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1 Introduction

The most popular nonparametric estimator of a distribution based on a sample of obser-
vations is the empirical distribution, and the most popular method of nonparametric den-
sity estimation is the kernel method. For an introduction and applications of this field, the
books by Prakasa Rao [1] and Silverman [2] provide the basic methods for density estima-
tion. For the nonparametric curve estimation from time series such as ¢-mixing, p-mixing
and o-mixing, Gyorfi et al. [3] studied the density estimator and hazard function estima-
tor for these mixing sequences. It is known that ¢-mixing = p-mixing = «-mixing, and
its converse is not true. Although, ¢-mixing is stronger than a-mixing, some properties
of ¢-mixing such as moment inequality, exponential inequality, etc., are better than those
of o-mixing to use. For the properties and examples of mixing, we can read the book of
Doukhan [4]. In this paper, we only give the definition of a ¢-mixing sequence. For the
basic properties of ¢-mixing, one can refer to Billingsley [5].

Denote F)" = 0(X;,n < i < m) and define the coefficients as follows:

@(n) = sup sup |P(B|A) - P(B)|.
m=1Ae FJ" Be F 5. ,P(A)#0

If p(n) | 0 as n — oo, then {X,},>1 is said to be a ¢-mixing sequence.

Many works have been done for the kernel density estimation. For example, Masry [6]
gave the recursive probability density estimation under a mixing-dependent sample, Fan
and Yao [7] summarized the nonparametric and parametric methods including a nonpara-
metric density estimator for nonlinear time series such as ¢-mixing, o-mixing, etc. For an
independent sample, Cao [8] investigated the bootstrap approximations in a nonparamet-
ric density estimator and obtained Berry-Esséen bounds for the kernel density estimation.
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Under ¢-mixing dependence errors, Li et al. [9] obtained the asymptotic normality of a
wavelet estimator of the regression model. Li et al. [10] also gave the Berry-Esséen bound
of a wavelet estimator of the regression model. Meanwhile, Yang et al. [11] studied the
Berry-Esséen bound of sample quantiles for ¢-mixing random variables. In this paper, we
will investigate the Berry-Esséen bounds for a kernel density estimator under a ¢-mixing
dependent sample.

Let {X,,},>1 be a ¢-mixing sequence with an unknown common probability density func-
tion f(x) and the mixing coefficients satisfy (1) = O(n~'8/%). With the help of techniques
of inequalities such as moment inequality, exponential inequality and the Bernstein’s big-
block and small-block procedure, by selecting some positive bandwidths #,, which do
not depend on the mixing coefficients and the lengths of Bernstein’s big-block and small-
block, we investigate the Berry-Esséen bounds of the estimator £, (x) for f (x) and its bounds
are presented as O(1n~¢ -log - log log 1) and O(n~Y/6 -log 11-log log 11) + O(h? ) + O(y > ),
where 0 < 8 < 1. Particularly, if § = 13/18 and &, = n1%®, the bound is presented as
O(n™V® -log n-loglog n). For details, please see our results in Section 3. Some assumptions
and lemmas are presented in Section 2. Regarding the technique of Bernstein’s big-block
and small-block procedure, the reader can refer to Masry [6, 12], Fan and Yao [7], Roussas
[13] and the references therein.

For the kernel density estimator under association and a negatively associated sample,
one can refer to Roussas [13] and Liang and Baek [14] obtained for asymptotic normal-
ity, Wei [15] for the consistences, Henriques and Oliveira [16] for exponential rates, Liang
and Baek [17] for the Berry-Esséen bounds, etc. Regarding other works about the Berry-
Esséen bounds, we can refer to Chang and Rao [18] for the Kaplan-Meier estimator, Cai
and Roussas [19] for the smooth estimator of a distribution function, Yang [20] for the
regression weighted estimator, Dedecker and Prieur [21] for some new dependence coef-
ficients, examples and applications to statistics, Yang et al. [22] for sample quantiles under
negatively associated sample, Herve et al. [23] for M-estimators of geometrically ergodic
Markov chains, and so on. On the other hand, Hardle et al. [24] summarized the Berry-
Esséen bounds of partially linear models (see Chapter 5 of Hérdle et al. [24]).

