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Abstract
In this paper, we propose a new Newton-type method for solving the nonlinear
complementarity problem (NCP) based on a class of one-parametric NCP-functions,
where an approximate Newton direction can be obtained by solving a modified
Newton equation in each iteration. The method is shown to be globally convergent
without any additional assumption. To investigate the fast convergence of this class of
methods, we propose a modified version of the proposed method and show the
method is globally and locally superlinearly convergent. The preliminary numerical
results show the effectiveness of the modified method.
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1 Introduction
Consider the nonlinear complementarity problem NCP(F)

x ≥ ,F(x)≥ , xTF(x) = ,

where F :Rn → Rn is a continuously differentiable function. We assume that F is a P-
function throughout this paper. It is well known that NCP(F) can be reformulated as a
system of nonsmooth equations, where the so-called NCP-function plays an important
role in this class of methods.

Definition  A function φ :R →R is called an NCP-function if it satisfies

φ(a,b) =  ⇐⇒ a ≥ , b ≥ , ab = .

Over the past two decades, a variety of NCP-functions have been studied (see, for exam-
ple, [–]). Among them, a popular NCP-function is the well-known Fischer-Burmeister
NCP-function [] defined as

φFB(a,b) =
√
a + b – a – b.
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In this paper, we use a family of NCP-functions based on the FB function, which was
introduced by Kanzow and Kleinmichel [],

φλ(a,b) =
√
(a – b) + λab – a – b, ()

where λ is a fixed parameter such that λ ∈ (, ). In the case of λ = , the NCP-function
φλ obviously reduces to the Fischer-Burmeister function.
By using φλ defined by (), the NCP is equivalent to a system of nonsmooth equations

�λ(x) =

⎡
⎢⎢⎣

φλ(x,F(x))
...

φλ(xn,Fn(x))

⎤
⎥⎥⎦ = .

Let θλ(x) = 
‖�λ(x)‖. Then solving NCP(F) is equivalent to solving the unconstrained

minimization minx∈Rn θλ(x) with the optimal value .
Kanzow andKleinmichel [] studied the properties of�λ and θλ and proposed the corre-

sponding semismooth Newton method. Their method first attempted to use the Newton
direction, but if the Newton equation is unsolvable or the Newton direction is not a di-
rection of sufficient decrease for θλ, then it switches to the steepest descent direction. In
this paper, we propose a Newton-type method for the P-NCP(F), where, in each itera-
tion, we need to construct an approximation of ∂�λ(x) (the Clarke subdifferential of �λ

at x, which is defined in the next section), which is nonsingular, and hence the direction-
finding problem can be solved only by solving a system of perturbed Newton equations.
We show that the proposedmethod is globally convergent without any additional assump-
tion. The proposed method is similar to the one discussed by Yamashita and Fukushima
[], where the NCP-function φFB was used. Since φFB is a special case of φλ, the proposed
method can be used more widely. However, it is hard for us to discuss the locally fast con-
vergence of the proposed method. In order to investigate the locally fast convergence of
this class of methods, we revise the proposedmethod.We show that themodifiedmethod
is globally and locally superlinearly convergent. The preliminary numerical results show
the effectiveness of the modified method.

2 Preliminaries
In this section, we recall some basic concepts and known results.

Definition  F :Rn →Rn is called a P-function if

max
≤i≤n
xi 
=yi

(xi – yi)
(
Fi(x) – Fi(y)

) ≥ , ∀x, y ∈Rn,x 
= y.

Definition  AmatrixM ∈Rn×n is a P-matrix if each of its principal minors is nonneg-
ative.

It is known that the Jacobian of every continuously differentiable P-function is a P-
matrix. The following theorem will play an important role in our analysis. Notice that, for
a vector a, Da denotes the diagonal matrix with the ith diagonal element being ai.
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Theorem  (see []) Let M be a P-matrix, Da and Db be negative definite diagonal ma-
trices. Then Da +DbM is nonsingular.

Let � :Rn → Rn be locally Lipschitz continuous; by Rademacher’s theorem, � is dif-
ferentiable almost everywhere.

Definition  LetD� denote the set {x ∈Rn|� is differentiable at x}, then the B-subdiffer-
ential of � at x is defined as

∂B�(x) =
{
v ∈ Rn×n|v = lim

xk∈D�

xk→x

�′(xk)}.

