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Abstract
In this paper, we obtain some new inequalities in the exponential form for the whole
of the triples about the four functions {1, (sinh t)/t, exp (t coth t – 1), cosh t}. Then we
generalize some well-known inequalities for the arithmetic, geometric, logarithmic,
and identric means to obtain analogous inequalities for their pth powers, where p > 0.
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1 Introduction
Let sinh t, cosh t, and coth t be the hyperbolic sine, hyperbolic cosine, and hyperbolic
cotangent, respectively. It is well known that (see [–])

 <
sinh t
t

< et coth t– < cosh t (.)

holds for all t �= .
In the recent paper [], we have established the following Cusa-type inequalities of ex-

ponential type for the triple {, (sinh t)/t, cosh t} described as follows.

Theorem . (Cusa-type inequalities [, Part (i) of Theorem .]) Let p ≥ /, and t �= .
Then the double inequality

( – λ) + λ(cosh t)p <
(
sinh t
t

)p

< ( – η) + η(cosh t)p (.)

holds if and only if η ≥ / and λ ≤ .

On the other hand, the author of this paper [] obtains the following inequalities of
exponential type for the triple {, exp (t coth t – ), cosh t}.

Theorem . ([, Theorem ]) Let p > , and t �= . Then
() if  < p≤ /, the double inequality

α(cosh t)p + ( – α) < ep(t coth t–) < β(cosh t)p + ( – β) (.)

holds if and only if α ≤ / and β ≥ (/e)p;
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() if p ≥ , the double inequality

α(cosh t)p + ( – α) < ep(t coth t–) < β(cosh t)p + ( – β) (.)

holds if and only if α ≤ (/e)p and β ≥ /.

Next, we do the work for each of the triples {(sinh t)/t, exp (t coth t – ), cosh t} and
{, (sinh t)/t, exp (t coth t – )}, and obtain the following two new results.

Theorem . Let  < p≤ /, and t �= . Then

α(cosh t)p + ( – α)
(
sinh t
t

)p

< ep(t coth t–) < β(cosh t)p + ( – β)
(
sinh t
t

)p

(.)

holds if and only if α ≤ / and β ≥ (/e)p.

Theorem . Let p≥ /, and t �= . Then

α + ( – α)ep(t coth t–) <
(
sinh t
t

)p

< β + ( – β)ep(t coth t–) (.)

holds if and only if β ≤ / and α ≥ .

In this paper, we shall give the elementary proofs of Theorem . and Theorem .. In
the last section, we apply Theorems .-. to obtain some new results for four classical
means.

2 Lemmas
Lemma . ([–]) Let f , g : [a,b] → R be two continuous functions which are differen-
tiable on (a,b). Further, let g ′ �=  on (a,b). If f ′/g ′ is increasing (or decreasing) on (a,b), then
the functions (f (x)– f (b–))/(g(x)– g(b–)) and (f (x)– f (a+))/(g(x)– g(a+)) are also increasing
(or decreasing) on (a,b).

Lemma . Let t ∈ (, +∞). Then the inequality

D(t)� t sinh t + t sinh t + t cosh t – sinh t cosh t – t sinh t – t sinh t > 

holds.

Proof Using the power series expansions of the functions sinh t, sinh t, cosh t, sinh t×
cosh t, and sinh t, we have

D(t) =



t(sinht –  sinht +  sinh t) +


t(sinht –  sinh t) + t cosh t

–



(cosht –  cosht +  cosh t) –


t(sinht –  sinh t) – t sinh t

=



∞∑
n=

n+ –  · n+ + 
(n + )!

tn+ +



∞∑
n=

n+ – 
(n + )!

tn+ +
∞∑
n=


(n)!

tn+
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–



∞∑
n=

n –  · n + 
(n)!

tn –



∞∑
n=

n+ – 
(n + )!

tn+ – 
∞∑
n=


(n + )!

tn+

=



∞∑
n=

ln
(n + )!

tn+,

where

ln = (n + )
(
n+ –  · n+ + 

)
+ (n + )

(
n+ – 

)
+ (n + )(n + )(n + )(n + ) –

(
n+ –  · n+ + 

)
– (n + )(n + )(n + )

(
n+ – 

)
– (n + )(n + )(n + )

= (n – )n +
(
 – n – n – n

)
n

+ n + ,n + ,n + n – , n = ,, . . . .

