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Abstract
Let {Xn}n≥1 be a ϕ-mixing sequence with an unknown common probability density
function f (x) and the mixing coefficients satisfy ϕ(n) = O(n–18/5). By using some
inequalities for ϕ-mixing random variables and selecting some positive bandwidths
hn, we investigate the Berry-Esséen bounds of the estimator fn(x) for f (x) and its
bounds are presented as O(n–1/6 · logn · log logn) and O(n–1/6 · logn ·
log logn) + O(hδ

n) + O(h13(1–δ)/5n ), where 0 < δ < 1.
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1 Introduction
The most popular nonparametric estimator of a distribution based on a sample of obser-
vations is the empirical distribution, and themost popular method of nonparametric den-
sity estimation is the kernel method. For an introduction and applications of this field, the
books by Prakasa Rao [] and Silverman [] provide the basic methods for density estima-
tion. For the nonparametric curve estimation from time series such as ϕ-mixing, ρ-mixing
and α-mixing, Györfi et al. [] studied the density estimator and hazard function estima-
tor for these mixing sequences. It is known that ϕ-mixing ⇒ ρ-mixing ⇒ α-mixing, and
its converse is not true. Although, ϕ-mixing is stronger than α-mixing, some properties
of ϕ-mixing such as moment inequality, exponential inequality, etc., are better than those
of α-mixing to use. For the properties and examples of mixing, we can read the book of
Doukhan []. In this paper, we only give the definition of a ϕ-mixing sequence. For the
basic properties of ϕ-mixing, one can refer to Billingsley [].
Denote Fm

n = σ (Xi,n≤ i ≤ m) and define the coefficients as follows:

ϕ(n) = sup
m≥

sup
A∈Fm

 ,B∈F∞
m+n ,P(A) �=

∣∣P(B|A) – P(B)
∣∣.

If ϕ(n) ↓  as n→ ∞, then {Xn}n≥ is said to be a ϕ-mixing sequence.
Many works have been done for the kernel density estimation. For example, Masry []

gave the recursive probability density estimation under a mixing-dependent sample, Fan
andYao [] summarized the nonparametric and parametricmethods including a nonpara-
metric density estimator for nonlinear time series such as ϕ-mixing, α-mixing, etc. For an
independent sample, Cao [] investigated the bootstrap approximations in a nonparamet-
ric density estimator and obtained Berry-Esséen bounds for the kernel density estimation.
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Under ϕ-mixing dependence errors, Li et al. [] obtained the asymptotic normality of a
wavelet estimator of the regression model. Li et al. [] also gave the Berry-Esséen bound
of a wavelet estimator of the regression model. Meanwhile, Yang et al. [] studied the
Berry-Esséen bound of sample quantiles for ϕ-mixing random variables. In this paper, we
will investigate the Berry-Esséen bounds for a kernel density estimator under a ϕ-mixing
dependent sample.
Let {Xn}n≥ be a ϕ-mixing sequencewith an unknown commonprobability density func-

tion f (x) and the mixing coefficients satisfy ϕ(n) =O(n–/). With the help of techniques
of inequalities such as moment inequality, exponential inequality and the Bernstein’s big-
block and small-block procedure, by selecting some positive bandwidths hn, which do
not depend on the mixing coefficients and the lengths of Bernstein’s big-block and small-
block, we investigate the Berry-Esséen bounds of the estimator fn(x) for f (x) and its bounds
are presented asO(n–/ · logn · log logn) andO(n–/ · logn · log logn)+O(hδ

n)+O(h
(–δ)/
n ),

where  < δ < . Particularly, if δ = / and hn = n–/, the bound is presented as
O(n–/ · logn · log logn). For details, please see our results in Section . Some assumptions
and lemmas are presented in Section . Regarding the technique of Bernstein’s big-block
and small-block procedure, the reader can refer toMasry [, ], Fan and Yao [], Roussas
[] and the references therein.
For the kernel density estimator under association and a negatively associated sample,