The Clarke subdifferential of � at x is defined as

∂�(x) = co ∂B�(x),

where co denotes the convex hull of a set.

By the definition of �λ, we know that �λ is not differentiable at x if xi =  = Fi(x) for
some i. However, since �λ is locally Lipschitz continuous [, Lemma .], ∂B�λ(x) is
nonempty at every x ∈ Rn. But how to specify the set ∂B�λ(x) exactly at x where ∇�λ(x)
does not exist?
To solve this problem, we construct two mappings H̃ and Ĥ which approximate ∂B�λ.

For a set X, we denote the power set of X by P(X).
Define the mapping H̃ :Rn → P(Rn×n) as

H̃(x) =
{
H̃ ∈ Rn×n|H̃ =Dã +Db̃F

′(x), (ã, b̃) ∈ �̃(x)
}
,

where �̃ :Rn → P(Rn) is given by

�̃(x) =
{
(ã, b̃) ∈ Rn|(ãi, b̃i) ∈ �̃i(x), i = , , . . . ,n

}
with

�̃i(x) =

{
{(ãi, b̃i) ∈R|(ãi + ) + (b̃i + ) ≤ Cλ}, if xi =  = Fi(x),
{(ãi, b̃i) ∈R|ãi = âi, b̃i = b̂i}, otherwise.

()

Here, Cλ denotes the constant  – λ(–λ)
 , and

âi =
(xi – Fi(x)) + λFi(x)


√
(xi – Fi(x)) + λxiFi(x)

– ,

b̂i =
–(xi – Fi(x)) + λxi


√
(xi – Fi(x)) + λxiFi(x)

– .

In the following, we define Ĥ similarly to H̃, which is a subset of H̃.
The mapping Ĥ :Rn → P(Rn×n) is defined by

Ĥ(x) =
{
Ĥ ∈ Rn×n|Ĥ =Dâ +Db̂F

′(x), (â, b̂) ∈ �̂(x)
}
,
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where �̂ :Rn → P(Rn) is defined by

�̂(x) =
{
(â, b̂) ∈ Rn|(â, b̂) = (

g(x, z),h(x, z)
)
, z ∈ Z(x)

}
.

Here Z(x) = {z ∈ Rn|zi 
= , if i ∈ β}, and β denotes the set {i|xi =  = Fi(x)}. The compo-
nents of a vector g(x, z) are given by

gi(x, z) =

⎧⎪⎨
⎪⎩

(zi–∇FTi (x)z)+λ∇FTi (x)z


√
(zi–∇FTi (x)z)+λzi∇FTi (x)z

– , if xi =  = Fi(x),

(xi–Fi(x))+λFi(x)

√

(xi–Fi(x))+λxiFi(x)
– , otherwise;

and the components of a vector h(x, z) are given by

hi(x, z) =

⎧⎪⎨
⎪⎩

–(zi–∇FTi (x)z)+λzi

√
(zi–∇FTi (x)z)+λzi∇FTi (x)z

– , if xi =  = Fi(x),

–(xi–Fi(x))+λxi

√

(xi–Fi(x))+λxiFi(x)
– , otherwise.

Remark From (), we find that, for every x ∈Rn, (ã, b̃) ∈ �̃(x) satisfies –
√
Cλ– ≤ ãi, b̃i ≤

 (see [, Proposition .]), and ãi, b̃i do not vanish simultaneously. It is the same with
elements in Ĥ.

The mappings H̃ and Ĥ have the following property which will play an important role
in our analysis.

Theorem  For an arbitrary x ∈Rn, we have Ĥ(x) ⊆ ∂B�λ(x)⊆ H̃(x).

Proof ∂B�λ(x)⊆ H̃(x) was shown in [, Proposition .]. Hence, we prove Ĥ(x)⊆ ∂B�λ(x)
in the following.
For an arbitrary Ĥ ∈ Ĥ(x), we shall build a sequence of points {yk} where �λ is differen-

tiable at every yk and such that ∇�λ(yk)T tends to Ĥ ; then the theorem will be obtained
by the definition of B-subdifferential.
Let yk = x + εkz, where z ∈ Z(x) and {εk} is a sequence of positive numbers converging

to . If i /∈ β , either xi 
=  or Fi(x) 
= , and zi 
=  for all i ∈ β .
We can see, by continuity, that if εk is small enough, then for each i, either yki 
=  or