Throughout the paper, ¢, ¢, ¢y, ..., C, My denote some positive constants not depending
on #, which may be different in various places, || means the largest integer not exceed-
ing x and I(A) is the indicator function of the set A. Let c(x) be some positive constant
depending only on x. For convenience, we denote c = c¢(x) in this paper, whose value may

vary at different places.

2 Some assumptions and lemmas

For the unknown common probability density function f(x), we assume that

fx) € Csp, (2.1)

where « is a positive constant and Cs, is a family of probability density functions having
derivatives of sth order, f)(x) are continuous and |[f®(x)| <a,s=0,1,2,....

Let K(-) be a kernel function in R and satisfy the following condition (A;):

(A1) Assume that K(-) is a bounded probability density function and K(-) € Hs, where H;
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is a class of functions K(-) with the properties

/ uKu)du=0, r=12,...,s—1, / u'K(u)du=A+#0. (2.2)
Here A is a finite constant and s is a positive integer for s > 2.

Obviously, the probability density functions Gaussian kernel K(x) = (271)’% exp{—%}
and Epanechnikov kernel K(x) = 203—~/§(5 — 2 (|x| < +/5) belong to Hs. For more details,
one can refer to Chapter 2 of Prakasa Rao [1].

For a fixed x, the kernel-type estimator of f(x) is defined as

1 < x—X;
fn(x)=nhn§1<< i ) (2.3)

where 4, is a sequence of positive bandwidths tending to zero as n — oo.
Similar to the proof of Theorem 2.2 of Wei [15], we have, by using Taylor’s expansion for
f(x—hyu), that

f(#l) (x) s—1 f(s)(x - Shnu)
Goy !

Sl —hyu) =f(x) = f' @ hpu + - - + (=huu)’,

where 0 < £ <1. By (2.1) and (2.2), it follows

du < ch,

0o & (x - &,
Imwwﬂms/ m@@wrﬁiéf—@

which yields
[Ef, () - £ @)] = O(h).
For s > 2, one can get the ‘bias’ term rate as

/nh,,|Efn(x) —f(x)| < Cﬂ1/2h£125+1)/2,

by providing 24" - 0.
It can be checked that K (x) = (271)’% exp —"72} and K(x) = Tgﬁ(5—x2)l (Jx] < /5) belong

to H,. So, with s = 2, one can see that %,, = n1/*

n1/2h512s+1)/2

satisfies the conditions 0 < /z,, — 0 and
— 0 as n — oo. Consequently, we pay attention to the Berry-Esséen bound of

the centered variate as

Vhy (f,(%) — Ef,y(x))

in this paper.
Similar to Masry [6] and Roussas [13], we give the following assumption.

(Az) Assume thatf(x,y, k) are the joint p.d.f. of the random variables X; and Xj.«,j = 1,2, ...,
which satisfy

sup[f(x,y, k) —f(x)f(y)| <M,, fork=>1.
xy
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Under the assumption (A;) and other conditions, Masry [6] gave the asymptotic nor-
mality for the density estimator under a mixing dependent sample and Roussas [13] ob-
tained the asymptotic normality for the kernel density estimator under an association
sample. Unlike the mixing case, association and negatively associated random variables

x—

X1,Xa,...,X, are subject to the transformation K( hfi), i=1,2,...,n, losing in the pro-

x=X;
T )
i=1,2,...,n,are not necessarily association or negatively associated random variables (see

Roussas [13] and Liang and Baek [14, 17]). In addition, if K(x) = %1 (-1 <x <1), which is
a function of bounded variation, then K(x) = K;(x) — K3(x), where Kj(x) = %I (x <1)and
Ky(x) = %I (x < —1) are bounded and monotone nonincreasing functions. Although the

cess the association or negatively associated property, i.e., the kernel weights K(

transformations {Kl(x;f"), 1<i<mn}and {Kz(x};f" ),1 < i < n} are also the association or
negatively associated random variables, Ki(x) and K;(x) are not integrable in R. So, there
are some difficulties in investigating the kernel density estimator under these dependent
samples. Meanwhile, the nonparametric estimation and nonparametric tests for associa-
tion and negatively associated random variables can be found in Prakasa Rao [25].

