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1 Introduction
Let us denote

Hp(f , g) =
(∫ b

a
f p(x)d

[
gp(x)

])/p

, H̃p(f , g) =
(∫ b

a
f p(x)d

[
–gp(x)

])/p

,

Gp(f ,x) =
(∫ ∞

x

(
t–αf (t)

)p dt
t

)/p

and G̃p(f ,x) =
(∫ x



(
t–αf (t)

)p dt
t

)/p

.

We consider the following theorem of Heinig and Maligranda.

Theorem . [] Let –∞ ≤ a < b ≤ ∞ and let f and g be positive functions on (a,b),where
g is continuous on (a,b).
(a) Suppose that f is a decreasing function on (a,b) and g is an increasing function on

(a,b), where g(a + ) = . Then, for any p ∈ (, ],

H(f , g) ≤ Hp(f , g). ()

If  ≤ p < ∞, then the inequality () holds in the reversed direction.
(b) Suppose that f is an increasing function on (a,b) and g is a decreasing function on

(a,b), where g(b – ) = . Then, for any p ∈ (, ],

H̃(f , g) ≤ H̃p(f , g). ()

If  ≤ p < ∞, then the inequality () holds in the reversed direction.

We consider positive real valued functions f , g defined on an interval (a,b), –∞ ≤ a <
b ≤ ∞. We say that f is C-decreasing (C-increasing), C ≥ , if f (x) ≤ Cf (y) (f (y) ≤ Cf (x))
whenever y ≤ x, y,x ∈ (a,b).
Now, throughout the paper, f is nonnegative and g is a positive function. Some exten-

sions of Theorem . were obtained in [] as follows.
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Theorem . [] Assume that  < p < q < ∞ and –∞ ≤ a < b ≤ ∞.
(a) If f is C-decreasing and g is increasing and differentiable such that g(a + ) = , then

Hq(f , g) ≤ C– p
q Hp(f , g). ()

(b) If f is C-increasing and g is increasing and differentiable such that g(a + ) = , then

Hq(f , g) ≥ C
p
q –Hp(f , g). ()

(c) If f is C-increasing and g is decreasing and differentiable such that g(b – ) = , then

H̃q(f , g) ≤ C– p
q H̃p(f , g). ()

(d) If f is C-decreasing and g is decreasing and differentiable such that g(b – ) = , then

H̃q(f , g) ≥ C
p
q –H̃p(f , g). ()

As a special case, we consider C-monotone functions with respect to power functions.
For C,C ≥ , –∞ < α ≤ α < ∞, we say that f ∈ Qα (C) if f (x)x–α is C-increasing

and f ∈Qα (C) if f (x)x–α is C-decreasing.

Theorem . [] Let  < p≤ q < ∞.
(a) If f ∈ Qα (C), α > α, then for any x ≥ ,

Gq(f ,x) ≤ p/pq–/q(α – α)/p–/qC–p/qGp(f ,x). ()

(b) If f ∈ Qα (C), α > α, then for any x ≥ ,

G̃q(f ,x) ≤ p/pq–/q(α – α)/p–/qC–p/qG̃p(f ,x). ()

2 Main results
In this paper, we prove some improvements and refinements of the above results by using
the log-convexity method []. We consider the following theorem.

Theorem. Let φ : [,∞)→R be a convex and differentiable function such thatφ() = 
and let –∞ ≤ a < b ≤ ∞.
(a) If f is C-decreasing and g is increasing and differentiable such that g(a + ) = , then

φ

(
C

∫ b

a
f (x)dg(x)

)
≥ C

∫ b

a
φ′(f (x)g(x))f (x)dg(x). ()

(b) If f is C-increasing and g is increasing and differentiable such that g(a + ) = , then

φ

(

C

∫ b

a
f (x)dg(x)

)
≤ 

C

∫ b

a
φ′(f (x)g(x))f (x)dg(x). ()
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(c) If f is C-increasing and g is decreasing and differentiable such that g(b – ) = , then

