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Abstract
In this paper, we prove the Hyers-Ulam stability of the following function inequalities:

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥Kf(x + y + z

K

)∥∥∥ (0 < |K| < 3),

∥∥f (x) + f (y) + Kf (z)
∥∥ ≤

∥∥∥Kf(x + y

K
+ z

)∥∥∥ (0 < K �= 2)

in Banach spaces.
MSC: Primary 39B62; 39B52; 46B25

Keywords: Hyers-Ulam stability; additive functional inequality; additive mapping

1 Introduction and preliminaries
The stability problem of functional equations originated from the question of Ulam []
in  concerning the stability of group homomorphisms. Let (G, ·) be a group and let
(G,∗) be a metric group with themetric d(·, ·). Given ε > , does there exist a δ such that
if a mapping h : G → G satisfies the inequality d(h(x · y),h(x) ∗ h(y)) < δ for all x, y ∈ G,
then there exists a homomorphism H : G → G with d(h(x),H(x)) < ε for all x ∈ G? In
otherwords, underwhat condition does there exist a homomorphismnear an approximate
homomorphism? The concept of stability for a functional equation arises whenwe replace
the functional equation by an inequality which acts as a perturbation of the equation. In
, Hyers [] gave the first affirmative answer to the question of Ulam for Banach spaces.
Let f : E → E′ be a mapping between Banach spaces such that

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ δ

for all x, y ∈ E and for some δ > . Then there exists a unique additive mapping T : E → E′

such that

∥∥f (x) – T(x)
∥∥ ≤ δ

for all x ∈ E. Moreover, if f (tx) is continuous in t ∈ R for each fixed x ∈ E, then T is R-
linear. In , Th.M. Rassias [] proved the following theorem.
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Theorem . Let f : E → E′ be a mapping from a normed vector space E into a Banach
space E′ subject to the inequality

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ ε

(‖x‖p + ‖y‖p) (.)

for all x, y ∈ E, where ε and p are constants with ε >  and p < . Then there exists a unique
additive mapping T : E → E′ such that

∥∥f (x) – T(x)
∥∥ ≤ ε

 – p
‖x‖p (.)

for all x ∈ E. If p < , then inequality (.) holds for all x, y �= , and (.) for x �= . Also, if
the function t 	→ f (tx) from R into E′ is continuous in t ∈ R for each fixed x ∈ E, then T is
R-linear.

In , Gajda [] answered the question for the case p > , which was raised by Th.M.
Rassias. On the other hand, J.M. Rassias [] generalized the Hyers-Ulam stability result by
presenting a weaker condition controlled by a product of different powers of norms.

Theorem . [, ] If it is assumed that there exist constants � ≥  and p,p ∈ R such
that p = p + p �= , and f : E → E′ is a mapping from a norm space E into a Banach space
E′ such that the inequality

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ ε‖x‖p‖y‖p

holds for all x, y ∈ E, then there exists a unique additive mapping T : E → E′ such that

∥∥f (x) – T(x)
∥∥ ≤ �

 – p
‖x‖p

for all x ∈ E. If, in addition, for every x ∈ E, f (tx) is continuous in t ∈R for each fixed x ∈ E,
then T is R-linear.

More generalizations and applications of the Hyers-Ulam stability to a number of func-
tional equations and mappings can be found in [–].
In [], Park et al. investigated the following inequalities:

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y + z



)∥∥∥∥,∥∥f (x) + f (y) + f (z)
∥∥ ≤ ∥∥f (x + y + z)

∥∥,
∥∥f (x) + f (y) + f (z)

∥∥ ≤
∥∥∥∥f

(
x + y


+ z
)∥∥∥∥

in Banach spaces. Recently, Cho et al. [] investigated the following functional inequality:

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥Kf
(
x + y + z

K

)∥∥∥∥ (
 < |K | < ||)
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in non-Archimedean Banach spaces. Lu and Park [] investigated the following func-
tional inequality:

∥∥∥∥∥
N∑
i=

f (xi)

∥∥∥∥∥ ≤
∥∥∥∥Kf

(∑N
i=(xi)
K

)∥∥∥∥ (
 < |K | ≤ N

)

in Fréchet spaces.
In this paper, we investigate the following functional inequalities:

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥Kf
(
x + y + z

K

)∥∥∥∥ (
 < |K | < 

)
, (.)