In order to obtain the Berry-Esséen bounds for the kernel density estimator under a
@-mixing sample, we give some useful inequalities such as covariance inequality, moment
inequality, characteristic function inequality and exponential inequality for a ¢-mixing

sequence.

Lemma 2.1 (Billingsley [5], inequality (20.28), p.171) If E|§| < oo and P(|n| > C) =0

(€ measurable M* o and n measurable My2,), then

|E(§n) - E§En| < 2Co(n)E|5 |.

Lemma 2.2 (Yang [26], Lemma 2) Let {X,},>1 be a mean zero ¢-mixing sequence with
Yo 92 (n) < 00. Assume that there exists some p > 2 such that E|X,|P < oo for all n > 1.
Then

n

>

i=1

p " " pl2
E §C{ZE|Xi|P+ (ZEX?) } n>1,
i=1

i=1

where C is a positive constant depending only on ¢(-).

Lemma 2.3 (Li et al. [9], Lemma 3.4) Let {X,},>1 be a p-mixing sequence. Suppose that p
and q are two positive integers. Set n; = 3 VErP X for1 <l<k.Then

j=(-1)(p+q)+1
k k k
Eexp{ith} - [ [Eexplitni}| < Cltlo(q) Y Elnil.
=1 I=1 =1

Lemma 2.4 Let X and Y be random variables. Then for any a > 0,

a

V2r

Remark 2.1 Lemma 2.4 is due to Petrov (Petrov [27], Lemma 1.9, p.20 and p.36, lines
19-20). It can also be found in Lemma 2 of Chang and Rao [18].

sup|P(X +Y < t) — ®(t)| < sup|P(X <) — (¢)] + +P(|Y|>a).
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Lemma 2.5 (Yang et al. [11], Corollary A.1) Let {X,},>1 be a mean zero ¢-mixing sequence
with | X,| <d <00, as.,foralln>1.For0<A<1,let m=|n*]| and Ay = Z:’Zl EXiz. Then
forVe>0andn>2,

n 2

&
P Xi| > <2eC - 1
(Z _8> =€ lexp{ 2C2(2A2+n’\de)}

i-1
where C) = exp{2en'*@(m)}, Cy = 4[1+4 32" 912(j)].

3 Main results

Theorem 3.1 For s > 2, let the condition (Ay) hold true. Assume that {X,},>1 is a se-
quence of identically distributed ¢-mixing random variables with the mixing coefficients
@(n) = O(m™8%). If 112 < cn®%°, 0 < b, — 0 as n — oo and liminf,_, « {nh, Var(f,(x))} =
ol(x) >0, then

sup P(V”hn(fn(x)—Efn(x)) < t) _q)(t)l
—00<t<00 /Var( /nhnﬂl(x))
=O(n™" -logn -loglogn), n— oo, (3.1)

where ®(-) is the standard normal distribution function.
Proof It can be found that

Vil () —Efa(x) 3L Zni()

= , (3.2)
\/Var(«/nh (%) \/Var(ZL Z,i(%))

where Z,,;(x) = ﬁ K (xz—i(") - EK (x,;nx" )]. We employ the Bernstein’s big-block and small-

block procedure to prove (3.1). Denote

,u:u,,:anJ, v:vn:Lnl/GJ, k:/(n:L

J =[n"?], (3.3)