one can refer to Roussas [] and Liang and Baek [] obtained for asymptotic normal-
ity, Wei [] for the consistences, Henriques and Oliveira [] for exponential rates, Liang
and Baek [] for the Berry-Esséen bounds, etc. Regarding other works about the Berry-
Esséen bounds, we can refer to Chang and Rao [] for the Kaplan-Meier estimator, Cai
and Roussas [] for the smooth estimator of a distribution function, Yang [] for the
regression weighted estimator, Dedecker and Prieur [] for some new dependence coef-
ficients, examples and applications to statistics, Yang et al. [] for sample quantiles under
negatively associated sample, Herve et al. [] for M-estimators of geometrically ergodic
Markov chains, and so on. On the other hand, Härdle et al. [] summarized the Berry-
Esséen bounds of partially linear models (see Chapter  of Härdle et al. []).
Throughout the paper, c, c, c, . . . ,C,M denote some positive constants not depending

on n, which may be different in various places, 
x� means the largest integer not exceed-
ing x and I(A) is the indicator function of the set A. Let c(x) be some positive constant
depending only on x. For convenience, we denote c = c(x) in this paper, whose value may
vary at different places.

2 Some assumptions and lemmas
For the unknown common probability density function f (x), we assume that

f (x) ∈ Cs,α , (.)

where α is a positive constant and Cs,α is a family of probability density functions having
derivatives of sth order, f (s)(x) are continuous and |f (s)(x)| ≤ α, s = , , , . . . .
Let K(·) be a kernel function in R and satisfy the following condition (A):

(A) Assume that K(·) is a bounded probability density function and K(·) ∈ Hs, where Hs
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is a class of functions K(·) with the properties

∫ ∞

–∞
urK(u)du = , r = , , . . . , s – ,

∫ ∞

–∞
usK(u)du = A �= . (.)

Here A is a finite constant and s is a positive integer for s≥ .
Obviously, the probability density functions Gaussian kernel K(x) = (π )– 

 exp{– x
 }

and Epanechnikov kernel K(x) = 


√

( – x)I (|x| ≤ √

) belong to H. For more details,
one can refer to Chapter  of Prakasa Rao [].
For a fixed x, the kernel-type estimator of f (x) is defined as

fn(x) =


nhn

n∑
i=

K
(
x –Xi

hn

)
, (.)

where hn is a sequence of positive bandwidths tending to zero as n→ ∞.
Similar to the proof of Theorem . ofWei [], we have, by using Taylor’s expansion for

f (x – hnu), that

f (x – hnu) = f (x) – f ′(x)hnu + · · · + f (s–)(x)
(s – )!

(–hnu)s– +
f (s)(x – ξhnu)

s!
(–hnu)s,

where  < ξ < . By (.) and (.), it follows

∣∣Efn(x) – f (x)
∣∣ ≤

∫ ∞

–∞

∣∣K(u)hsnu
s∣∣ ·

∣∣∣∣ f (s)(x – ξhnu)
s!

∣∣∣∣du≤ chsn,

which yields

∣∣Efn(x) – f (x)
∣∣ =O

(
hsn

)
.

For s ≥ , one can get the ‘bias’ term rate as

√
nhn

∣∣Efn(x) – f (x)
∣∣ ≤ cn/h(s+)/n ,

by providing n/h(s+)/n → .
It can be checked thatK(x) = (π )– 

 exp{– x
 } andK(x) = 


√

(–x)I (|x| ≤ √

) belong
to H. So, with s = , one can see that hn = n–/ satisfies the conditions  < hn →  and
n/h(s+)/n →  as n→ ∞. Consequently, we pay attention to the Berry-Esséen bound of
the centered variate as

√
nhn

(
fn(x) – Efn(x)

)
in this paper.
Similar to Masry [] and Roussas [], we give the following assumption.

