(t) = \left(\frac{\sinh t}{t}\right)^{p-2} \frac{u_{2}(t)}{t^{4}(\sinh t \cosh t - t)^{2}},$$

where

$$u_{2}(t) = \left[t \sinh^{6} t + 2t \sinh^{4} t - \sinh^{5} t \cosh t - t^{3} \sinh^{4} t - 2t^{3} \sinh^{2} t + \frac{t^{4}}{2} \sinh 2t \right] (p-1)$$

$$+ \left(t \sinh^{6} t + 5t \sinh^{4} t + t^{3} \sinh^{4} t - t^{3} \sinh^{2} t - 3t^{2} \sinh^{3} t \cosh t + t^{4} \sinh t \cosh t - 2 \sinh^{5} t \cosh t\right)$$
$$= \sum_{n=3}^{\infty} \left[c_{n}(p-1) + d_{n}\right] t^{2n+5} = \sum_{n=3}^{\infty} c_{n} \left[p - \left(1 - \frac{d_{n}}{c_{n}}\right)\right] t^{2n+5} = \sum_{n=3}^{\infty} c_{n} \left[p - e_{n}\right] t^{2n+5},$$

where $e_n = 1 - (d_n/c_n)$ and

$$\begin{split} c_n &= \frac{1}{2^5} \frac{6^{2n+4} - 6 \cdot 4^{2n+4} + 15 \cdot 2^{2n+4}}{(2n+4)!} + \frac{1}{2^2} \frac{4^{2n+4} - 4 \cdot 2^{2n+4}}{(2n+4)!} - \frac{1}{2^3} \frac{4^{2n+2} - 4 \cdot 2^{2n+2}}{(2n+2)!} \\ &- \frac{1}{2^5} \frac{6^{2n+5} - 4 \cdot 4^{2n+5} + 5 \cdot 2^{2n+5}}{(2n+5)!} - \frac{2^{2n+2}}{(2n+2)!} + \frac{1}{2} \frac{2^{2n+1}}{(2n+1)!} > 0, \quad n = 3, 4, \dots, \\ d_n &= \frac{1}{2^5} \frac{6^{2n+4} - 6 \cdot 4^{2n+4} + 15 \cdot 2^{2n+4}}{(2n+4)!} + \frac{5}{2^3} \frac{4^{2n+4} - 4 \cdot 2^{2n+4}}{(2n+4)!} + \frac{1}{2^3} \frac{4^{2n+2} - 4 \cdot 2^{2n+2}}{(2n+2)!} \\ &- \frac{1}{2^4} \frac{6^{2n+5} - 4 \cdot 4^{2n+5} + 5 \cdot 2^{2n+5}}{(2n+5)!} - \frac{3}{2^3} \frac{4^{2n+3} - 2 \cdot 2^{2n+3}}{(2n+3)!} + \frac{1}{2} \frac{2^{2n+1}}{(2n+1)!} \\ &- \frac{1}{2} \frac{2^{2n+2}}{(2n+2)!}, \quad n = 3, 4, \dots. \end{split}$$