W + Dy
and Z,,;(x) = Zyi(%)/\/Var(}_1; Zyi(x)). Define n;, &, ¢k as follows:
Jlp+v)+n ~
= Y, Zul), 0<j<k-1, (3.4)
i=j(u+v)+1
(+1)(+v) _
§= Y. Znl), 0<j<k-1, (3.5)
i=j(u+v)+p+l
= Y Zu. (3.6)
i=k(pu+v)+1

By (3.2), (3.4), (3.5) and (3.6), one has

" k-1 k-1
o
izt Zni(%) = E nj+ E &+ k= S; + SZ + S;’/. (3.7)

JVarCh Zw) 0 o

Sp=
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From (3.5) and (3.7), it follows

k-1
S” Var|:Z E,i| = ZVar[fj] +2 Z Cov(&,&) =1 + L. (3.8)
j=0

0<i<j<k-1

We have by (2.1) and (A;) that

X,
EZ2 (x)=EZ2,(x) < a1k, 1E1<2(xh 1) =ah, / Kz(xh ”)j(u)du <c.

n n

So, by the conditions liminf,,«{nh, Var(f,(x))} = liminf,_ o {n™* Var(}_", Z,:(x))} =
ol(x) > 0, p(n) = O(n™*) and EZ,;(x) = 0, we apply Lemma 2.2 with p = 2 and obtain

that
G+ (n+v) 2 c (Gi+1)(+v) 2 c
- 3 .
Var[sj]:E[ > Zn,i(x)} S—E[ > Zn,i(x)} < v,
i=jerv) 1 " Lo n
Consequently,
C3k Vn _1/2
Il-ZVarE, =0(n?). (3.9)

Meanwhile, one has |Z,,;(x)| < ain V21,12, E|Z,:(x)| < con™V2hY2, 1 < i < n. With A =

J(tn + Vi) + s

12 =2 Z COV(&[, ‘i:]) =2 Z Z Z COV[ZH,MJrll (x)’Zn,)»/’Jrlz ()/)],
0<i<j<k-1 0<i<j<k-114=1 lp=1
but since i #}, |A; = A; + by — l| > 11,, we have, by applying Lemma 2.1 with ¢ (1) = O(n1%/%)
and (3.3), that
|l <2 Z |C0V[Zn,i(x),2n,j(x)]| <dqc Z n PP PP g - i)
1<i<j<n 1<i<j<nmn
j_iZlHn j_iZ]l‘vn
< ¢ Z k1805 < C4M;13/5 _ O(n"26/15). (3.10)
k=i
So, by (3.8), (3.9) and (3.10), one has
E[S!] = 0(m™?). (3.11)

On the other hand, by ¢(n) = O(n™%/%), EZ, ;(x) = 0 and Lemma 2.1 with p = 2, we obtain
that

E[S/r:,]z 5 ( Z an) < %8(11 — k(i + V1))
i=k(u+v)+1

< C9(Mr;l+ Vy) _ O(n_l/a). (3.12)
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Now, we turn to estimate sup_.._,.., |P(S,, < t) — ®(t)|. Define

k—

st = ZVar(nj), r,= Z Cov(n;, ny).

j= 0<i<j<k-1

—

~

Since ES? =1, one has
E(S))? = E[Su—(S/+S!)]" =1+ E(S. +S)* —2E[S.(S. +5)]-
Combining (3.11) with (3.12), one can check that

[E(5,)" 1] = |E(S; +5)" = 2E[Su(S; + 5,)]|
<E(s;)" +E(s;))" +2[E(5;)"] " [E(s))’]”
+2[E(SH)] 7 [E(s)"]" +2[E(s)] ()T
= O(n_M) + O(n_1/6) = O(n_1/6). (3.13)

With A; = j(in + vi), i #j, |hi = Aj + ly =[] > vy, one has

KUn  HKn
2Fn =2 Z COV(ﬂir 771) =2 Z Z Z COV[Zn,Ai+11 (x)¢ Zn,A/+lz (?C)]
0<i<j<k-1 0<i<j<k-11h=1 lp=1