φ

(
C

∫ b

a
f (x)d

[
–g(x)

]) ≥ C
∫ b

a
φ′(f (x)g(x))f (x)d[

–g(x)
]
. ()

(d) If f is C-decreasing and g is decreasing and differentiable such that g(b – ) = , then

φ

(

C

∫ b

a
f (x)d

[
–g(x)

]) ≤ 
C

∫ b

a
φ′(f (x)g(x))f (x)d[

–g(x)
]
. ()

(e) If the condition ‘φ is convex’ is replaced by ‘φ is concave,’ then all the inequalities
()-() hold in the reversed direction.

Remark . It was given in [] that φ is a nonnegative convex function, but from the proof
of Theorem . given there, it is clear that the results are still valid without the condition
of nonnegativity of φ.

Remark . For the special case φ(x) = xp, p > , the formulas ()-() are as follows:

Hp
 (f , g) ≥ C–pHp

p (f , g), ()

Hp
 (f , g) ≤ Cp–Hp

p (f , g), ()

H̃p
 (f , g) ≥ C–pH̃p

p (f , g), ()

and

H̃p
 (f , g) ≤ Cp–H̃p

p (f , g). ()

If the condition p >  is replaced by  < p < , then all the inequalities ()-() hold in the
reversed direction.

We consider the following functionals.

(M) Under the assumptions of Theorem .(a), we define a linear functional as

L(φ) = φ

(
C

∫ b

a
f (x)dg(x)

)
–C

(∫ b

a
φ′(f (x)g(x))f (x)dg(x)).

(M) Under the assumptions of Theorem .(b), we define a linear functional as

L(φ) =

C

(∫ b

a
φ′(f (x)g(x))f (x)dg(x)) – φ

(

C

∫ b

a
f (x)dg(x)

)
.

(M) Under the assumptions of Theorem .(c), we define a linear functional as

L(φ) = φ

(
C

∫ b

a
f (x)d

[
–g(x)

])
–C

(∫ b

a
φ′(f (x)g(x))f (x)d[

–g(x)
])

.
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(M) Under the assumptions of Theorem .(d), we define a linear functional as

L(φ) =

C

(∫ b

a
φ′(f (x)g(x))f (x)d[

–g(x)
])

– φ

(

C

∫ b

a
f (x)d

[
–g(x)

])
.

Remark . Under the assumptions of Theorem . with φ as a convex function, the
linear functionals Li(φ) ≥  for i = , . . . , .

Wewill consider the classicalmethod from [] (see also [] and the references given in it)
to prove the log-convexity of the functionals defined as above by considering a convex
function defined in the following lemma.

Lemma . Let a family of functions φp : [,∞) →R, p > , be defined by

φp(x) =

⎧⎨
⎩

xp
p(p–) , p > ,p �= ,

x logx, p = ,
()

with  log = . Then φ′′
p (x) = xp–, that is, φp is convex for x > .

Let us denote

Kn
l (f , g) =

(∫ b

a

(

l
+ ln f (x)g(x)

)n

f l(x)d
[
gl(x)

])

and

K̃n
l (f , g) =

(∫ b

a

(

l
+ ln f (x)g(x)

)n

f l(x)d
[
–gl(x)

])
.

Using functions defined in Lemma ., we get

L(φp) =

⎧⎨
⎩

CpHp
 (f ,g)–CH

p
p (f ,g)

p(p–) , p > ,p �= ,

CH
 (f , g) ln(CH

 (f , g)) –CK 
 (f , g), p = ,

()

L(φp) =

⎧⎨
⎩


C Hp

p (f ,g)– 
Cp H

p
 (f ,g)

p(p–) , p > ,p �= ,

CK


 (f , g) –


CH


 (f , g) ln(


CH


 (f , g)), p = ,

()

L(φp) =

⎧⎨
⎩

CpH̃p
 (f ,g)–CH̃

p
p (f ,g)

p(p–) , p > ,p �= ,

CH̃
 (f , g) ln(CH̃

 (f , g)) –CK̃ 
 (f , g), p = ,

()

L(φp) =

⎧⎨
⎩


C H̃p

p (f ,g)– 
Cp H̃

p
 (f ,g)

p(p–) , p > ,p �= ,

C K̃


 (f , g) –


C H̃


 (f , g) ln(H̃

 (f , g)), p = .
()

We will prove the log-convexity and related results for functionals Li, i = , . . . , .