∥∥f (x) + f (y) +Kf (z)
∥∥ ≤

∥∥∥∥Kf
(
x + y
K

+ z
)∥∥∥∥ ( < K �= ) (.)

and prove the Hyers-Ulam stability of functional inequalities (.) and (.) in Banach
spaces.
Throughout this paper, assume that X is a normed vector space and that (Y ,‖ · ‖) is a

Banach space.

2 Hyers-Ulam stability of functional inequality (1.3)
Throughout this section, assume that K is a real number with  < |K | < .

Proposition . Let f : X → Y be a mapping such that

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥Kf
(
x + y + z

K

)∥∥∥∥ (.)

for all x, y, z ∈ X. Then the mapping f : X → Y is additive.

Proof Letting x = y = z =  in (.), we get

∥∥f ()∥∥ ≤ ∥∥Kf ()∥∥.
So, f () = .
Letting z =  and y = –x in (.), we get

∥∥f (x) + f (–x)
∥∥ ≤ ∥∥Kf ()∥∥ = 

for all x ∈ X. So, f (–x) = –f (x) for all x ∈ X.
Letting z = –x – y in (.), we get

∥∥f (x) + f (y) – f (x + y)
∥∥ =

∥∥f (x) + f (y) + f (–x – y)
∥∥ ≤ ∥∥Kf ()∥∥ = 

for all x, y ∈ X. Thus,

f (x + y) = f (x) + f (y)

for all x, y ∈ X, as desired. �
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Theorem . Assume that a mapping f : X → Y satisfies the inequality

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥Kf
(
x + y + z

K

)∥∥∥∥ + φ(x, y, z), (.)

where φ : X → [,∞) satisfies

φ̃(x, y, z) :=
∞∑
j=

jφ
(
x
j
,
y
j
,
z
j

)
<∞ (.)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥∥A(x) – f (x)
∥∥ ≤ 


φ̃(–x, –x, x) + φ̃(x, –x, ) (.)

for all x ∈ X.

Proof It follows from (.) that φ(, , ) = . Letting x = y = z =  in (.), we get ‖f ()‖ ≤
‖Kf ()‖ + φ(, , ) = ‖Kf ()‖. So, f () = .
Letting y = x, z = –x in (.), we get

∥∥f (x) + f (–x)
∥∥ ≤ φ(x,x, –x)

for all x ∈ X. So,

∥∥∥∥f
(
x


)
+ f (–x)

∥∥∥∥ ≤ φ

(
x

,
x

,–x

)
(.)

for all x ∈ X.
Letting y = –x and z =  in (.), we get

∥∥f (x) + f (–x)
∥∥ ≤ φ(x, –x, ) (.)

for all x ∈ X. It follows from (.) and (.) that

∥∥∥∥lf
(
x
l

)
– mf

(
x
m

)∥∥∥∥
≤

m–∑
j=l

∥∥∥∥jf
(
x
j

)
– j+f

(
x
j+

)∥∥∥∥
≤

m–∑
j=l

∥∥∥∥jf
(
x
j

)
+ j+f

(
–x
j+

)
– j+f

(
–x
j+

)
– j+f

(
x
j+

)∥∥∥∥
≤

m–∑
j=l

[∥∥∥∥jf
(
x
j

)
+ j+f

(
–x
j+

)∥∥∥∥ +
∥∥∥∥j+f

(
–x
j+

)
+ j+f

(
x
j+

)∥∥∥∥
]

≤
m–∑
j=l



j+φ

(
–x
j+

,
–x
j+

,
x
j+

)
+

m–∑
j=l

j+φ
(

x
j+

,
–x
j+

, 
)
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for all nonnegative integers m and l with m > l and all x ∈ X. It means that the sequence
{nf ( x

n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence {nf ( x
n )}

converges. We define the mapping A : X → Y by A(x) = limn→∞ nf ( x
n ) for all x ∈ X.

Moreover, letting l =  and passing the limitm → ∞, we get (.).
Next, we show that A(x) is an additive mapping.