(A) Assume that f (x, y,k) are the joint p.d.f. of the randomvariablesXj andXj+k , j = , , . . . ,
which satisfy

sup
x,y

∣∣f (x, y,k) – f (x)f (y)
∣∣ ≤ M, for k ≥ .
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Under the assumption (A) and other conditions, Masry [] gave the asymptotic nor-
mality for the density estimator under a mixing dependent sample and Roussas [] ob-
tained the asymptotic normality for the kernel density estimator under an association
sample. Unlike the mixing case, association and negatively associated random variables
X,X, . . . ,Xn are subject to the transformation K( x–Xihn ), i = , , . . . ,n, losing in the pro-
cess the association or negatively associated property, i.e., the kernel weights K( x–Xihn ),
i = , , . . . ,n, are not necessarily association or negatively associated random variables (see
Roussas [] and Liang and Baek [, ]). In addition, if K(x) = 

 I (– ≤ x ≤ ), which is
a function of bounded variation, then K(x) = K(x) – K(x), where K(x) = 

 I (x ≤ ) and
K(x) = 

 I (x < –) are bounded and monotone nonincreasing functions. Although the
transformations {K( x–Xihn ),  ≤ i ≤ n} and {K( x–Xihn ),  ≤ i ≤ n} are also the association or
negatively associated random variables, K(x) and K(x) are not integrable in R. So, there
are some difficulties in investigating the kernel density estimator under these dependent
samples. Meanwhile, the nonparametric estimation and nonparametric tests for associa-
tion and negatively associated random variables can be found in Prakasa Rao [].
In order to obtain the Berry-Esséen bounds for the kernel density estimator under a

ϕ-mixing sample, we give some useful inequalities such as covariance inequality, moment
inequality, characteristic function inequality and exponential inequality for a ϕ-mixing
sequence.

Lemma . (Billingsley [], inequality (.), p.) If E|ξ | < ∞ and P(|η| > C) = 
(ξ measurable Mk

–∞ and η measurable M∞
k+n), then

∣∣E(ξη) – EξEη
∣∣ ≤ Cϕ(n)E|ξ |.

Lemma . (Yang [], Lemma ) Let {Xn}n≥ be a mean zero ϕ-mixing sequence with∑∞
n= ϕ

/(n) < ∞. Assume that there exists some p ≥  such that E|Xn|p < ∞ for all n ≥ .
Then

E

∣∣∣∣∣
n∑
i=

Xi

∣∣∣∣∣
p

≤ C

{ n∑
i=

E|Xi|p +
( n∑

i=

EX
i

)p/}
, n≥ ,

where C is a positive constant depending only on ϕ(·).

Lemma . (Li et al. [], Lemma .) Let {Xn}n≥ be a ϕ-mixing sequence. Suppose that p
and q are two positive integers. Set ηl =

∑(l–)(p+q)+p
j=(l–)(p+q)+Xj for  ≤ l ≤ k. Then

∣∣∣∣∣E exp
{
it

k∑
l=

ηl

}
–

k∏
l=

E exp{itηl}
∣∣∣∣∣ ≤ C|t|ϕ(q)

k∑
l=

E|ηl|.

Lemma . Let X and Y be random variables. Then for any a > ,

sup
t

∣∣P(X + Y ≤ t) –
(t)
∣∣ ≤ sup

t

∣∣P(X ≤ t) –
(t)
∣∣ + a√

π
+ P

(|Y | > a
)
.

Remark . Lemma . is due to Petrov (Petrov [], Lemma ., p. and p., lines
-). It can also be found in Lemma  of Chang and Rao [].
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Lemma . (Yang et al. [], Corollary A.) Let {Xn}n≥ be amean zero ϕ-mixing sequence
with |Xn| ≤ d < ∞, a.s., for all n ≥ . For  < λ < , let m = 
nλ� and � =

∑n
i= EX

i . Then
for ∀ε >  and n ≥ ,

P

(∣∣∣∣∣
n∑
i=

Xi

∣∣∣∣∣ ≥ ε

)
≤ eC exp

{
–

ε

C(� + nλdε)

}
,

where C = exp{en–λϕ(m)}, C = [ + 
∑m

i= ϕ/(i)].

3 Main results
Theorem . For s ≥ , let the condition (A) hold true. Assume that {Xn}n≥ is a se-
quence of identically distributed ϕ-mixing random variables with the mixing coefficients
ϕ(n) = O(n–/). If h–/n ≤ cn/,  < hn →  as n → ∞ and lim infn→∞{nhnVar(fn(x))} =
σ 
 (x) > , then

sup
–∞<t<∞

∣∣∣∣P
(√

nhn(fn(x) – Efn(x))√
Var(

√
nhnfn(x))

≤ t
)
–
(t)

∣∣∣∣
=O

(
n–/ · logn · log logn)

, n → ∞, (.)

where 
(·) is the standard normal distribution function.