Let

$$\begin{split} j(n) &= -12(2n+5) \left(4^{2n+4} - 4 \cdot 2^{2n+4} \right) + \left(6^{2n+5} - 4 \cdot 4^{2n+5} + 5 \cdot 2^{2n+5} \right) \\ &\quad - 8(2n+5)(2n+4)(2n+3) \left(4^{2n+2} - 4 \cdot 2^{2n+2} \right) \\ &\quad - 16(2n+5)(2n+4)(2n+3) 2^{2n+2} + 12(2n+5)(2n+4) \left(4^{2n+3} - 2 \cdot 2^{2n+3} \right) \\ &= 7,776 \cdot 36^n + \left[768(2n+5)(2n+4) - 128(2n+5)(2n+4)(2n+3) \right] \\ &\quad - 3,072(2n+5) - 4,096 \right] 16^n \\ &\quad + \left[64(2n+5)(2n+4)(2n+3) - 192(2n+5)(2n+4) + 768(2n+5) + 160 \right] 4^n, \\ i(n) &= (2n+5) \left(6^{2n+4} - 6 \cdot 4^{2n+4} + 15 \cdot 2^{2n+4} \right) + 8(2n+5) \left(4^{2n+4} - 4 \cdot 2^{2n+4} \right) \\ &\quad - \left(6^{2n+5} + 4 \cdot 4^{2n+5} - 5 \cdot 2^{2n+5} \right) - 16(2n+5)(2n+4)(2n+3) \left(4^{2n+1} - 2^{2n+2} \right) \\ &\quad - 32(2n+5)(2n+4)(2n+3)2^{2n+2} + 32(2n+5)(2n+4)(2n+3)(2n+2)2^{2n} \\ &= (2,592n-1,296) \cdot 36^n + \left[512(2n+5) + 4,096 - 64(2n+5)(2n+4)(2n+3) \right] 16^n \\ &\quad + \left[32(2n+5)(2n+4)(2n+3)(2n+2) - 64(2n+5)(2n+4)(2n+3) \right] \\ &\quad - 272(2n+5) - 160 \right] 4^n. \end{split}$$

Then

$$e_n = 1 - \frac{d_n}{c_n} = \frac{j(n)}{i(n)}.$$

Let $\Delta(n) = 286i(n) - 693j(n)$. Then

$$\Delta(n) = (741,313n - 5,759,424)36^{n} + 16^{n} [2,275,328(2n + 5) + 4,009,984 + 70,400(2n + 5)(2n + 4)(2n + 3) - 532,224(2n + 5)(2n + 4)]$$

 $+ 4^{n} [9,152(2n+5)(2n+4)(2n+3)(2n+2) - 62,656(2n+5)(2n+4)(2n+3) + 133,056(2n+5)(2n+4) - 610,016(2n+5) - 156,640].$

First, we check that $\Delta(n) > 0$ for n = 3, 4, 5, 6, 7; second, we can easily obtain that $\Delta(n) > 0$ for $n \ge 8$. So, we have that $\Delta(n) > 0$ for n = 3, 4, ...

So, we have $u_2(t) > 0$ for $p \ge 286/693$. So, $k'_2(t) > 0$ for t > 0, and $f'_2(t)/g'_2(t) = k_2(t)$ is increasing on $(0, +\infty)$. Hence, S(t) is increasing on $(0, +\infty)$ by Lemma 2.1 when $p \ge 286/693$. At the same time, $\lim_{t\to 0^+} S(t) = 1/2$ and $\lim_{t\to +\infty} S(t) = 1$. So, the proof of Theorem 1.4 is complete.

5 Applications of theorems

In this section, we assume that *x* and *y* are two different positive numbers. Let A(x, y), G(x, y), L(x, y), and I(x, y) be the arithmetic, geometric, logarithmic, and identric means, respectively. Without loss of generality, we set 0 < x < y. By the transformation $t = (\log(y/x))/2$, we can compute and obtain

$$\frac{L(x, y)}{G(x, y)} = \frac{\sinh t}{t},$$
$$\frac{I(x, y)}{G(x, y)} = e^{t \coth t - 1},$$
$$\frac{A(x, y)}{G(x, y)} = \cosh t,$$

where t > 0.

Now, the four results in Section 1 are equivalent to the following ones for four classical means.

Theorem 5.1 Let $p \ge 4/5$, and x and y be positive real numbers with $x \ne y$. Then

$$\alpha A^{p}(x,y) + (1-\alpha)G^{p}(x,y) < L^{p}(x,y) < \beta A^{p}(x,y) + (1-\beta)G^{p}(x,y)$$
(5.1)

holds if and only if $\alpha \leq 0$ *and* $\beta \geq 1/3$ *.*

Theorem 5.1 can deduce the following one, which is from Zhu [8].

Corollary 5.2 ([8, Theorem 1]) Let $p \ge 1$, and x and y be positive real numbers with $x \ne y$. Then

$$\alpha A^{p}(x,y) + (1-\alpha)G^{p}(x,y) < L^{p}(x,y) < \beta A^{p}(x,y) + (1-\beta)G^{p}(x,y)$$
(5.2)

holds if and only if $\alpha \leq 0$ and $\beta \geq 1/3$.