Fi(yk) 
= , so �λ is differentiable at yk . If i /∈ β , by continuity, the ith row of ∇�λ(yk)T

tends to the ith row of Ĥ . So, we only concern the case of i ∈ β .
From [, Proposition .], we know that the ith row of ∇�λ(yk)T is

(
ai

(
yk

)
– 

)
eTi +

(
bi

(
yk

)
– 

)∇Fi
(
yk

)T , ()

where

ai
(
yk

)
=

(εkzi – Fi(yk)) + λFi(yk)

√
(εkzi – Fi(yk)) + λεkziFi(yk)

,

bi
(
yk

)
=

–(εkzi – Fi(yk)) + λεkzi

√
(εkzi – Fi(yk)) + λεkziFi(yk)

.
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By Taylor-expansion, we have, for each i ∈ β ,

Fi
(
yk

)
= Fi(x) + εk∇Fi

(
ξ k)Tz = εk∇Fi

(
ξ k)Tz, with ξ k → x. ()

Substituting () into () and passing to limit, we have, by the continuity of ∇F , that the
rows of∇�λ(yk)T tend to the corresponding rows of Ĥ when i ∈ β . Hence,∇�λ(yk)T tends
to Ĥ . �

In this paper, we present two algorithms. The first one, which is presented in Section ,
uses matrices obtained by perturbing H̃ ∈ H̃. We will establish its global convergence.
While in Section , we present another algorithm based on Ĥ ∈ Ĥ, which is a restricted
version of the first one. The second algorithm can be superlinearly convergent.

3 Algorithm and global convergence
Considering the Newton-type method, the direction-finding problem is solved by H̃d =
–�λ(xk), where H̃ ∈ H̃(xk). However, H̃ is not necessarily nonsingular. In this section, we
will perturb H̃ to G̃, which is nonsingular. Then a search direction can be obtained by
solving G̃d = –�λ(xk). Now, let us construct G̃ as follows.
First, mapping �i :Rn+ → P(R), i = , , . . . ,n are defined by

�i(x,ai,bi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
(āi, b̄i) ∈R

∣∣∣∣∣ āi =
σ (θλ(x))

bi
b̄i = 

}
, if –ε < ai and bi ≤ –ε,

⎧⎪⎨
⎪⎩(āi, b̄i) ∈R

∣∣∣∣∣∣∣
āi = τ

σ (θλ(x))
bi

b̄i = ( – τ ) σ (θλ(x))
ai

τ ∈ [, ]

⎫⎪⎬
⎪⎭ , if ai ≤ –ε and bi ≤ –ε,

{
(āi, b̄i) ∈R

∣∣∣∣∣ āi = 
b̄i = σ (θλ(x))

ai

}
, if ai ≤ –ε and –ε < bi,

where ε ∈ (,  –
√
Cλ/), and σ :R+ → R+ is a nondecreasing continuous function such

that σ () =  and σ (t) >  for all t > .
Because ε ∈ (, –

√
Cλ

 ), it is obvious that for (a,b) ∈ �̃(x), the case of –ε < ai and –ε < bi
will not happen.
In the following, we construct G̃ as

G̃ =Dp̃ +Dq̃F ′(x),

where p̃ and q̃ are vectors such that

(p̃i, q̃i) = (ãi + āi, b̃i + b̄i), i = , , . . . ,n, ()

with (ã, b̃) ∈ �̃(x), and (āi, b̄i) ∈ �i(x, ãi, b̃i), i = , , . . . ,n.
If θλ(x) > , the definition of �i and () imply that both Dp̃, Dp̃ are negative definite

matrices. Furthermore, we define G̃ :Rn → P(Rn×n) as follows:

G̃(x) =

⎧⎪⎨
⎪⎩G̃ ∈Rn×n

∣∣∣∣∣∣∣
G̃ =Dp̃ +Dq̃F ′(x), (p̃, q̃) is defined by ()
with (ã, b̃) ∈ �̃(x) and (āi, b̄i) ∈ �i(x, ãi, b̃i)
for i = , , . . . ,n

⎫⎪⎬
⎪⎭ .
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It is obvious that G̃ = Dp̃ +Dq̃F ′(x) and H̃ = Dã +Db̃F
′(x) are closely related. G̃ is nonsin-

gular under proper conditions.