Theorem . Let linear functionals Li, i = , . . . ,  be defined as above and Li(φp) be pos-
itive. Then for i = , . . . , ,

http://www.journalofinequalitiesandapplications.com/content/2012/1/301
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(a) for all p,q > 

L
i (φ p+q


) ≤Li(φp)Li(φq), ()

that is, p 	→Li(φp) is log-convex in the Jensen sense;
(b) also, p 	→Li(φp) is log-convex; that is, for p < q < r (p,q, r ∈R

+)

(
Li(φq)

)r–p ≤ (
Li(φp)

)r–q(Li(φr)
)q–p. ()

Proof (a) Suppose that i = , . . . ,  is arbitrary.
We shall use the idea from [, Theorem ]. Let us consider the function defined by

λ(x) = uφp(x) + uwφr(x) +wφq(x),

where r = p+q
 , u,w ∈R. We have

λ′′(x) = uxp– + uwxr– +wxq– =
(
ux

p
 – +wx

q
 –

) ≥ , x > .

Therefore, λ is convex for x > . Hence, Li(λ)≥ , that is,

uLi(φp) + uwLi(φr) +wLi(φq) ≥ ,

and therefore we get ().
(b) Since Li is continuous, so it is log-convex. Therefore, () is valid too.
Since i was taken to be arbitrary, so the above results hold for all i = , . . . , . �

Corollary . If s > , p < q < r (p,q, r ∈ R
+) and p,q, r �= s, then the following inequalities

hold:

[
CqHq

s (f , g) –CsHq
q (f , g)

q(q – s)

]r–p

≤
[
CpHp

s (f , g) –CsHp
p (f , g)

p(p – s)

]r–q

×
[
CrHr

s (f , g) –CsHr
r (f , g)

r(r – s)

]q–p

, ()

[ 
Cs H

q
q (f , g) – 

Cq Hq
s (f , g)

q(q – s)

]r–p

≤
[ 

Cs H
p
p (f , g) – 

Cp Hp
s (f , g)

p(p – s)

]r–q

×
[ 

Cs Hr
r (f , g) –


Cr Hr

s (f , g)
r(r – s)

]q–p

, ()

[
CqH̃q

s (f , g) –CsH̃q
q (f , g)

q(q – s)

]r–p

≤
[
CpH̃p

s (f , g) –CsH̃p
p (f , g)

p(p – s)

]r–q

×
[
CrH̃r

s (f , g) –CsH̃r
r (f , g)

r(r – s)

]q–p

, ()

[ 
Cs H̃

q
q (f , g) – 

Cq H̃q
s (f , g)

q(q – s)

]r–p

≤
[ 

Cs H̃
p
p (f , g) – 

Cp H̃p
s (f , g)

p(p – s)

]r–q

×
[ 

Cs H̃r
r (f , g) –


Cr H̃r

s (f , g)
r(r – s)

]q–p

. ()
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Proof For i = , we have

L(φp) =
Cp(

∫ b
a f (x)dg(x))p –C(

∫ b
a f p(x)d[gp(x)])

p(p – )
.

Since s > , so p/s < q/s < r/s. Also, for f is C-decreasing, f s is Cs-decreasing. We make
substitutions f → f s, g → gs, C → Cs, p→ p/s, q → q/s, and r → r/s in (). We get

[
CqHq

s (f , g) –CsHq
q (f , g)

q(q–s)
s

] r–p
s

≤
[
CpHp

s (f , g) –CsHp
p (f , g)

p(p–s)
s

] r–q
s

×
[
CrHr

s (f , g) –CsHr
r (f , g)

r(r–s)
s

] q–p
s
.