∥∥A(x) +A(–x)
∥∥ = lim

n→∞n
∥∥∥∥f

(
x
n

)
+ f

(
–x
n

)∥∥∥∥
≤ lim

n→∞


n+φ

(
x
n+

,
–x
n+

, 
)
= 

and so A(–x) = –A(x) for all x ∈ X.

∥∥A(x) +A(y) –A(x + y)
∥∥ =

∥∥A(x) +A(y) +A(–x – y)
∥∥

= lim
n→∞n

∥∥∥∥f
(

x
n

)
+ f

(
y
n

)
+ f

(
–x – y
n

)∥∥∥∥
≤ lim

n→∞


n+φ

(
x
n+

,
y
n+

,
(x + y)
n+

)
= 

for all x, y ∈ X. Thus, the mapping A : X → Y is additive.
Now, we prove the uniqueness ofA. Assume thatT : X → Y is another additivemapping

satisfying (.). Then we obtain

∥∥A(x) – T(x)
∥∥ = lim

n→∞n
∥∥∥∥A

(
x
n

)
– T

(
x
n

)∥∥∥∥
≤ lim

n→∞n
[∥∥∥∥A

(
x
n

)
– f

(
x
n

)∥∥∥∥ +
∥∥∥∥T

(
x
n

)
– f

(
x
n

)∥∥∥∥
]

≤ lim
n→∞

[
φ̃

(
x
n

,
–x
n

,
x
n

)
+ φ̃

(
x
n

,
–x
n

, 
)]

= 

for all x ∈ X. Then we can conclude that A(x) = T(x) for all x ∈ X. This completes the
proof. �

Corollary . Let p and θ be positive real numbers with p > . Let f : X → Y be amapping
satisfying

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥Kf
(
x + y + z

K

)∥∥∥∥ + θ
(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ p + 

p – 
θ‖x‖p

for all x ∈ X.

3 Hyers-Ulam stability of functional inequality (1.4)
Throughout this section, assume that K is a real number with  < K �= .

http://www.journalofinequalitiesandapplications.com/content/2012/1/294
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Proposition . Let f : X → Y be a mapping such that

∥∥f (x) + f (y) +Kf (z)
∥∥ ≤

∥∥∥∥Kf
(
x + y
K

+ z
)∥∥∥∥ (.)

for all x, y, z ∈ X. Then the mapping f : X → Y is additive.

Proof Letting x = y = z =  in (.), we get

∥∥(K + )f ()
∥∥ ≤ ∥∥Kf ()∥∥.

So, f () = .
Letting z =  and y = –x in (.), we get

∥∥f (x) + f (–x)
∥∥ ≤ ∥∥Kf ()∥∥ = 

for all x ∈ X. So, f (–x) = –f (x) for all x ∈ X.
Letting z = –x–y

K in (.), we get

∥∥∥∥f (x) + f (y) –Kf
(
x + y
K

)∥∥∥∥ =
∥∥∥∥f (x) + f (y) +Kf

(
–x – y
K

)∥∥∥∥ ≤ ∥∥Kf ()∥∥ = 

for all x, y ∈ X. Thus,

Kf
(
x + y
K

)
= f (x) + f (y) (.)

for all x, y ∈ X. Letting y =  in (.), we get Kf ( xK ) = f (x) for all x ∈ X. So,

f (x + y) = Kf
(
x + y
K

)
= f (x) + f (y)

for all x, y ∈ X, as desired. �

Theorem . Let K be a positive real number with K < .Assume that a mapping f : X →
Y satisfies the inequality

∥∥f (x) + f (y) +Kf (z)
∥∥ ≤

∥∥∥∥Kf
(
x + y
K

+ z
)∥∥∥∥ + φ(x, y, z), (.)

where φ : X → [,∞) satisfies

φ̃(x, y, z) :=
∞∑
j=

(

K

)j

φ

((
K


)j

x,
(
K


)j

y,
(
K


)j

z
)
< ∞ (.)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥∥A(x) – f (x)
∥∥ ≤ 


φ̃

(
–x, –x,


K
x
)
+ φ̃(x, –x, ) (.)

for all x ∈ X.

http://www.journalofinequalitiesandapplications.com/content/2012/1/294
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Proof It follows from (.) that φ(, , ) = . Letting x = y = z =  in (.), we get
‖(K + )f ()‖ ≤ ‖Kf ()‖ + φ(, , ) = ‖Kf ()‖. So, f () = .
Letting y = –x, z =  in (.), we get