So, similar to the proof of (3.10), by Lemma 2.1 with ¢(n) = O(n™), | Z,,:(x)| < c;n™V2 I}/
and E|Z,,(x)| < c;n 212, we have that

Tyl <2 Z ’Cov[Zn,i(x),Zn,j(x)]‘ <4cicy Z V2 2220 )

1<i<j<m 1<i<j<n
J=i=vn J=i=vn
< Z k1805 < 041);13/5 _ O(n’B/BO). (3.14)
k>vy,
Obviously,
s2 = E[S,]* - 2T, (3.15)

by (3.13), (3.14) and (3.15), we obtain that
sz —1| =0(n"'®). (3.16)

Letn;,j=0,1,...,k -1, be the independent random variables and 7; have the same distri-

bution as n; for j = 0,1,...,k—1.Put B, = Z]]:()l n}/-. It can be seen that

sup }P(S;, < t) - dD(t)’ < sup }P(S;, < t) -P(B, < t)‘

—00<t<00 —00<t<00
+ sup ‘P(B,, <t)- dD(t/s,,)’
—00<t<00
+ sup ‘Cb(t/sn) - CD(t)| :=F +F) +F;. (3.17)

—00<t<00
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Denote the characteristic functions of S, and B, by ¢(¢) and v (¢), respectively. Using the
Esséen inequality (Petrov [27], Theorem 5.3), for any T > 0, we have

Flf/
T

= Fln + an. (318)

thwuwm+T wp‘/ |P(B, <u+1t)-P(B, <1t)|du
Jul <77

—00<t<00

It is a simple fact that

- X
E|Zy )| < ehi?PEK <%>

n

= clh;m/ K3 (xh u)j(u) du < czh;m, 1<i<n

and EZ2,(x) < ¢, 1 < i < n. Applying Lemma 2.2 with p = 3, we obtain by /"> < cn®¢
and liminf,, o {n Var(}_" | Z,:(x))} = of(x) > O that

JAv)+p J(u+v)+u
E|TI/|3 Z Z}’ll Z anx)
i=j(pu+v)+1 i=j(u+v)+1
c J+v)+p Jlrv)+p 3/2
2 3
< T/Z{ Y. ElZu@] + ( > Ezﬁl(x)) }
h i=j(pu+v)+1 i=j(pu+v)+1
3 -1/2 3/2 04”1 _ -1/2

Consequently, by Lemma 2.3, the Jensen inequality, ¢ (1) = O(n™18/%), (3.3), (3.4) and (3.19),
one can see that

(&) =y (0)] =

k-1 k-1
Eexp (it Z n,) - l_[ Eexp(itn;)

Jj=0 Jj=0

k-1

k-1

1/3

<altlp) Y Elnl < altlp(v) Y (Eln;l?)
j=0 j=0

< oltlkn™0p(v) < ¢ |t|n™33. (3.20)

Combining (3.18) with (3.20), we obtain, by taking 7 = n'/°0, that

T
Fln:/
-T

From (3.16), it follows s, — 1. Thus, by the Berry-Esséen inequality (Petrov [27], Theo-
rem 5.7), (3.3) and (3.19), one has that

dt < cn™B3P0. T = O(n™3%0). (3.21)

wm—wm‘
t

—00<E<00

k-1 k-1
sup |P(Bu/s, <t)-®(t)| < % ZE|171 = % Z Inj|? = O(n™%), (3.22)
VI : VI =0
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which implies

sup }P(B,, <u+t)-PB, < t)|

—00<t<00

B, u+t u+t
< sup |[P|—=< -
—00<t<00 Sn Sn Sn
B, t t U+t t
+ sup |[P|—=<—)-®(— )|+ sup [P -o| —
—00<E<00 Sn Sn Sn —00<t<00 Sn Sn

B +t t
<2 sup ‘P(—"ft)—Cb(t) + sup ‘q)(u )—<D<—>‘
—00<t<00 Sn Sn

—00<t<00 Sn
=0(n™"®) + O(Jul/s4). (3.23)