Using a basic differential method, we can easily prove

f (x) � (x – )x +
(
 – x – x – x

)
x

+ x + ,x + ,x + x –  > 

on [,∞). This leads to ln >  for n = ,, . . . , and D(t) > . So, the proof of Lemma . is
complete. �

3 Proof of Theorem 1.3
Let

F(t)≡ ( t
sinh t e

t coth t–)p – 
(t coth t)p – 

=
f(t) – f(+)
g(t) – g(+)

,

where f(t) = ( t
sinh t e

t coth t–)p and g(t) = (t coth t)p. Then

k(t)�
f ′
 (t)
g ′
(t)

=
ep(t coth t–)

(cosh t)p–
· sinh t – t

sinh t(sinh t cosh t – t)
.

We compute

k′
(t) =

ep(t coth t–)

(cosh t)p
· u(t)
(sinh t)(sinh t cosh t – t)

,

where

u(t) = t sinh t cosh t + sinh t cosh t – t sinh t

– t sinh t + t sinh t cosh t – t sinh t

– p
(
t sinh t + t sinh t + t cosh t – sinh t cosh t – t sinh t – t sinh t

)
= t sinh t cosh t + sinh t cosh t – t sinh t

– t sinh t + t sinh t cosh t – t sinh t – pD(t).
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If  < p≤ /, by Lemma . we have

u(t) ≥ t sinh t cosh t +  sinh t cosh t – t sinh t

– t sinh t + t sinh t cosh t + t sinh t – t cosh t + t sinh t

=
∞∑
n=

hn
(n + )!

tn+,

where

hn = (n + )(n + )
(
n+ –  · n+ + 

)
+ 

(
n+ –  · n+ + 

)
– (n + )

(
n+ –  · n+ + 

)
– (n + )

(
n+ – 

)
+ (n + )(n + )

(
n+ – 

)
+ (n + )(n + )(n + )(n + )n

– (n + )(n + )(n + )(n + ) + (n + )(n + )(n + )
(
n – 

)
=

(
,n – ,n – ,

)
n +

(
n + ,n + ,n + ,

)
n

+ (n + )(n + )(n + )(n + )(n – )

– (n + )(n + )(n + ) – (n + )(n + ) + (n + ) + 

> 

for n = ,, . . . .
We have u(t) >  for  < p ≤ /. So, k′

(t) >  for t > , and f ′
 (t)/g ′

(t) = k(t) is increas-
ing on (,+∞). Hence, F(t) is increasing on (,+∞) by Lemma .. At the same time,
limt→+ F(t) = / and limt→+∞ F(t) = (/e)p. So, the proof of Theorem . is complete.

4 Proof of Theorem 1.4
Let

S(t)≡ ( sinh tt e–t coth t)p – 
ep(–t coth t) – 

=
f(t) – f(+)
g(t) – g(+)

,

where f(t) = ( sinh tt e–t coth t)p and g(t) = ep(–t coth t). Then

k(t)�
f ′
(t)
g ′
(t)

=
(
sinh t
t

)p– (sinh t) – t sinh t
t(sinh t cosh t – t)

,

and

k′
(t) =

(
sinh t
t

)p– u(t)
t(sinh t cosh t – t)

,

where

u(t)

=
[
t sinh t + t sinh t – sinh t cosh t – t sinh t – t sinh t +

t


sinht

]
(p – )
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+
(
t sinh t + t sinh t + t sinh t – t sinh t – t sinh t cosh t + t sinh t cosh t

–  sinh t cosh t
)

=
∞∑
n=

[
cn(p – ) + dn

]
tn+ =

∞∑
n=

cn
[
p –

(
 –

dn
cn

)]
tn+ =

∞∑
n=

cn[p – en]tn+,

where en =  – (dn/cn) and

cn =



n+ –  · n+ +  · n+
(n + )!