∥∥f (x) + f (–x)
∥∥ ≤ φ(x, –x, ) (.)

for all x ∈ X. Letting x = y = Kx, z = –x in (.), we obtain
∥∥f (Kx) + f (Kx) + f (–x)

∥∥ ≤ φ(Kx,Kx, –x)

for all x ∈ X. So,∥∥∥∥ 
K
f
(
K

x
)
+ f (–x)

∥∥∥∥ ≤ 
K

φ

(
Kx

,
Kx

,–x

)
(.)

for all x ∈ X. It follows from (.) and (.) that∥∥∥∥
(

K

)l

f
((

K


)l

x
)
–

(

K

)m

f
((

K


)m

x
)∥∥∥∥

≤
m–∑
j=l

∥∥∥∥
(

K

)j

f
((

K


)j

x
)
–

(

K

)j+

f
((

K


)j+

x
)∥∥∥∥

≤
m–∑
j=l

[∥∥∥∥
(

K

)j

f
[(

K


)j

x
]
+

(

K

)j+

f
[(

K


)j+

(–x)
]∥∥∥∥

+
∥∥∥∥
(

K

)j+

f
[(

K


)j+

(–x)
]
+

(

K

)j+

f
[(

K


)j+

x
]∥∥∥∥

]

≤
m–∑
j=l

[

K

(

K

)j

φ

(
–
(
K


)j+

x, –
(
K


)j+

x,
(
K


)j

x
)

+
(

K

)j+

φ

((
K


)j+

x,
(
K


)j+

(–x), 
)]

for all nonnegative integers m and l with m > l and all x ∈ X. It means that the se-
quence {( K )nf ((K )nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the se-
quence {( K )nf ((K )nx)} converges. So, we may define the mapping A : X → Y by A(x) =
limn→∞(( K )

nf ((K )
nx)) for all x ∈ X.

Moreover, by letting l =  and passing the limitm → ∞, we get (.).
Next, we claim that A(x) is an additive mapping. It follows from (.) that

∥∥A(x) +A(–x)
∥∥ = lim

n→∞

(

K

)n∥∥∥∥f
((

K


)n

x
)
+ f

(
–
(
K


)n

x
)∥∥∥∥

≤ lim
n→∞

(

K

)n

φ

((
K


)n

x, –
(
K


)n

x, 
)

= lim
n→∞

K


(

K

)n+

φ

((
K


)n+( 
K
x
)
,
(
K


)n+(
–

K
x
)
, 

)
= 

and so A(–x) = –A(x) for all x ∈ X.

http://www.journalofinequalitiesandapplications.com/content/2012/1/294
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It follows from (.) that

∥∥f (Kx) –Kf (x)
∥∥ =

∥∥f (Kx) + f () +Kf (–x)
∥∥ ≤ φ(Kx, , –x)

for all x ∈ X. Hence,

∥∥A(x) +A(y) –A(x + y)
∥∥

=
∥∥A(x) +A(y) +A(–x – y)

∥∥
=

∥∥∥∥A(x) +A(y) +KA
(
–x – y
K

)
–KA

(
–x – y
K

)
+A(–x – y)

∥∥∥∥
≤

∥∥∥∥A(x) +A(y) +KA
(
–x – y
K

)∥∥∥∥ +
∥∥∥∥A(–x – y) –KA

(
–x – y
K

)∥∥∥∥
= lim

n→∞

(

K

)n[∥∥∥∥f
((

K


)n

x
)
+ f

((
K


)n

y
)
+Kf

((
K


)n–x – y
K

)∥∥∥∥
+

∥∥∥∥f
((

K


)n

(–x – y)
)
–Kf

((
K


)n–x – y
K

)∥∥∥∥
]

≤ lim
n→∞

(

K

)n

φ

((
K


)n

x,
(
K


)n

y,
(
K


)n–x – y
K

)