By (3.18) and (3.23), take T = n'3/%%, we obtain that

Fo,=T sup / |P(By <u+t)-P(B, <t)|du < % L2 o). (324)
—00<t<00 J [u|<C/T n T

Therefore, similar to the proof of (2.28) in Yang et al. [11], by (3.16), one has

F3= sup ’CD(t/s,,) - db(t)’ < cl‘si — 1‘ = O(n_l/é), (3.25)

—00<t<00

and from (3.22), it follows

Ey= sup |P(Buls, <tls,)— ®(t/s,)| = O(n"'°). (3.26)

—00<t<00

Consequently, by (3.17), (3.18), (3.21), (3.24), (3.25) and (3.26), one has that

sup |P(S), <t) - ()] = O(n™®) + O(n""**) = O(n™°). (3.27)

—00<E<00

On the other hand, let ¢, = n/¢ - log# - loglog n. By (3.7), we apply Lemma 2.4 with
a = 2¢g, and obtain that

2¢e
P(S, <t)-d()| < P(S. <t)-d(¢ z
_sup [P, <0-00)] < _sup |P(S, <0) - 20|+ =

+P(|Sy| > €4) + P(|S))| > €n). (3.28)
Obviously, by (3.11) and Markov’s inequality, we have
P(|S)| > e4) < n"3(logn - loglog n) ™ -E[S;’]2 = O(n"(logn - loglog m7?).  (3.29)

It is time to estimate P(|S”| > &,). By h;'/> < cn®®° and (3.12), one has

n
|Zn,i| < C3n—1/2h;1/2 < C4.l’l_53/138, Z EZZJ’ < CSVI_I/B.
i=k(pu+v)+1
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So, we have, by Lemma 2.5 with A = 5/23 and m = |n*?3| = | * |, that for # large enough,

P(|S;”|>en)=p< Yz

il >V - logn - loglog n)

i=k(pu+v)+1
< 2C 13 . log? n - (loglog n)?
eCyexpy —
= Sehexp 2C5(2Csn™13 4+ 5123 Cyn=>3/138 7116 . log i1 - log log 1)
C
<=2 (3.30)
n

where

C = exp{Zenl’A(p(m)} < Cexp{Zenl’kn’wm} < Cexp{2e},

2m 00
Cy = 4(1 +4 Zgo”z(i)> < 4(1 +4 Zw”z(i)) <00,

i=1 i=1

Finally, the desired result (3.1) follows from (3.2), (3.7), (3.27), (3.28), (3.29) and (3.30)
immediately. 0

Theorem 3.2 Fors > 2, let the conditions (A1) and (Ay) hold true. Assume that {X,,},>1 isa
sequence of identically distributed ¢-mixing random variables with the mixing coefficients
@(n) = O(n™18), and f (x) satisfies a Lipschitz condition. If h;'/* < cn®'%%, 0 < h, — 0, then
forany § €(0,1),

(W ) ) oy

sup
—00<£<00 o(x)
=0(n™° -logn - loglogn) + O(K) + O(H249%),  n— oo, (3.31)

where o%(x) = f(x) f_o; K2(u) du with f (x) > 0 and ®(-) is the standard normal distribution
function.

Proof By the condition (A;), [ uK(u)du = 0 implies that [ |u|K(u)du < co. Thus, by
the Lipschitz condition of f(x), we obtain that

hiEKZ(x ;IX1> - o2(x)
hi I(2< )f(u )du f(x)/ K*(u)du

< c1/ K(u)[f(x—hnu) —f(x)| du

< czh,,/ |u|K (1) du < c3h,,. (3.32)

o0

Obviously, one has

()] -k G

)/(u)du] < ch,. (3.33)
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Thus, we obtain by combining (3.32) with (3.33) that

|Var(Z,,i(x)) — 0> (x)| = |Var(Z,1(x)) - o> ()]
Lk (x—_ ol > —o2(x)