Theorem  If x is not a solution of NCP(F), i.e., θλ(x) > , then every G̃ ∈ G̃(x) is nonsin-
gular.

Proof For every G̃ ∈ G̃(x), if θλ(x) > , then it follows from the definition of G̃ that Dp̃ and
Dq̃ are negative definite matrices.
Since F is a P-function, the Jacobian of F is a P-matrix. So, F ′(xk) is a P-matrix. Hence,

by Theorem , G̃ is nonsingular. �

By the mapping G̃ , we define �̃ :Rn → P(Rn) as

�̃(x) =
{
d ∈Rn|G̃d = –�λ(x), G̃ ∈ G̃(x)

}
.

It is easy to see that �̃(x) is nonempty for every x such that θλ(x) > . Now we give the first
algorithm.

Algorithm 
Step . Initialization: choose λ ∈ (, ), x ∈Rn, ρ ∈ (, .), β ∈ (, ), and set k := .
Step . Termination criterion: if θλ(x) = , stop. Otherwise, go to Step .
Step . Search direction calculation: find a vector dk ∈ �̃(xk).
Step . Line search: letm be the smallest nonnegative integer such that

θλ

(
xk + βmdk) – θλ

(
xk

) ≤ βmρ∇θλ

(
xk

)Tdk .

Step . Update: set xk+ := xk + tkdk , where tk = βm, k := k + , and go to Step .

It is obvious that if θλ(xk) = , then xk is a solution of NCP(F). Next, we will prove the
global convergence ofAlgorithm . First, we show that every d ∈ �̃(x) is a descent direction
of θλ at x.

Lemma  (see [, Lemma .]) If x is not a solution of NCP(F), i.e., θλ(x) > , then every
d ∈ �̃(x) satisfies the descent condition for θλ, i.e., ∇θλ(x)Td < .

Theorem  Every accumulation point of a sequence {xk} generated by Algorithm  is a
solution of NCP(F).

Proof Owing to Step , {θλ(xk)} is decreasingmonotonically and nonnegative. Itmust con-
verge to some θ∗

λ ≥ . We assume θ∗
λ > . Let x∗ be an accumulation point of {xk} and

{xk}k∈K be a subsequence converging to x∗.
�̃ is uniformly compact near x∗ and closed at x∗ (see [, Lemma .]), we assume, with-

out loss of generality, that lim k→∞
k∈K

dk = d∗ ∈ �̃(x∗). From Lemma , we will get the contra-

diction if we can prove ∇θλ(x∗)Td∗ = . This can be obtained by considering the following
two cases:
• Suppose that inf{tk} ≥ t > . Then we have

θλ

(
xk + tkdk) – θλ

(
xk

) ≤ tkρ∇θλ

(
xk

)Tdk ≤ .

http://www.journalofinequalitiesandapplications.com/content/2012/1/286
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It is obvious that ∇θλ(x∗)Td∗ =  is satisfied.
• Suppose that inf{tk} = . In this case, we assume lim k→∞

k∈K
tk =  without loss of

generality. By line search, we have

θλ(xk + tk
β
dk) – θλ(xk)
tk
β

> ρ∇θλ

(
xk

)Tdk ,

taking the limit yields ∇θλ(x∗)Td∗ ≥ ρ∇θλ(x∗)Td∗. Since ρ ∈ (, .), we have
∇θλ(x∗)Td∗ ≥ . Hence, ∇θλ(x∗)Td∗ = .

We get the contradiction. The proof is complete. �

4 Modified algorithm and fast convergence
In the above section, we established global convergence of Algorithm . It determines a
search direction based on H̃ which contains the generalized Jacobian ∂B�λ(x). However,
it is hard for us to show the superlinear convergence of Algorithm . In the following, we
should modify the search direction properly to accelerate the convergence of algorithm.
By the definition of Ĥ, we know that Ĥ ∈ Ĥ is not necessarily nonsingular. Can we perturb
Ĥ similar to H̃? Next, we give a positive answer to this question.
Define Ĝ as

Ĝ =Dp̂ +Dq̂F ′(x),

where p̂ and q̂ are vectors such that

(p̂i, q̂i) = (âi + āi, b̂i + b̄i), i = , , . . . ,n, ()

with (â, b̂) ∈ �̂(x), and (āi, b̄i) ∈ �i(x, âi, b̂i), i = , , . . . ,n.
If θλ(x) > , the definition of �i and () imply that both Dp̂, Dp̂ are negative definite

matrices.
Mapping Ĝ :Rn → P(Rn×n) is defined by

Ĝ(x) =

⎧⎪⎨
⎪⎩Ĝ ∈Rn×n

∣∣∣∣∣∣∣
Ĝ =Dp̂ +Dq̂F ′(x), (p̂, q̂) is defined by ()
with (â, b̂) ∈ �̂(x) and (āi, b̄i) ∈ �i(x, âi, b̂i)
for i = , , . . . ,n

⎫⎪⎬
⎪⎭ .