+ lim
n→∞

(

K

)n

φ

((
K


)n

(–x – y), ,
(
K


)n x + y
K

)
= 

for all x, y ∈ X. So, the mapping A : X → Y is an additive mapping.
Now, we show the uniqueness ofA. Assume that T : X → Y is another additive mapping

satisfying (.). Then we get

∥∥A(x) – T(x)
∥∥

= lim
n→∞

(

K

)n∥∥∥∥A
((

K


)n

x
)
– T

((
K


)n

x
)∥∥∥∥

≤ lim
n→∞

(

K

)n[∥∥∥∥A
((

K


)n

x
)
– f

((
K


)n

x
)∥∥∥∥

+
∥∥∥∥T

((
K


)n

x
)
– f

((
K


)n

x
)∥∥∥∥

]

≤ lim
n→∞

(

K

)n

φ̃

((
K


)n

(–x),
(
K


)n

(–x),

K

(
K


)n

x
)

+  lim
n→∞

(

K

)n

φ̃

((
K


)n

x,
(
K


)n

x, 
)
= 

for all x ∈ X. Thus, wemay conclude thatA(x) = T(x) for all x ∈ X. This proves the unique-
ness of A. So, the mapping A : X → Y is a unique additive mapping satisfying (.). �

Corollary . Let p, θ and K be positive real numbers with p >  and K < . Let f : X → Y
be a mapping satisfying

∥∥f (x) + f (y) +Kf (z)
∥∥ ≤

∥∥∥∥Kf
(
x + y
K

+ z
)∥∥∥∥ + θ

(‖x‖p + ‖y‖p + ‖z‖p) (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/294
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for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤


K (


K )

p + 
K

( K )p –

K

θ‖x‖p

for all x ∈ X.

Theorem . Let K be a real number with K > . Assume that a mapping f : X → Y
satisfies inequality (.), where φ : X → [,∞) satisfies

φ̃(x, y, z) :=
∞∑
j=

(
K


)j

φ

((

K

)j

x,
(

K

)j

y,
(

K

)j

z
)
< ∞ (.)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥∥A(x) – f (x)
∥∥ ≤ 


φ̃

(
x,x, –


K
x
)
+
K


φ̃

(

K
x, –


K
x, 

)
(.)

for all x ∈ X.

Proof It follows from (.) that φ(, , ) = . Letting x = y = z =  in (.), we get
‖(K + )f ()‖ ≤ ‖Kf ()‖ + φ(, , ) = ‖Kf ()‖. So, f () = .
Replacing x by 

K x in (.), we get

∥∥∥∥f (x) + K

f
(
–

K
x
)∥∥∥∥ ≤ 


φ

(
x,x, –


K
x
)

(.)

for all x ∈ X. It follows from (.) and (.) that

∥∥∥∥
(
K


)l

f
((


K

)l

x
)
–

(
K


)m

f
((


K

)m

x
)∥∥∥∥

≤
m–∑
j=l

∥∥∥∥
(
K


)j

f
((


K

)j

x
)
–

(
K


)j+

f
((


K

)j+

x
)∥∥∥∥

≤
m–∑
j=l

[∥∥∥∥
(
K


)j

f
[(


K

)j

x
]
+

(
K


)j+

f
[(


K

)j+

(–x)
]∥∥∥∥

+
∥∥∥∥
(
K


)j+

f
[(


K

)j+

(–x)
]
+

(
K


)j+

f
[(


K

)j+

x
]∥∥∥∥

]

≤
m–∑
j=l

[



(
K


)j

φ

((

K

)j

x,
(

K

)j

x, –
(

K

)j+

x
)

+
(
K


)j+

φ

((

K

)j+

x,
(

K

)j+

(–x), 
)]

for all nonnegative integers m and l with m > l and all x ∈ X. It means that the se-
quence {(K )nf (( K )nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the se-
quence {(K )nf (( K )nx)} converges. So, we may define the mapping A : X → Y by A(x) =
limn→∞((K )

nf (( K )
nx)) for all x ∈ X.
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Moreover, by letting l =  and passing the limitm → ∞, we get (.).
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let p, θ and K be positive real numbers with p >  and K > . Let f : X → Y
be a mapping satisfying (.). Then there exists a unique additive mapping A : X → Y such
that

∥∥f (x) –A(x)
∥∥ ≤


K (


K )

p + 
K


K – ( K )p

θ‖x‖p

for all x ∈ X.
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