After simplification, we get (). Similarly, for i = , , , we get ()-() respectively.
�

Remark . From the inequalities ()-() for (q < s), we get the refinement for inequal-
ities obtained from Theorem . and reversion when (q > s). Of course, we can get such
refinement and reversions in all other cases for p, s and r, s.

Corollary . For s > , p < q < r (p,q, r ∈R
+) and p,q, r �= s.

(a) If f ∈ Qα (C), α > α, then for any x > , the following inequality holds:

[
Cq[s(α – α)]q/sG

q
s (f ,x) –Cs[q(α – α)]G

q
q(f ,x)

q(q – s)

]r–p

≤
[
Cp[s(α – α)]p/sG

p
s (f ,x) –Cs[p(α – α)]G

p
p(f ,x)

p(p – s)

]r–q

×
[
Cr[s(α – α)]r/sGr

s(f ,x) –Cs[r(α – α)]Gr
r(f ,x)

r(r – s)

]q–p

. ()

(b) If f ∈ Qα (C), α > α, then for any x ≥ , the following inequality holds:

[
Cq[s(α – α)]q/sG̃q

s (f ,x) –Cs[q(α – α)]G̃q
q(f ,x)

q(q – s)

]r–p

≤
[
Cp[s(α – α)]p/sG̃p

s (f ,x) –Cs[p(α – α)]G̃p
p(f ,x)

p(p – s)

]r–q

×
[
Cr[s(α – α)]r/sG̃r

s(f ,x) –Cs[r(α – α)]G̃r
r(f ,x)

r(r – s)

]q–p

. ()

Proof (a) It is a simple consequence of Corollary .. Since f ∈ Qα (C), by making substi-
tutions f → f (t)t–α and g → t(α–α) in (), we get ().
(b) Since f ∈ Qα (C), by making substitutions f → f (t)t–α and g → t(α–α) in (), we

get (). �

Now, we state and prove the Lagrange-type mean value theorem for the linear function-
als Li, i = , . . . ,  defined by (M)-(M).

http://www.journalofinequalitiesandapplications.com/content/2012/1/301
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Theorem . Let Li, i = , . . . ,  be linear functionals defined by (M)-(M) and φ ∈
C[,a], a > , such that φ() = . Then there exists ξi ∈ [,a] such that the identity

Li(φ) =
φ′′(ξi)


Li
(
x

)
()

holds for i = , . . . , .

Proof Fix i = , . . . , .
Since φ′′ is continuous on [,a], it attains its maximum and minimum value on [,a].

Let

m = min
x∈[,a]

{
φ′′(x)

}
and M = max

x∈[,a]
{
φ′′(x)

}
.

Let us consider functions F,F : [,a]→R defined by

F(x) =M
x


– φ(x) and F(x) = φ(x) –m

x


.

Clearly,

F ′′
 (x) =M – φ′′(x)≥ ,

and

F ′′
 (x) = φ′′(x) –m ≥ ,

so F, F are convex functions. Also, F() =  = F(). Hence, fromTheorem . for F and
F respectively, it follows

Li(φ)≤ M

Li

(
x

)
()

and

Li(φ)≥ m

Li

(
x

)
. ()

Combining () and (), we get

m

Li

(
x

) ≤Li(φ)≤ M

Li

(
x

)
.

If Li(x) = , then Li(φ) =  and () holds for all ξi ∈ [,a]. Otherwise,

m ≤ Li(φ)
Li(x)

≤ M.