= (=X
~ h, h, " hy hy

<ch, 1<i<n (3.34)

Meanwhile, for i #j, one has by the condition (A;) that
’COV [Zn,i(x): Zn,j(y)] ’
1 x—X; y-X;
el (550
<h, / / K(S)K(t)| [f(x —nys,y —hyt,j— i) — flx—h,s)f (y— hnt)] | dsdt

< ch,. (3.35)

By (3.35), we take r,, = 47! and obtain that

% Z ’COV[ZV,,i(x),Z,,,}-(y)]’ < cghy,r, = c4hf,. (3.36)

1<i<j<nm
1<j=i<ry

Applying Lemma 2.2 with |Z,;(x)| < c1h,'?, E|Z,,(x)| < c2h}/* and ¢(n) = O(n~'87), we

obtain that
2
= Y |Cov[Zi®), Zuj )] < s Y 0(k) < eI (3.37)
n 1<i<j<n k>ry
J—i>rn
Define
n
o2(x) = Var|:Z Z,,,i(x):|, 020(x) = no’(x), n>1. (3.38)
i=1

Consequently, by (3.34), (3.36), (3.37) and (3.38), it can be checked that
’o,f(x) - a,io(x)’ < n’Var(Z,,yl(x)) - az(x)| +2 Z |C0v[Z,,,i(x),Zn,j(y)]‘
1<i<j<m

< cm(h,, + h‘fl + hilg(l_‘”/s). (3.39)

We obtain, by (3.2), (3.31) and (3.38), that

sup
—00<t<00

o [p(Z ) o

—00<t<00 On0 (%)

P< Z?:l Zn,i(x) < On,0 (%) t) _ & ( On,0 (%) t) ‘

0, (%) = oulx) 0,(%)

P(mvn(x)—Efn(x)) =) -o0)

o (x) -

< sup
—00<E<00
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+ sup ’d><o"’0(x)t>—cb(t)’

—00<t<00 oy (x)

=Q1+ Q. (3.40)

From (3.38) and (3.39), it follows lim,_,« 02(x)/024(x) = 1, since &, — 0 as n — oo and
8 €(0,1). Thus, by applying Theorem 3.1, we establish that

Q= O(n_l/6 -logn -loglog n) (3.41)

On the other hand, similar to the proof of (2.34) in Yang et al. [11], it follows by (3.39)

again that
O <o o (%) e ’oz(x)—az (x)| =O(h5) +O(h13(1_5)/5). (3.42)
— 0_3’0 (x) 0_20 (?C) n n,0 n n
Finally, by (3.40), (3.41) and (3.42), (3.31) holds true. O

Remark 3.1 Under an independent sample, Cao [8] studied the bootstrap approxima-
tions in nonparametric density estimation and obtained Berry-Esséen bounds as O, (n~'/°)
and Op(n‘w) (see Theorem 1 and Theorem 2 of Cao [8]). Under a negatively associ-
ated sample, Liang and Baek [17] studied the Berry-Esséen bound and obtained the rate
O((k’%)” %) under some conditions (see Remark 3.1 of Liang and Baek [17]). In our The-
orem 3.1 and Theorem 3.2, under the mixing coefficients condition ¢ () = O(n~'*) and
other simple assumptions, we obtain the Berry-Esséen bounds of the centered variate as
O(n™V6 -log 11-loglog i) and O(1n~Y¢ -log 1 - loglog 1) + O(h2 ) + O(y>" %), where 0 < § < 1.
Particularly, by taking § = 13/18 and 4, = n7*%° in Theorem 3.2, the Berry-Esséen bound
of the centered variate is presented as

sup
—00<E<00

P(«/nhn(fn(x) - Efu(x)) <t

-®(t)| = O(n’l/6 -logn -loglog n), n— oo,
o (%)

where o (x) and ®(-) are defined in Theorem 3.2.
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