FromTheorem , Ĥ ⊆ H̃. It is obvious that Ĝ ⊆ G̃ . And fromTheorem , every Ĝ ∈ Ĝ(x)
is nonsingular if θλ(x) > .
Define �̂ :Rn → P(Rn) as

�̂(x) =
{
d ∈Rn|Ĝd = –�λ(x), Ĝ ∈ Ĝ(x)

}
.

For any x, since Ĝ(x)⊆ G̃(x), we obtain �̂(x)⊆ �̃(x). Hence, �̂(x) is nonempty for every x
such that θλ(x) > . Next, we will give the second algorithm. The search direction is chosen
from �̂(x). The only difference from Algorithm  is the search direction.
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Algorithm 
Step . Initialization: choose λ ∈ (, ), x ∈Rn, ρ ∈ (, .), β ∈ (, ), and set k := .
Step . Termination criterion: if θλ(x) = , stop. Otherwise, go to Step .
Step . Search direction calculation: find a vector dk ∈ �̂(xk).
Step . Line search: letm be the smallest nonnegative integer such that

θλ

(
xk + βmdk) – θλ

(
xk

) ≤ βmρ∇θλ

(
xk

)Tdk .

Step . Update: set xk+ := xk + tkdk , where tk = βm, k := k + , and go to Step .

Since �̂(xk) ⊆ �̃(xk) at each xk as mentioned above, global convergence of Algorithm 
is directly obtained from Theorem . We state the following theorem without proof.

Theorem  Every accumulation point of a sequence {xk} generated by Algorithm  is a
solution of NCP(F).

In the following, we focus our attention on the superlinear convergence rate of Algo-
rithm . To begin with, we assume that the sequence {xk} generated by Algorithm  has a
unique limit point x∗.

Lemma  We have ‖xk + dk – x∗‖ = o(‖xk – x∗‖).

Proof For each k, we have

∥∥xk + dk – x∗∥∥
=

∥∥xk – Ĝ–
k �λ

(
xk

)
– x∗∥∥

=
∥∥Ĝ–

k
(
�λ

(
x∗) –�λ

(
xk

)
+ Ĥk

(
xk – x∗) + (Ĝk – Ĥk)

(
xk – x∗))∥∥

≤ ∥∥Ĝ–
k

∥∥(∥∥�λ

(
x∗) –�λ

(
xk

)
+ Ĥk

(
xk – x∗)∥∥ + ‖Ĝk – Ĥk‖

∥∥xk – x∗∥∥)
,

where Ĥk ∈ Ĥ(xk) is the matrix corresponding to Ĝk . Since �λ is semismooth [,
Lemma .] and Ĥ(xk) ∈ ∂B�λ(xk) for each k, by Theorem , we have

∥∥�λ

(
x∗) –�λ

(
xk

)
+ Ĥk

(
xk – x∗)∥∥ = o

(∥∥xk – x∗∥∥)
(see the proof of [, Theorem .]). Moreover, by the definition of �i and (), we have

‖Ĝk – Ĥk‖ =O
(
σ
(
θλ

(
xk

)))
.

Consequently, it follows that

∥∥xk + dk – x∗∥∥ ≤ ∥∥Ĝ–
k

∥∥(
o
(∥∥xk – x∗∥∥)

+O
(
σ
(
θλ

(
xk

)))∥∥xk – x∗∥∥)
.

Since σ (θλ(xk))→  and {‖Ĝ–
k ‖} is bounded (see the proof of [, Lemma .]), we obtain

the desired result. �

Now, we prove the superlinear convergence of Algorithm .
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Theorem  Algorithm  has a superlinear rate of convergence.

