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Abstract
Let λ denote any one of the classical spaces �∞, c, c0 and �p of bounded, convergent,
null and absolutely p-summable sequences, respectively, and λ̃ also be the domain of
the double sequential band matrix B(̃r ,̃ s) in the sequence space λ, where (rn)∞n=0 and
(sn)∞n=0 are given convergent sequences of positive real numbers and 1 ≤ p <∞. The
present paper is devoted to studying the sequence space λ̃. Furthermore, the β- and
γ -duals of the space λ̃ are determined, the Schauder bases for the spaces c̃, c̃0 and �̃p
are given, and some topological properties of the spaces c̃0, �̃1 and �̃p are examined.
Finally, the classes (̃λ1 : λ2) and (̃λ1 : λ̃2) of infinite matrices are characterized, where
λ1 ∈ {�∞, c, c0,�p,�1} and λ2 ∈ {�∞, c, c0,�1}.
MSC: 46A45; 40C05

Keywords: matrix domain of a sequence space; β- and γ -duals; Schauder basis and
matrix transformations

1 Preliminaries, background and notation
By a sequence space, we understand a linear subspace of the space ω = C

N of all com-
plex sequences which contains φ, the set of all finitely non-zero sequences, where C de-
notes the complex field and N = {, , , . . .}. We write �∞, c, c and �p for the classical
sequence spaces of all bounded, convergent, null and absolutely p-summable sequences,
respectively, where  ≤ p < ∞. Also, by bs and cs, we denote the spaces of all bounded and
convergent series, respectively. bv is the space consisting of all sequences (xk) such that
(xk – xk+) in � and bv is the intersection of the spaces bv and c. We assume throughout,
unless stated otherwise, that p,q >  with p– + q– =  and use the convention that any
term with a negative subscript is equal to naught.
Let A = (ank) be an infinite matrix of complex numbers ank , where n,k ∈N, and write

(Ax)n :=
∑
k

ankxk
(
n ∈N,x ∈D(A)

)
, (.)

where D(A) denotes the subspace of ω consisting of x ∈ ω for which the sum exists as
a finite sum. For simplicity in notation, here and in what follows, the summation without
limits runs from  to ∞. More generally if μ is a normed sequence space, we can write
Dμ(A) for x ∈ ω, for which the sum in (.) converges in the norm of μ. We write

(λ : μ) :=
{
A : λ ⊆Dμ(A)

}
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for the space of those matrices which send the whole of the sequence space λ into the
sequence space μ in this sense.
A matrix A = (ank) is called a triangle if ank =  for k > n and ann �=  for all n ∈ N. It is

trivial that A(Bx) = (AB)x holds for the triangle matrices A, B and a sequence x. Further,
a triangle matrix U uniquely has an inverse U– = V which is also a triangle matrix. Then
x =U(Vx) = V (Ux) holds for all x ∈ ω.
Let us give the definition of some triangle limitation matrices which are needed in the

text. Let t = (tk) be a sequence of positive reals and write

Tn :=
n∑

k=

tk (n ∈ N).

Then the Cesáro mean of order one, Riesz mean with respect to the sequence t = (tk) and
Euler mean of order r are respectively defined by the matrices C = (cnk), Rt = (rtnk) and
Er = (ernk), where

cnk :=

⎧⎨⎩ 
n+ ( ≤ k ≤ n),

 (k > n),
rtnk :=

⎧⎨⎩
tk
Tn (≤ k ≤ n),

 (k > n)

and

ernk :=

⎧⎨⎩
(n
k
)
( – r)n–krk ( ≤ k ≤ n),

 (k > n)

for all k,n ∈N.WewriteU for the set of all sequences u = (uk) such that uk �=  for all k ∈N.
For u ∈ U , let /u = (/uk). Let z,u, v ∈ U and define the summation matrix S = (snk), the
difference matrix � = (δnk), the generalized weighted mean or factorable matrix G(u, v) =
(gnk), �(m) = (�(m)

nk ), Ar
u = {ank(r)} and Az = (aznk) by

snk :=

⎧⎨⎩ ( ≤ k ≤ n),

 (k > n),
δnk :=

⎧⎨⎩(–)n–k (n –  ≤ k ≤ n),

 ( ≤ k < n –  or k > n),

gnk :=

⎧⎨⎩unvk (≤ k ≤ n),

 (k > n),

�
(m)
nk :=

⎧⎨⎩(–)n–k
( m
n–k

)
(max{,n –m} ≤ k ≤ n),

 ( ≤ k <max{,n –m} or k > n),

ank(r) :=

⎧⎨⎩ +rk
n+ uk ( ≤ k ≤ n),

 (k > n)
and aznk :=

⎧⎨⎩(–)n–kzk (n –  ≤ k ≤ n),

 ( ≤ k < n –  or k > n)