Since φ′′ is continuous, there exists ξi ∈ [,a] such that () holds and the proof is com-
plete. �

http://www.journalofinequalitiesandapplications.com/content/2012/1/301
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Theorem . Let Li, i = , . . . ,  be linear functionals defined by (M)-(M) and φ,ψ ∈
C[,a], a > , such that φ() =  = ψ(). Then there exists ξi ∈ [,a] such that the identity

Li(φ)
Li(ψ)

=
φ′′(ξi)
ψ ′′(ξi)

()

holds for i = , . . . , , provided that denominators are nonzero.

Proof Fix  ≤ i≤  and define L ∈ C[,a] in the way that

L = cφ – cψ ,

where c and c are defined by c =Li(ψ) and c =Li(φ). Now, from Theorem . for the
function L, it follows

(
c

φ′′(ξi)


– c
ψ ′′(ξi)



)
Li

(
x

)
= . ()

Since for () the denominators are nonzero, we have Li(x) �=  (because if it is zero, then
Li(ψ) =  by Theorem .). Therefore, () gives (). �

Corollary . Let Li, i = , . . . ,  be linear functionals defined by (M)-(M). For distinct
positive real numbers l and r different from one, there exists ξi ∈ [,a] such that

ξ l–r
i =

r(r – )Li(xl)
l(l – )Li(xr)

()

holds for i = , . . . , .

Proof Taking φ(x) = xl and ψ(x) = xr in (), for distinct positive real numbers l and r
different from one, we obtain (). �

Remark . Since for fix i = , . . . ,  the function ξi → ξ l–r
i , l �= r is invertible, then from

() we get

m ≤
(
r(r – )Li(xl)
l(l – )Li(xr)

) 
l–r ≤ M, r �= l, r, l �= . ()

3 Cauchymeans
In this section we deduce Cauchy means from Theorem .. Suppose that φ′′/ψ ′′ has
inverse. Then () gives

ξi =
(

φ′′

ψ ′′

)–(Li(φ)
Li(ψ)

)
. ()

We conclude that the expression on the right-hand side of the above equation is also a
mean. For r, l ∈R

+, we define the Cauchy means

Mi
l,r =

(
r(r – )Li(xl)
l(l – )Li(xr)

) 
l–r
, r �= l, r, l �= . ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/301
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Also, we have continuous extensions of these means in other cases. Therefore, by limit,
we have the following:

M
r,r =

⎧⎪⎨
⎪⎩
exp( –r

r(r–) +
CrHr

 (f ,g) ln(CH

 (f ,g))–CK


r (f ,g)

(CrHr
 (f ,g)–CH

r
r (f ,g))

), r �= ,

exp(– + CH(f ,g)(ln(CH
 (f ,g)))

+CH
 (f ,g)–CK


 (f ,g)

(CH
 (f ,g) ln(CH


 (f ,g))–CK


 (f ,g))

), r = ,
()

M
r,r =

⎧⎪⎨
⎪⎩
exp( –r

r(r–) +

C K

r (f ,g)–

Cr H

r
 (f ,g) ln(


C H

 (f ,g))
( C Hr

r (f ,g)– 
Cr H

r
 (f ,g))

), r �= ,

exp(– + – 
C H

 (f ,g)+

C K

 (f ,g)–

C H

 (f ,g)(ln(

C H

 (f ,g)))


( C K
 (f ,g)–


C H

 (f ,g) ln(

C H

 (f ,g)))
), r = ,

()

M
r,r =

⎧⎪⎨
⎪⎩
exp( –r

r(r–) +
CrH̃r

 (f ,g) ln(CH̃

 (f ,g))–CK̃


r (f ,g)

(CrH̃r
 (f ,g)–CH̃

r
r (f ,g))

), r �= ,

exp(– + CH̃(f ,g)(ln(CH̃
 (f ,g)))

+CH̃
 (f ,g)–CK̃


 (f ,g)

(CH̃
 (f ,g) ln(CH̃


 (f ,g))–CK̃


 (f ,g))

), r = ,
()

M
r,r =

⎧⎪⎨
⎪⎩
exp( –r

r(r–) +

C K̃

r (f ,g)–

Cr H̃

r
 (f ,g) ln(


C H̃

 (f ,g))
( C H̃r

r (f ,g)– 
Cr H̃

r
 (f ,g))

), r �= ,

exp(– + – 
C H̃

 (f ,g)+

C K̃

 (f ,g)–

C H̃

 (f ,g)(ln(

C H̃

 (f ,g)))


( C K̃
 (f ,g)–


C H̃

 (f ,g) ln(

C H̃

 (f ,g)))
), r = .