Proof It can be found that

√
nhn(fn(x) – Efn(x))√
Var(

√
nhnfn(x))

=
∑n

i=Zn,i(x)√
Var(

∑n
i=Zn,i(x))

, (.)

where Zn,i(x) = √
hn
[K( x–Xihn ) – EK( x–Xihn )]. We employ the Bernstein’s big-block and small-

block procedure to prove (.). Denote

μ = μn =
⌊
n/

⌋
, ν = νn =

⌊
n/

⌋
, k = kn =

⌊
n

μn + νn

⌋
=

⌊
n/

⌋
, (.)

and Z̃n,i(x) = Zn,i(x)/
√
Var(

∑n
i=Zn,i(x)). Define ηj, ξj, ζk as follows:

ηj =
j(μ+ν)+μ∑
i=j(μ+ν)+

Z̃n,i(x),  ≤ j ≤ k – , (.)

ξj =
(j+)(μ+ν)∑

i=j(μ+ν)+μ+

Z̃n,i(x),  ≤ j ≤ k – , (.)

ζk =
n∑

i=k(μ+ν)+

Z̃n,i(x). (.)

By (.), (.), (.) and (.), one has

Sn =
∑n

i=Zn,i(x)√
Var(

∑n
i=Zn,i(x))

=
k–∑
j=

ηj +
k–∑
j=

ξj + ζk = S′
n + S′′

n + S′′′
n . (.)
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From (.) and (.), it follows

E
[
S′′
n
] =Var

[ k–∑
j=

ξj

]
=

k–∑
j=

Var[ξj] + 
∑

≤i<j≤k–

Cov(ξi, ξj) := I + I. (.)

We have by (.) and (A) that

EZ
n,i(x) = EZ

n,(x) ≤ ch–n EK
(
x –X

hn

)
= ch–n

∫ ∞

–∞
K

(
x – u
hn

)
f (u)du≤ c.

So, by the conditions lim infn→∞{nhnVar(fn(x))} = lim infn→∞{n–Var(∑n
i=Zn,i(x))} =

σ 
 (x) > , ϕ(n) = O(n–/) and EZn,i(x) = , we apply Lemma . with p =  and obtain

that

Var[ξj] = E

[ (j+)(μ+ν)∑
i=j(μ+ν)+

Z̃n,i(x)

]

≤ c
n
E

[ (j+)(μ+ν)∑
i=j(μ+ν)+

Zn,i(x)

]

≤ c
n

νn.

Consequently,

I =
k–∑
j=

Var[ξj] ≤ cknνn
n

=O
(
n–/

)
. (.)

Meanwhile, one has |Z̃n,i(x)| ≤ cn–/h–/n , E|Z̃n,i(x)| ≤ cn–/h/n ,  ≤ i ≤ n. With λj =
j(μn + νn) +μn,

I = 
∑

≤i<j≤k–

Cov(ξi, ξj) = 
∑

≤i<j≤k–

νn∑
l=

νn∑
l=

Cov
[
Z̃n,λi+l (x), Z̃n,λj+l (y)

]
,

but since i �= j, |λi –λj + l – l| ≥ μn, we have, by applying Lemma . with ϕ(n) =O(n–/)
and (.), that

|I| ≤ 
∑

≤i<j≤n
j–i≥μn

∣∣Cov[Z̃n,i(x), Z̃n,j(x)
]∣∣ ≤ cc

∑
≤i<j≤n
j–i≥μn

n–/h–/n n–/h/n ϕ(j – i)

≤ c
∑
k≥μn

k–/ ≤ cμ–/
n =O

(
n–/

)
. (.)

So, by (.), (.) and (.), one has

E
[
S′′
n
] =O

(
n–/

)
. (.)