Proof We have xk+ = xk + dk for all k sufficiently large (see the proof of [, Lemma .]).
It then follows from Lemma  that

lim
k→∞

‖xk+ – x∗‖
‖xk – x∗‖ = .

The proof is complete. �

5 Numerical results
In this section, we do some preliminary numerical experiments to test Algorithm  and
compare its performance with that of the algorithms proposed in Chen and Pan [] and
Sun and Zeng [].
First, we set β = ., ρ = –, ε = . and σ (t) = .min{, t}.
For z ∈ Z(x), we define

zi =

⎧⎨
⎩, if xki = Fi(xk) = ,

, otherwise,
i = , , . . . ,n.

The stopping criterion for Algorithm  is θλ(xk) ≤ –. The programs are coded in
MATLAB and run on a personal computer with a . GHZ CPU processor.
The meaning of the columns in the tables are stated as follows:
iter: the total iteration number, resi: the value of θλ(x).

Problem  Let F(x) = Ax + q, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

 –  · · · 
–  – · · · 
   · · · –
...

...
...

...
...

   · · · 

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, q = (–, . . . , –)T .

The corresponding complementarity problem has the unique solution. Table  lists
the test results for Problem  with different n, λ and initial points a = (–, . . . , –)T ,
b = (, . . . , )T , c = (, . . . , )T , d = (, . . . , )T .
From Table , we see that the test results for λ ∈ (, ) are better than for other cases.

Especially, the good numerical results are obtained when λ closes to . Then we compare
the test results withChen andPan [], wherewe set p = , ε = .e–, σ = .e–, β = .
for convenience. Table  lists the test results for [].
Tables  and  indicate that Algorithm  performed much better than Chen and Pan []

did on Problem .

Problem  Free boundary problems can also be solved by the method we presented. The
following problem arises from the discretization of a free boundary problem (see []). Let
� = (, )× (, ) and a function g satisfy g(x, ) = x( – x), g(x, y) =  on x = ,  or y = .

http://www.journalofinequalitiesandapplications.com/content/2012/1/286
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Table 1 Test results for Problem 1

Initials a b c d

n λ iter resi iter resi iter resi iter resi

4 0.0001 3 1.61e–021 2 4.71e–012 3 1.42e–018 3 2.36e–016
0.001 3 4.84e–020 2 6.26e–012 3 1.37e–017 3 1.22e–015
0.03 3 3.81e–012 2 3.74e–010 3 2.11e–014 3 7.61e–013
0.05 3 3.15e–010 2 1.54e–009 3 1.76e–013 3 2.52e–012
0.1 4 1.21e–012 3 3.90e–012 3 1.20e–012 4 6.59e–010
0.5 4 8.78e–011 3 2.70e–010 3 8.18e–010 5 7.32e–013
1 4 3.31e–010 4 1.86e–017 4 1.66e–016 5 1.05e–012
1.3 4 5.23e–009 4 3.78e–013 4 1.92e–014 5 3.20e–011
1.5 5 1.36e–017 4 1.57e–012 4 2.07e–014 6 7.86e–016
2 5 2.22e–013 4 9.67e–011 4 3.05e–012 7 1.64e–016
3.2 6 1.77e–015 5 2.28e–011 4 1.36e–010 13 1.72e–011
3.5 6 4.69e–012 5 5.76e–009 4 5.97e–009 16 1.06e–010
3.8 7 1.62e–013 6 5.16e–011 4 6.87e–010 8 5.69e–013

10 0.0001 3 2.56e–017 2 4.37e–010 3 1.49e–018 3 5.27e–015
0.001 3 1.04e–016 2 4.84e–010 3 3.18e–017 3 5.15e–015
0.03 3 7.55e–011 2 5.42e–009 3 2.90e–014 3 7.16e–009
0.05 3 3.80e–009 3 3.01e–021 3 2.05e–013 3 5.87e–012
0.1 3 6.69e–009 3 1.03e–010 3 3.16e–012 4 7.08e–010
0.5 4 2.86e–010 3 3.91e–010 3 2.30e–009 5 3.87e–014
1 4 2.98e–009 4 1.47e–016 3 1.24e–009 5 7.37e–018
1.3 5 9.65e–018 4 1.25e–014 4 2.27e–013 5 1.49e–011
1.5 5 6.52e–017 4 2.08e–009 4 1.45e–013 6 8.19e–016
2 5 5.67e–014 5 3.91e–017 4 2.22e–014 6 7.76e–009
3.2 6 5.53e–014 5 5.85e–010 4 7.08e–009 13 2.23e–009
3.5 6 3.03e–011 6 7.13e–015 4 6.83e–010 20 1.12e–010
3.8 7 2.93e–013 6 2.81e–010 4 3.62e–010 8 8.00e–014