+



n+ –  · n+
(n + )!

–



n+ –  · n+
(n + )!

–



n+ –  · n+ +  · n+
(n + )!

–
n+

(n + )!
+



n+

(n + )!
> , n = ,, . . . ,

dn =



n+ –  · n+ +  · n+
(n + )!

+



n+ –  · n+
(n + )!

+



n+ –  · n+
(n + )!

–



n+ –  · n+ +  · n+
(n + )!

–



n+ –  · n+
(n + )!

+



n+

(n + )!

–



n+

(n + )!
, n = ,, . . . .

Let

j(n) = –(n + )
(
n+ –  · n+) + (

n+ –  · n+ +  · n+)
– (n + )(n + )(n + )

(
n+ –  · n+)

– (n + )(n + )(n + )n+ + (n + )(n + )
(
n+ –  · n+)

= , · n + [
(n + )(n + ) – (n + )(n + )(n + )

– ,(n + ) – ,
]
n

+
[
(n + )(n + )(n + ) – (n + )(n + ) + (n + ) + 

]
n,

i(n) = (n + )
(
n+ –  · n+ +  · n+) + (n + )

(
n+ –  · n+)

–
(
n+ +  · n+ –  · n+) – (n + )(n + )(n + )

(
n+ – n+

)
– (n + )(n + )(n + )n+ + (n + )(n + )(n + )(n + )n

= (,n – ,) · n + [
(n + ) + , – (n + )(n + )(n + )

]
n

+
[
(n + )(n + )(n + )(n + ) – (n + )(n + )(n + )

– (n + ) – 
]
n.

Then

en =  –
dn
cn

=
j(n)
i(n)

.

Let �(n) = i(n) – j(n). Then

�(n) = (,n – ,,)n + n
[
,,(n + ) + ,,

+ ,(n + )(n + )(n + ) – ,(n + )(n + )
]
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+ n
[
,(n + )(n + )(n + )(n + ) – ,(n + )(n + )(n + )

+ ,(n + )(n + ) – ,(n + ) – ,
]
.

First, we check that �(n) >  for n = ,, , , ; second, we can easily obtain that �(n) > 
for n≥ . So, we have that �(n) >  for n = ,, . . . .
So, we have u(t) >  for p ≥ /. So, k′

(t) >  for t > , and f ′
(t)/g ′

(t) = k(t) is in-
creasing on (,+∞). Hence, S(t) is increasing on (,+∞) by Lemma.when p≥ /.
At the same time, limt→+ S(t) = / and limt→+∞ S(t) = . So, the proof of Theorem . is
complete.

5 Applications of theorems
In this section, we assume that x and y are two different positive numbers. Let A(x, y),
G(x, y), L(x, y), and I(x, y) be the arithmetic, geometric, logarithmic, and identric means,
respectively. Without loss of generality, we set  < x < y. By the transformation t =
(log(y/x))/, we can compute and obtain

L(x, y)
G(x, y)

=
sinh t
t

,

I(x, y)
G(x, y)

= et coth t–,

A(x, y)
G(x, y)

= cosh t,

where t > .
Now, the four results in Section  are equivalent to the following ones for four classical

means.

Theorem . Let p ≥ /, and x and y be positive real numbers with x �= y. Then

αAp(x, y) + ( – α)Gp(x, y) < Lp(x, y) < βAp(x, y) + ( – β)Gp(x, y) (.)

holds if and only if α ≤  and β ≥ /.