On the other hand, by ϕ(n) =O(n–/), EZn,i(x) =  and Lemma . with p = , we obtain
that

E
[
S′′′
n
] ≤ c

n
E

( n∑
i=k(μ+ν)+

Zn,i

)

≤ c
n

(
n – kn(μn + νn)

)

≤ c(μn + νn)
n

=O
(
n–/

)
. (.)
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Now, we turn to estimate sup–∞<t<∞ |P(S′
n ≤ t) –
(t)|. Define

sn =
k–∑
j=

Var(ηj), �n =
∑

≤i<j≤k–

Cov(ηi,ηj).

Since ESn = , one has

E
(
S′
n
) = E

[
Sn –

(
S′′
n + S′′′

n
)] =  + E

(
S′′
n + S′′′

n
) – E

[
Sn

(
S′′
n + S′′′

n
)]
.

Combining (.) with (.), one can check that

∣∣E(
S′
n
) – 

∣∣ = ∣∣E(
S′′
n + S′′′

n
) – E

[
Sn

(
S′′
n + S′′′

n
)]∣∣

≤ E
(
S′′
n
) + E

(
S′′′
n
) + 

[
E
(
S′′
n
)]/[E(

S′′′
n
)]/

+ 
[
E
(
Sn

)]/[E(
S′′
n
)]/ + 

[
E
(
Sn

)]/[E(
S′′′
n
)]/

= O
(
n–/

)
+O

(
n–/

)
=O

(
n–/

)
. (.)

With λj = j(μn + νn), i �= j, |λi – λj + l – l| ≥ νn, one has

�n = 
∑

≤i<j≤k–

Cov(ηi,ηj) = 
∑

≤i<j≤k–

μn∑
l=

μn∑
l=

Cov
[
Z̃n,λi+l (x), Z̃n,λj+l (x)

]
.

So, similar to the proof of (.), by Lemma . with ϕ(n) =O(n–/), |Z̃n,i(x)| ≤ cn–/h–/n

and E|Z̃n,j(x)| ≤ cn–/h/n , we have that

|�n| ≤ 
∑

≤i<j≤n
j–i≥νn

∣∣Cov[Z̃n,i(x), Z̃n,j(x)
]∣∣ ≤ cc

∑
≤i<j≤n
j–i≥νn

n–/h–/n n–/h/n ϕ(j – i)

≤ c
∑
k≥νn

k–/ ≤ cν–/
n =O

(
n–/

)
. (.)

Obviously,

sn = E
[
S′
n
] – �n, (.)

by (.), (.) and (.), we obtain that

∣∣sn – 
∣∣ =O

(
n–/

)
. (.)

Let η′
j , j = , , . . . ,k – , be the independent random variables and η′

j have the same distri-
bution as ηj for j = , , . . . ,k – . Put Bn =

∑k–
j= η′

j . It can be seen that

sup
–∞<t<∞

∣∣P(
S′
n ≤ t

)
–
(t)

∣∣ ≤ sup
–∞<t<∞

∣∣P(
S′
n ≤ t

)
– P(Bn ≤ t)

∣∣
+ sup

–∞<t<∞

∣∣P(Bn ≤ t) –
(t/sn)
∣∣

+ sup
–∞<t<∞

∣∣
(t/sn) –
(t)
∣∣ := F + F + F. (.)
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Denote the characteristic functions of S′
n and Bn by ϕ(t) and ψ(t), respectively. Using the

Esséen inequality (Petrov [], Theorem .), for any T > , we have

F ≤
∫ T

–T

∣∣∣∣ϕ(t) –ψ(t)
t

∣∣∣∣dt + T sup
–∞<t<∞

∫
|u|≤ C

T

∣∣P(Bn ≤ u + t) – P(Bn ≤ t)
∣∣du

:= Fn + Fn. (.)