100 0.0001 3 9.91e–012 3 6.59e–022 3 2.43e–018 3 2.25e–011
0.001 3 1.41e–011 3 1.97e–021 3 3.31e–017 3 1.68e–011
0.03 4 7.16e–021 3 8.29e–018 3 3.25e–014 4 3.76e–019
0.05 4 6.93e–020 3 1.27e–016 3 1.13e–013 4 9.21e–017
0.1 4 8.22e–012 4 3.17e–021 3 3.05e–012 4 4.96e–010
0.5 5 8.60e–020 4 6.17e–019 3 3.00e–009 5 4.00e–011
1 5 2.57e–017 4 1.03e–014 3 2.55e–009 5 7.21e–018
1.3 5 1.11e–015 4 4.37e–011 4 1.00e–014 5 2.87e–009
1.5 5 1.63e–014 5 7.45e–016 4 1.42e–012 6 4.25e–017
2 5 8.25e–012 5 4.76e–014 4 4.63e–011 7 1.16e–013
3.2 6 7.28e–010 6 5.92e–011 4 2.88e–011 17 1.14e–014
3.5 7 2.78e–015 6 3.85e–009 4 3.11e–009 27 1.02e–009
3.8 7 7.03e–009 7 4.89e–013 4 3.62e–010 7 8.13e–012

Table 2 Test results for Chen and Pan [2] on Problem 1

Initials a b c d

n iter resi iter resi iter resi iter resi

4 34 4.92e–009 18 7.17e–009 14 5.90e–009 35 5.90e–009
10 48 6.79e–009 20 3.76e–009 19 5.57e–009 48 4.35e–009
100 97 9.58e–009 23 6.47e–009 18 9.34e–009 48 8.69e–009

Consider the following problem: find u such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u≥  in �,

–�u + f (u,x, y) – (y – .) ≥  in �,

u(–�u + f (u,x, y) – (y – .)) =  in �,

u = g on ∂�,

http://www.journalofinequalitiesandapplications.com/content/2012/1/286
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where f (u,x, y) is a continuously differentiable P-function. We discretize the problem by
the five-point difference scheme with mesh-step h. Then we get the following comple-
mentarity problem: find x ∈Rn such that

x ≥ , Ax +�(x)≥  and xT
(
Ax +�(x)

)
= .

Set initial point as x = (, . . . , )T . Table  lists the test results with different functions f ,
λ, and h.

From Table , we have the following observations.
• Our test results become better when λ decreases. It is obvious that when λ =  the
result is not good enough. That is to say, Algorithm  with the NCP-function φλ

Table 3 Test results for Problem 2

h 1/23 1/24 1/25

f (u,x,y) λ iter resi iter resi iter resi

0 0.0001 3 2.68e–009 7 4.15e–014 13 1.87e–015
0.001 3 5.30e–009 7 2.44e–012 13 1.79e–013
0.01 4 5.05e–018 7 2.30e–010 13 1.78e–011
0.05 4 5.24e–014 7 5.58e–009 13 4.33e–010
0.5 5 1.02e–009 8 7.08e–011 14 5.49e–012
0.8 6 1.60e–014 8 8.17e–010 14 6.35e–011
1 6 2.54e–013 8 2.45e–009 14 1.91e–010
1.5 6 3.17e–011 9 2.21e–012 14 1.22e–009
2 6 8.05e–010 9 5.63e–011 15 3.94e–009
2.2 6 2.23e–009 10 1.56e–010 15 5.59e–009
2.8 7 6.28e–012 10 1.78e–009 16 2.73e–010
3.2 7 1.78e–010 10 5.84e–009 16 8.90e–010
3.8 9 5.88e–011 12 1.36e–009 19 1.63e–009