Theorem . can deduce the following one, which is from Zhu [].

Corollary . ([, Theorem ]) Let p ≥ , and x and y be positive real numbers with x �= y.
Then

αAp(x, y) + ( – α)Gp(x, y) < Lp(x, y) < βAp(x, y) + ( – β)Gp(x, y) (.)

holds if and only if α ≤  and β ≥ /.

When letting p =  in Theorem ., one can obtain the result (see [–], [, Theo-
rem ]).

Corollary . Let x and y be positive real numbers with x �= y. Then

αA(x, y) + ( – α)G(x, y) < L(x, y) < βA(x, y) + ( – β)G(x, y) (.)

holds if and only if α ≤  and β ≥ /.

http://www.journalofinequalitiesandapplications.com/content/2012/1/303
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When letting β = / in the right-hand inequality of (.), one can obtain thewell-known
inequality by Carlson []

L(x, y) <


A(x, y) +



G(x, y). (.)

Theorem . Let p > . Then
() if  < p≤ /, the double inequality

αAp(x, y) + ( – α)Gp(x, y) < Ip(x, y) < βAp(x, y) + ( – β)Gp(x, y) (.)

holds if and only if α ≤ / and β ≥ (/e)p;
() if p ≥ , the double inequality

αAp(x, y) + ( – α)Gp(x, y) < Ip(x, y) < βAp(x, y) + ( – β)Gp(x, y) (.)

holds if and only if α ≤ (/e)p and β ≥ /.

The part () of Theorem . is a result of Trif [].
When letting p =  and β = / in the right-hand inequality of (.), one can obtain the

following result, which is from Sándor and Trif [].

I(x, y) <


A(x, y) +



G(x, y). (.)

When letting p =  in the double inequality (.), one can obtain the following result
(see [], [, Theorem ]).

Corollary . Let x and y be positive real numbers with x �= y. Then

αA(x, y) + ( – α)G(x, y) < I(x, y) < βA(x, y) + ( – β)G(x, y) (.)

holds if and only if α ≤ / and β ≥ /e.

When letting α = / in the left-hand inequality in (.), one can obtain the following
result, which is from Sándor [].



A(x, y) +



G(x, y) < I(x, y). (.)

Theorem . Let  < p ≤ /, x and y be positive real numbers with x �= y. Then

αAp(x, y) + ( – α)Lp(x, y) < Ip(x, y) < βAp(x, y) + ( – β)Lp(x, y) (.)

holds if and only if α ≤ / and β ≥ (/e)p.

Theorem . can deduce the following result (see Zhu []).
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Corollary . ([, Theorem ]) Let x and y be positive real numbers with x �= y. Then

αA(x, y) + ( – α)L(x, y) < I(x, y) < βA(x, y) + ( – β)L(x, y) (.)

holds if and only if α ≤ / and β ≥ /e.

When letting α = / in the left-hand inequality of (.), one can obtain the following
result, which is from Sándor [, ].

I(x, y) >
A(x, y) + L(x, y)


. (.)

Finally, we give the bounds for Lp(x, y) in terms of Gp(x, y) and Ip(x, y), and obtain the
following new result.

Theorem . Let x and y be positive real numbers with x �= y, and p ≥ /. Then

αGp(x, y) + ( – α)Ip(x, y) < Lp(x, y) < βGp(x, y) + ( – β)Ip(x, y) (.)

holds if and only if β ≤ / and α ≥ .

Theorem . can deduce a result of Zhu []:

Corollary . ([, Theorem ]) Let x and y be positive real numbers with x �= y. Then

αG(x, y) + ( – α)I(x, y) < L(x, y) < βG(x, y) + ( – β)I(x, y) (.)

holds if and only if β ≤ / and α ≥ .

Obviously, the right-hand side of (.) is an extension of the following inequality:

L(x, y) <


(
G(x, y) + I(x, y)

)
, (.)

which was given by Alzer [].
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