()

We also need the following result (see, e.g., []).

Lemma . If � is a convex function on an interval I ⊂ R and if r ≤ u, l ≤ v, r �= l, u �= v,
then the following inequality is valid:

�(l) –�(r)
l – r

≤ �(v) –�(u)
v – u

. ()

Now, we deduce the monotonicity of means defined by () in the form of Dresher’s
inequality as follows.

Theorem . Let Mi
l,r be given as in () and r, l,u, v ∈R

+ be such that l ≤ v, r ≤ u. Then

Mi
l,r ≤ Mi

v,u, i = , . . . , . ()

Proof By Theorem ., Li is log-convex. We set �(l) = logLi(φl) in Lemma . and get

logLi(φl) – logLi(φr)
l – r

≤ logLi(φv) – logLi(φu)
v – u

. ()

By using the properties of a log function, we get immediately (). �

Corollary . For distinct positive real numbers l, r and s, there exist ξi ∈ [,a], i = , . . . , 
such that the following identities hold:

ξ l–r
 =

r(r – s)(ClHl
s(f , g) –CsHl

l (f , g))
l(l – s)(CrHr

s (f , g) –CsHr
r (f , g))

, ()

ξ l–r
 =

r(r – s)( 
Cs Hl

l (f , g) –

Cl Hl

s(f , g))
l(l – s)( 

Cs Hr
r (f , g) –


Cr Hr

s (f , g))
, ()

ξ l–r
 =

r(r – s)(ClH̃l
s(f , g) –CsH̃l

l (f , g))
l(l – s)(CrH̃r

s (f , g) –CsH̃r
r (f , g))

, ()
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ξ l–r
 =

r(r – s)( 
Cs H̃l

l (f , g) –

Cl H̃l

s(f , g))
l(l – s)( 

Cs H̃r
r (f , g) –


Cr H̃r

s (f , g))
. ()

Proof For i = , making substitutions f → f s, g → gs, C → Cs, φ(x) = xl/s, and ψ(x) = xr/s

in (), we get ().
Similarly, for i = , , , making substitutions as above in (), we get (), () and ()

respectively. �

Remark . Since the function ξi → ξ l–r
i is invertible for all i = , . . . , , from ()-(), we

can again formulate the corresponding Cauchy means for distinct positive real numbers
l, r and s.

They are given as follows:

M
l,r,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( r(r–s)(C
lHl

s(f ,g)–CsHl
l (f ,g))

l(l–s)(CrHr
s (f ,g)–CsHr

r (f ,g))
)


l–r , l �= r �= s,

( s(ClHl
s(f ,g)–CsHl

l (f ,g))
l(l–s)(CsHs

s (f ,g) ln(CsHs
s (f ,g))–sCsK

s (f ,g))
)


l–s , l �= r = s,

exp( s–r
r(r–s) +

(CsHr
s (f ,g))r/s ln(CsHs

s (f ,g))–sCsK
r (f ,g)

s((CsHr
s (f ,g))r/s–CsHr

r (f ,g))
), l = r �= s,

exp( –s + CsHs
s (f ,g)(ln(CsHs

s (f ,g)))+CsHs
s (f ,g)–sCsK

s (f ,g)
s(CsHs

s (f ,g) ln(CsHs
s (f ,g))–sCsK

s (f ,g))
), l = r = s,

()

M
l,r,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r(r–s)( 

Cs H
l
l (f ,g)–


Cl

Hl
s(f ,g))

l(l–s)( 
Cs H

r
r (f ,g)– 

Cr H
r
s (f ,g))