u3 0.0001 3 2.19e–009 7 4.12e–014 13 1.86e–015
0.001 3 4.68e–009 7 2.43e–012 13 1.79e–013
0.01 4 4.52e–018 7 2.30e–010 13 1.77e–011
0.05 4 5.13e–014 7 5.57e–009 13 4.31e–010
0.5 5 1.04e–009 8 7.07e–011 14 5.47e–012
0.8 6 1.62e–014 8 8.16e–010 14 6.33e–011
1 6 2.52e–013 8 2.45e–009 14 1.90e–010
1.5 6 3.17e–011 9 2.21e–012 14 1.22e–009
2 6 8.04e–010 9 5.62e–011 15 3.92e–009
2.2 6 2.23e–009 10 7.82e–011 15 5.57e–009
2.8 7 6.28e–012 10 1.78e–009 16 2.72e–010
3.2 7 1.78e–010 10 5.83e–009 16 8.86e–010
3.8 9 5.88e–011 12 1.36e–009 19 1.62e–009

1
1+u 0.0001 2 4.46e–010 5 9.42e–014 11 1.33e–014

0.001 2 7.90e–010 5 1.14e–011 11 1.34e–012
0.01 3 9.27e–019 5 1.18e–009 11 1.33e–010
0.05 3 1.27e–014 6 6.77e–016 11 3.21e–009
0.5 3 5.89e–009 6 3.67e–010 12 3.06e–009
0.8 4 6.77e–014 6 5.99e–009 12 6.87e–009
1 4 9.83e–013 7 7.14e–010 12 9.11e–009
1.5 4 1.13e–010 7 4.59e–009 12 1.00e–009
2 5 1.23e–010 8 8.62e–011 13 3.70e–010
2.2 5 6.28e–010 8 2.39e–010 13 5.53e–010
2.8 5 9.40e–009 8 7.25e–009 13 2.01e–009
3.2 6 4.72e–011 8 2.30e–009 13 2.84e–009
3.8 7 4.67e–009 13 8.89e–009 16 2.12e–010
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Table 4 Test results for Sun and Zeng [10] on Problem 2

h 1/23 1/24 1/25

f (u,x,y) iter resi iter resi iter resi

0 5 6.45e–016 8 3.11e–015 14 5.03e–011
u3 5 8.12e–009 9 1.20e–012 15 3.86e–008
1

1+u 5 1.89e–009 8 7.92e–010 14 1.13e–007

Table 5 Test results for MCPLIB problems

λ 1.5 2 3

Problem iter time iter time iter time

mathinum(1) 4 0.048 4 0.050 5 0.050
mathinum(2) 4 0.031 5 0.028 6 0.036
mathinum(3) 7 0.030 7 0.030 8 0.032
mathinum(4) 6 0.076 7 0.074 7 0.080
nash(1) 7 2.536 8 2.538 11 2.529
nash(2) 8 2.284 9 2.301 13 2.334
tobin(1) 7 16.878 9 16.729 10 17.321
tobin(2) 12 17.389 14 17.342 16 17.358

( < λ < ) is better than the one discussed in [] where the Fischer-Burmeister
function was used.

• Whether the function f (u,x, y) is linear or nonlinear, the test results are good. The
results are especially better when λ closes to .

We compare the test results with Sun and Zeng [] where we set β = ., c = .. Table 
lists the test results for [] with different functions f and h.
Tables  and  indicate that Algorithm  performed as well as Sun and Zeng [] did on

Problem .

Problem  We implemented Algorithm  for some test problems with all available start-
ing points in MCPLIB []. The results are reported in Table  with seconds for unit of
time.

The above examples indicate that the results are better when λ closes to . A reason-
able interpretation for this is that the values of gi(x, z) and hi(x, z) become smaller when
λ increases and hence causes some difficulty for Algorithm . This also implies that the
performance of Algorithm  will become worse when p increases. When λ → , the NCP
obviously reduces to min{x,F(x)} = . But it is a nonsmooth equation so we cannot use
this method.

6 Concluding remarks
In this paper, we have studied a class of one-parametric NCP-functions φλ(·, ·) which in-
clude the well-known Fischer-Burmeister function as a special case and proposed modi-
fied Newton-type algorithms for solving P complementarity problems.
Numerical results for the test problems have shown that this method is promising when

λ ∈ (, ). Moreover, our numerical results indicated that the performance of themodified
Newton-typemethod becomes betterwhen λ decreases, which is a new and important nu-
merical result. We believe that Algorithm  can effectively solve more practical problems
if they can be reformulated as an NCP(F). We leave this as a future research topic.
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