It is a simple fact that

E
∣∣Zn,i(x)

∣∣ ≤ ch–/n EK
(
x –X

hn

)

= ch–/n

∫ ∞

–∞
K

(
x – u
hn

)
f (u)du≤ ch–/n ,  ≤ i ≤ n

and EZ
n,i(x) ≤ c,  ≤ i ≤ n. Applying Lemma . with p = , we obtain by h–/n ≤ cn/

and lim infn→∞{n–Var(∑n
i=Zn,i(x))} = σ 

 (x) >  that

E|ηj| = E

∣∣∣∣∣
j(μ+ν)+μ∑
i=j(μ+ν)+

Z̃n,i

∣∣∣∣∣


≤ c
n/

E

∣∣∣∣∣
j(μ+ν)+μ∑
i=j(μ+ν)+

Zn,i(x)

∣∣∣∣∣


≤ c
n/

{ j(μ+ν)+μ∑
i=j(μ+ν)+

E
∣∣Zn,i(x)

∣∣ +
( j(μ+ν)+μ∑
i=j(μ+ν)+

EZ
n,i(x)

)/}

≤ c
n/

(
μh–/n +μ/) ≤ cn

n/
=O

(
n–/

)
. (.)

Consequently, by Lemma ., the Jensen inequality, ϕ(n) =O(n–/), (.), (.) and (.),
one can see that

∣∣φ(t) –ψ(t)
∣∣ =

∣∣∣∣∣E exp
(
it

k–∑
j=

ηj

)
–

k–∏
j=

E exp(itηj)

∣∣∣∣∣
≤ c|t|ϕ(ν)

k–∑
j=

E|ηj| ≤ c|t|ϕ(ν)
k–∑
j=

(
E|ηj|

)/
≤ c|t|kn–/ϕ(ν)≤ c|t|n–/. (.)

Combining (.) with (.), we obtain, by taking T = n/, that

Fn =
∫ T

–T

∣∣∣∣ϕ(t) –ψ(t)
t

∣∣∣∣dt ≤ cn–/ · T =O
(
n–/

)
. (.)

From (.), it follows sn → . Thus, by the Berry-Esséen inequality (Petrov [], Theo-
rem .), (.) and (.), one has that

sup
–∞<t<∞

∣∣P(Bn/sn ≤ t) –
(t)
∣∣ ≤ c

sn

k–∑
j=

E
∣∣η′

j
∣∣ = c

sn

k–∑
j=

E|ηj| =O
(
n–/

)
, (.)
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which implies

sup
–∞<t<∞

∣∣P(Bn ≤ u + t) – P(Bn ≤ t)
∣∣

≤ sup
–∞<t<∞

∣∣∣∣P
(
Bn

sn
≤ u + t

sn

)
–


(
u + t
sn

)∣∣∣∣
+ sup

–∞<t<∞

∣∣∣∣P
(
Bn

sn
≤ t

sn

)
–


(
t
sn

)∣∣∣∣ + sup
–∞<t<∞

∣∣∣∣

(
u + t
sn

)
–


(
t
sn

)∣∣∣∣
≤  sup

–∞<t<∞

∣∣∣∣P
(
Bn

sn
≤ t

)
–
(t)

∣∣∣∣ + sup
–∞<t<∞

∣∣∣∣

(
u + t
sn

)
–


(
t
sn

)∣∣∣∣
=O

(
n–/

)
+O

(|u|/sn
)
. (.)

By (.) and (.), take T = n/, we obtain that

Fn = T sup
–∞<t<∞

∫
|u|≤C/T

∣∣P(Bn ≤ u + t) – P(Bn ≤ t)
∣∣du≤ c

n/
+
c
T

=O
(
n–/

)
. (.)

Therefore, similar to the proof of (.) in Yang et al. [], by (.), one has

F = sup
–∞<t<∞

∣∣
(t/sn) –
(t)
∣∣ ≤ c

∣∣sn – 
∣∣ =O

(
n–/

)
, (.)

and from (.), it follows

F = sup
–∞<t<∞

∣∣P(Bn/sn ≤ t/sn) –
(t/sn)
∣∣ =O

(
n–/

)
. (.)

Consequently, by (.), (.), (.), (.), (.) and (.), one has that

sup
–∞<t<∞

∣∣P(
S′
n ≤ t

)
–
(t)

∣∣ =O
(
n–/

)
+O

(
n–/

)
=O

(
n–/

)
. (.)

On the other hand, let εn = n–/ · logn · log logn. By (.), we apply Lemma . with
a = εn and obtain that

sup
–∞<t<∞

∣∣P(Sn ≤ t) –
(t)
∣∣ ≤ sup

–∞<t<∞

∣∣P(
S′
n ≤ t

)
–
(t)

∣∣ + εn√
π

+ P
(∣∣S′′

n
∣∣ > εn

)
+ P

(∣∣S′′′
n
∣∣ > εn

)
. (.)