)

l–r , l �= r �= s,

(
s( 

Cs H
l
l (f ,g)–


Cl

Hl
s(f ,g))

l(l–s)( s
Cs K


s (f ,g)–( 

Cs H
s
s (f ,g)) ln( 

Cs H
s
s (f ,g)))

)

l–s , l �= r = s,

exp( s–r
r(r–s) +

s
Cs K


r (f ,g)–(


Cs H

r
s (f ,g))r/s ln(


Cs H

s
s (f ,g))

s(( 
Cs H

r
s (f ,g))r/s–CsHr

r (f ,g))
), l = r �= s,

exp( –s + – 
Cs H

s
s (f ,g)+

s
Cs K


s (f ,g)–


Cs H

s
s (f ,g)(ln(


Cs H

s
s (f ,g)))

s( s
Cs K


s (f ,g)–( 

Cs H
s
s (f ,g)) ln( 

Cs H
s
s (f ,g)))

), l = r = s,

()

M
l,r,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( r(r–s)(C
lH̃l

s(f ,g)–CsH̃l
l (f ,g))

l(l–s)(CrH̃r
s (f ,g)–CsH̃r

r (f ,g))
)


l–r , r �= l �= s,

( s(ClH̃l
s(f ,g)–CsH̃l

l (f ,g))
l(l–s)(CsH̃s

s (f ,g) ln(CsH̃s
s (f ,g))–sCsK̃

s (f ,g))
)


l–s , l �= r = s,

exp( s–r
r(r–s) +

(CsH̃r
s (f ,g))r/s ln(CsH̃s

s (f ,g))–sCsK̃
r (f ,g)

s((CsH̃r
s (f ,g))r/s–CsH̃r

r (f ,g))
), l = r �= s,

exp( –s + CsH̃s
s (f ,g)(ln(CsH̃s

s (f ,g)))+CsH̃s
s (f ,g)–sCsK̃

s (f ,g)
s(CsH̃s

s (f ,g) ln(CsH̃s
s (f ,g))–sCsK̃

s (f ,g))
), l = r = s,

()

M
l,r,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r(r–s)( 

Cs H̃
l
l (f ,g)–


Cl

H̃l
s(f ,g))

l(ls)( 
Cs H̃

r
r (f ,g)– 

Cr H̃
r
s (f ,g))

)

l–r , r �= l �= s,

(
s( 

Cs H̃
l
l (f ,g)–


Cl

H̃l
s(f ,g))

l(l–s)( s
Cs K̃


s (f ,g)–( 

Cs H̃
s
s (f ,g)) ln( 

Cs H̃
s
s (f ,g)))

)

l–s , l �= r = s,

exp( s–r
r(r–s) +

s
Cs K̃


r (f ,g)–(


Cs H̃

r
s (f ,g))r/s ln(


Cs H̃

s
s (f ,g))

s(( 
Cs H̃

r
s (f ,g))r/s–CsH̃r

r (f ,g))
), l = r �= s,

exp( –s + – 
Cs H̃

s
s (f ,g)+

s
Cs K̃


s (f ,g)–


Cs H̃

s
s (f ,g)(ln(


Cs H̃

s
s (f ,g)))

s( s
Cs K̃


s (f ,g)–( 

Cs H̃
s
s (f ,g)) ln( 

Cs H̃
s
s (f ,g)))

), l = r = s.

()

Corollary . Let Mi
l,r,s, i = , . . . ,  be given as above and r, l,u, v; s ∈R

+ be such that l ≤ v,
r ≤ u. Then

Mi
l,r,s ≤ Mi

v,u,s, i = , . . . , . ()
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Proof By Theorem .,

Mi
l,r ≤ Mi

v,u, i = , . . . , .

For s > , we set f → f s, g → gs,C → Cs, l → l/s, r → r/s, u → v/s and r → v/s in the above
inequality for means and get (). �
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