When letting p = 1 in Theorem 5.1, one can obtain the result (see [12–14], [15, Theorem 1]).

Corollary 5.3 Let x and y be positive real numbers with $x \neq y$. Then

$$\alpha A(x, y) + (1 - \alpha)G(x, y) < L(x, y) < \beta A(x, y) + (1 - \beta)G(x, y)$$
(5.3)

holds if and only if $\alpha \leq 0$ *and* $\beta \geq 1/3$ *.*

When letting $\beta = 1/3$ in the right-hand inequality of (5.3), one can obtain the well-known inequality by Carlson [16]

$$L(x,y) < \frac{1}{3}A(x,y) + \frac{2}{3}G(x,y).$$
(5.4)

Theorem 5.4 Let p > 0. Then

(1) *if* 0 ,*the double inequality*

$$\alpha A^{p}(x,y) + (1-\alpha)G^{p}(x,y) < I^{p}(x,y) < \beta A^{p}(x,y) + (1-\beta)G^{p}(x,y)$$
(5.5)

holds if and only if $\alpha \le 2/3$ and $\beta \ge (2/e)^p$; (2) if $p \ge 2$, the double inequality

$$\alpha A^{p}(x,y) + (1-\alpha)G^{p}(x,y) < I^{p}(x,y) < \beta A^{p}(x,y) + (1-\beta)G^{p}(x,y)$$
(5.6)

holds if and only if $\alpha \leq (2/e)^p$ and $\beta \geq 2/3$.

The part (2) of Theorem 5.4 is a result of Trif [17].

When letting p = 2 and $\beta = 2/3$ in the right-hand inequality of (5.6), one can obtain the following result, which is from Sándor and Trif [18].

$$I^{2}(x,y) < \frac{2}{3}A^{2}(x,y) + \frac{1}{3}G^{2}(x,y).$$
(5.7)

When letting p = 1 in the double inequality (5.5), one can obtain the following result (see [12], [15, Theorem 2]).

Corollary 5.5 Let x and y be positive real numbers with $x \neq y$. Then

$$\alpha A(x, y) + (1 - \alpha)G(x, y) < I(x, y) < \beta A(x, y) + (1 - \beta)G(x, y)$$
(5.8)

holds if and only if $\alpha \leq 2/3$ *and* $\beta \geq 2/e$ *.*

When letting $\alpha = 2/3$ in the left-hand inequality in (5.8), one can obtain the following result, which is from Sándor [19].

$$\frac{2}{3}A(x,y) + \frac{1}{3}G(x,y) < I(x,y).$$
(5.9)

Theorem 5.6 Let $0 , x and y be positive real numbers with <math>x \ne y$. Then

$$\alpha A^{p}(x, y) + (1 - \alpha)L^{p}(x, y) < I^{p}(x, y) < \beta A^{p}(x, y) + (1 - \beta)L^{p}(x, y)$$
(5.10)

holds if and only if $\alpha \leq 1/2$ and $\beta \geq (2/e)^p$.

Theorem 5.6 can deduce the following result (see Zhu [15]).

Corollary 5.7 ([15, Theorem 3]) *Let x and y be positive real numbers with* $x \neq y$ *. Then*

$$\alpha A(x, y) + (1 - \alpha)L(x, y) < I(x, y) < \beta A(x, y) + (1 - \beta)L(x, y)$$
(5.11)

holds if and only if $\alpha \leq 1/2$ *and* $\beta \geq 2/e$ *.*

When letting $\alpha = 1/2$ in the left-hand inequality of (5.11), one can obtain the following result, which is from Sándor [4, 19].

$$I(x,y) > \frac{A(x,y) + L(x,y)}{2}.$$
(5.12)

Finally, we give the bounds for $L^p(x, y)$ in terms of $G^p(x, y)$ and $I^p(x, y)$, and obtain the following new result.