Obviously, by (.) and Markov’s inequality, we have

P
(∣∣S′′

n
∣∣ > εn

) ≤ n/(logn · log logn)– · E[
S′′
n
] =O

(
n–/(logn · log logn)–). (.)

It is time to estimate P(|S′′′
n | > εn). By h–/n ≤ cn/ and (.), one has

|Z̃n,i| ≤ Cn–/h–/n ≤ Cn–/,
n∑

i=k(μ+ν)+

EZ̃
n,i ≤ Cn–/.
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So, we have, by Lemma . with λ = / andm = 
n/� = 
nλ�, that for n large enough,

P
(∣∣S′′′

n
∣∣ > εn

)
= P

(∣∣∣∣∣
n∑

i=k(μ+ν)+

Zn,i

∣∣∣∣∣ > n–/ · logn · log logn
)

≤ eC exp

{
–

n–/ · log n · (log logn)
C(Cn–/ + n/Cn–/n–/ · logn · log logn)

}

≤ C

n
, (.)

where

C = exp
{
en–λϕ(m)

} ≤ C exp
{
en–λn–λ/

} ≤ C exp{e},

C = 

(
 + 

m∑
i=

ϕ/(i)

)
≤ 

(
 + 

∞∑
i=

ϕ/(i)

)
<∞.

Finally, the desired result (.) follows from (.), (.), (.), (.), (.) and (.)
immediately. �

Theorem. For s ≥ , let the conditions (A) and (A) hold true.Assume that {Xn}n≥ is a
sequence of identically distributed ϕ-mixing random variables with the mixing coefficients
ϕ(n) =O(n–/), and f (x) satisfies a Lipschitz condition. If h–/n ≤ cn/,  < hn → , then
for any δ ∈ (, ),

sup
–∞<t<∞

∣∣∣∣P
(√

nhn(fn(x) – Efn(x))
σ (x)

≤ t
)
–
(t)

∣∣∣∣
=O

(
n–/ · logn · log logn)

+O
(
hδ
n
)
+O

(
h(–δ)/
n

)
, n → ∞, (.)

where σ (x) = f (x)
∫ ∞
–∞ K(u)du with f (x) >  and 
(·) is the standard normal distribution

function.

Proof By the condition (A),
∫ ∞
–∞ uK(u)du =  implies that

∫ ∞
–∞ |u|K(u)du < ∞. Thus, by

the Lipschitz condition of f (x), we obtain that

∣∣∣∣ 
hn

EK
(
x –X

hn

)
– σ (x)

∣∣∣∣
=

∣∣∣∣ 
hn

∫ ∞

–∞
K

(
x – u
hn

)
f (u)du – f (x)

∫ ∞

–∞
K(u)du

∣∣∣∣
≤ c

∫ ∞

–∞
K(u)

∣∣f (x – hnu) – f (x)
∣∣du

≤ chn
∫ ∞

–∞
|u|K(u)du ≤ chn. (.)

Obviously, one has


hn

[
EK

(
x –X

hn

)]

=

hn

[∫ ∞

–∞
K

(
x – u
hn

)
f (u)du

]

≤ chn. (.)
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Thus, we obtain by combining (.) with (.) that

∣∣Var(Zn,i(x)
)
– σ (x)

∣∣ = ∣∣Var(Zn,(x)
)
– σ (x)

∣∣
≤ 

hn

[
EK

(
x –X

hn

)]

+
∣∣∣∣ 
hn

EK
(
x –X

hn

)
– σ (x)

∣∣∣∣
≤ chn,  ≤ i≤ n. (.)

Meanwhile, for i �= j, one has by the condition (A) that

∣∣Cov[Zn,i(x),Zn,j(y)
]∣∣

=
∣∣∣∣ 
hn

Cov

[
K

(
x –Xi

hn

)
,K

(
y –Xj

hn

)]∣∣∣∣
≤ hn

∫ ∞

–∞

∫ ∞

–∞
K(s)K(t)

∣∣[f (x – hns, y – hnt, j – i) – f (x – hns)f (y – hnt)
]∣∣dsdt

≤ chn. (.)

By (.), we take rn = hδ–
n and obtain that


n

∑
≤i<j≤n
≤j–i≤rn

∣∣Cov[Zn,i(x),Zn,j(y)
]∣∣ ≤ chnrn = chδ

n. (.)

Applying Lemma . with |Zn,i(x)| ≤ ch–/n , E|Zn,j(x)| ≤ ch/n and ϕ(n) = O(n–/), we
obtain that


n

∑
≤i<j≤n
j–i>rn

∣∣Cov[Zn,i(x),Zn,j(y)
]∣∣ ≤ c

∑
k>rn

ϕ(k)≤ ch(–δ)/
n . (.)

Define

σ 
n (x) =Var

[ n∑
i=

Zn,i(x)

]
, σ 

n,(x) = nσ (x), n≥ . (.)

Consequently, by (.), (.), (.) and (.), it can be checked that

∣∣σ 
n (x) – σ 

n,(x)
∣∣ ≤ n

∣∣Var(Zn,(x)
)
– σ (x)

∣∣ + 
∑

≤i<j≤n

∣∣Cov[Zn,i(x),Zn,j(y)
]∣∣

≤ cn
(
hn + hδ

n + h(–δ)/
n

)
. (.)

We obtain, by (.), (.) and (.), that

sup
–∞<t<∞

∣∣∣∣P
(√

nhn(fn(x) – Efn(x))
σ (x)

≤ t
)
–
(t)

∣∣∣∣
= sup

–∞<t<∞

∣∣∣∣P
(∑n

i=Zn,i(x)
σn,(x)

≤ t
)
–
(t)

∣∣∣∣
≤ sup

–∞<t<∞

∣∣∣∣P
(∑n

i=Zn,i(x)
σn(x)

≤ σn,(x)
σn(x)

t
)
–


(
σn,(x)
σn(x)

t
)∣∣∣∣
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+ sup
–∞<t<∞

∣∣∣∣

(

σn,(x)
σn(x)

t
)
–
(t)

∣∣∣∣
:=Q +Q. (.)

From (.) and (.), it follows limn→∞ σ 
n (x)/σ 

n,(x) = , since hn →  as n → ∞ and
δ ∈ (, ). Thus, by applying Theorem ., we establish that

Q =O
(
n–/ · logn · log logn)

. (.)

On the other hand, similar to the proof of (.) in Yang et al. [], it follows by (.)
again that

Q ≤ c
∣∣∣∣ σ 

n (x)
σ 
n,(x)

– 
∣∣∣∣ = c

σ 
n,(x)

∣∣σ 
n (x) – σ 

n,(x)
∣∣ =O

(
hδ
n
)
+O

(
h(–δ)/
n

)
. (.)

Finally, by (.), (.) and (.), (.) holds true. �

Remark . Under an independent sample, Cao [] studied the bootstrap approxima-
tions in nonparametric density estimation and obtained Berry-Esséen bounds asOp(n–/)
and Op(n–/) (see Theorem  and Theorem  of Cao []). Under a negatively associ-
ated sample, Liang and Baek [] studied the Berry-Esséen bound and obtained the rate
O(( lognn )/) under some conditions (see Remark . of Liang and Baek []). In our The-
orem . and Theorem ., under the mixing coefficients condition ϕ(n) = O(n–/) and
other simple assumptions, we obtain the Berry-Esséen bounds of the centered variate as
O(n–/ · logn · log logn) andO(n–/ · logn · log logn)+O(hδ

n)+O(h
(–δ)/
n ), where  < δ < .

Particularly, by taking δ = / and hn = n–/ in Theorem ., the Berry-Esséen bound
of the centered variate is presented as

sup
–∞<t<∞

∣∣∣∣P
(√

nhn(fn(x) – Efn(x))
σ (x)

≤ t
)
–
(t)

∣∣∣∣ =O
(
n–/ · logn · log logn)

, n→ ∞,

where σ (x) and 
(·) are defined in Theorem ..
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