Theorem 5.8 Let x and y be positive real numbers with $x \neq y$, and $p \ge 286/693$. Then

$$\alpha G^{p}(x, y) + (1 - \alpha)I^{p}(x, y) < L^{p}(x, y) < \beta G^{p}(x, y) + (1 - \beta)I^{p}(x, y)$$
(5.13)

holds if and only if $\beta \leq 1/2$ *and* $\alpha \geq 1$ *.*

Theorem 5.8 can deduce a result of Zhu [15]:

Corollary 5.9 ([15, Theorem 4]) Let x and y be positive real numbers with $x \neq y$. Then

$$\alpha G(x, y) + (1 - \alpha)I(x, y) < L(x, y) < \beta G(x, y) + (1 - \beta)I(x, y)$$
(5.14)

holds if and only if $\beta \leq 1/2$ *and* $\alpha \geq 1$ *.*

Obviously, the right-hand side of (5.14) is an extension of the following inequality:

$$L(x,y) < \frac{1}{2} (G(x,y) + I(x,y)),$$
(5.15)

which was given by Alzer [5].

Competing interests

The author declares that they have no competing interests.

Received: 24 April 2012 Accepted: 28 November 2012 Published: 18 December 2012

References

- 1. Mitrinović, DS: Analytic Inequalities. Springer, Berlin (1970)
- 2. Ostle, B, Terwilliger, HL: A comparison of two means. Proc. Mont. Acad. Sci. 17, 69-70 (1957)
- 3. Leach, EB, Sholander, MC: Extended mean values. J. Math. Anal. Appl. 92, 207-223 (1983)
- 4. Sándor, J: On the identric and logarithmic means. Aequ. Math. 40, 261-270 (1990)
- 5. Alzer, H: Ungleichungen für Mittelwerte. Arch. Math. 47, 422-426 (1986)
- 6. Stolarsky, KB: The power mean and generalized logarithmic means. Am. Math. Mon. 87, 545-548 (1980)
- 7. Zhu, L: Inequalities for hyperbolic functions and their applications. J. Inequal. Appl. 2010, Article ID 130821 (2010)
- 8. Zhu, L: Some new inequalities for means in two variables. Math. Inequal. Appl. 11(3), 443-448 (2008)
- 9. Vamanamurthy, K, Vuorinen, M: Inequalities for means. J. Math. Anal. Appl. 183, 155-166 (1994)
- Anderson, GD, Qiu, S-L, Vamanamurthy, MK, Vuorinen, M: Generalized elliptic integral and modular equations. Pac. J. Math. 192, 1-37 (2000)
- 11. Pinelis, I: L'Hospital type results for monotonicity, with applications. J. Inequal. Pure Appl. Math. 3, article 5 (2002) (electronic)

- 12. Alzer, H, Qiu, S-L: Inequalities for means in two variables. Arch. Math. 80, 201-215 (2003)
- Zhu, L, Wu, JH: The weighted arithmetic and geometric means of the arithmetic mean and the geometric mean. J. Math. Technol. 14, 150-154 (1998) (in Chinese)
- 14. Zhu, L: From chains for mean value inequalities to Mitrinovic's problem II. Int. J. Math. Educ. Sci. Technol. 36, 118-125 (2005)
- 15. Zhu, L: New inequalities for means in two variables. Math. Inequal. Appl. 11(2), 229-235 (2008)
- 16. Carlson, BC: The logarithmic mean. Am. Math. Mon. 79, 615-618 (1972)
- 17. Trif, T: Note on certain inequalities for means in two variables. J. Inequal. Pure Appl. Math. 6, article 43 (2005) (electronic)
- 18. Sándor, J, Trif, T: Some new inequalities for means of two arguments. Int. J. Math. Math. Sci. 25, 525-532 (2001)
- 19. Sándor, J: A note on some inequalities for means. Arch. Math. 56, 471-473 (1991)

doi:10.1186/1029-242X-2012-303

Cite this article as: Zhu: New inequalities for hyperbolic functions and their applications. Journal of Inequalities and Applications 2012 2012:303.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com