for all k,m,n ∈N, where un depends only on n and vk only on k.
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Let r, s ∈R \ {} and define the generalized difference matrix B(r, s) = {bnk(r, s)} by

bnk(r, s) :=

⎧⎪⎪⎨⎪⎪⎩
r (k = n),

s (k = n – ),

 ( ≤ k < n –  or k > n)

for all k,n ∈N. We should record here that the matrix B(r, s) can be reduced to the differ-
ence matrix �() in case r = , s = –. So, the results related to the matrix domain of the
matrix B(r, s) are more general and more comprehensive than the corresponding conse-
quences of the matrix domain of �() and include them.
The domain λA of an infinite matrix A in a sequence space λ is defined by

λA :=
{
x = (xk) ∈ ω : Ax ∈ λ

}
, (.)

which is a sequence space. If A is triangle, then one can easily observe that the sequence
spaces λA and λ are linearly isomorphic, i.e., λA ∼= λ. If λ is a sequence space, then the
continuous dual λ∗

A of the space λA is defined by

λ∗
A :=

{
f : f = g ◦A, g ∈ λ∗}.

Although in most cases the new sequence space λA generated by the limitation matrix
A from a sequence space λ is the expansion or the contraction of the original space λ, it
may be observed in some cases that those spaces overlap. Indeed, one can easily see that
the inclusion λS ⊂ λ strictly holds for λ ∈ {�∞, c, c}. Similarly, one can deduce that the
inclusion λ ⊂ λ�() also strictly holds for λ ∈ {�∞, c, c,�p}. However, if we define λ := c ⊕
span{z} with z = ((–)k), i.e., x ∈ λ if and only if x := s + αz for some s ∈ c and some α ∈C,
and consider thematrixAwith the rowsAn defined byAn := (–)ne(n) for all n ∈N, we have
Ae = z ∈ λ but Az = e /∈ λ which lead us to the consequences that z ∈ λ \ λA and e ∈ λA \ λ,
where e = (, , , . . .) and e(n) is a sequence whose only non-zero term is a  in nth place
for each n ∈ N. That is to say, the sequence spaces λA and λ overlap but neither contains
the other. The approach of constructing a new sequence space by means of the matrix
domain of a particular limitation method has recently been employed by Wang [], Ng
and Lee [], Malkowsky [], Altay and Başar [, , , , , ], Malkowsky and Savaş
[], Başarır [], Aydın and Başar [, , , , ], Başar et al. [], Şengönül and Başar
[], Altay [], Polat and Başar [] and Malkowsky et al. []. In Table , �, � and �m

are the transpose of the matrices �(), �() and �(m), respectively, and c(u,p) and c(u,p)
are the spaces consisting of the sequences x = (xk) such that ux = (ukxk) in the spaces c(p)
and c(p) for u ∈ U , respectively, and studied by Başarır []. Finally, the new technique for
deducing certain topological properties, for example AB-, KB-, AD-properties, solidity
and monotonicity etc., and determining the β- and γ -duals of the domain of a triangle
matrix in a sequence space is given by Altay and Başar [].
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Table 1 The domains of some triangle matrices in certain sequence spaces

λ A λA Refer to:

c Nq cNq [1]
�p , (1 ≤ p ≤ ∞) C Xp , X∞ [2]
Xp , (1 ≤ p ≤ ∞) �m Cp(�m), C∞(�m) [3]
c0, c, �∞ Rq (N,q)0, (N,q), (N,q)∞ [4]
c0, c, �∞ �(1) c0(�), c(�), �∞(�) [5]
c0, c, �∞ �2 c0(�2), c(�2), �∞(�2) [6]
c0, c, �∞ u�2 c0(u;�2), c(u;�2), �∞(u;�2) [7]
c0, c, �∞ �2 c0(�2), c(�2), �∞(�2) [6]
c0, c, �p G(u, v) Z(u, v; c0), Z(u, v; c), Z(u, v;�p) [8]
c0, c C c̃0, c̃ [9]
c0, c Er er0, e

r
c [10]

c0, c G(u, v) (c0)G(u,v) , cG(u,v) [11]
c0, c Ar1 ar0, a

r
c [12]

�p , (1 ≤ p ≤ ∞) Ar1 arp , a
r∞ [13]

�p , (1 ≤ p ≤ ∞) Er erp , e
r∞ [14, 15]

ar0, a
r
c �(1) ar0(�), arc(�) [16]

�p , (1 ≤ p <∞) G(u, v) �
p
A [17]

�p , (1 ≤ p <∞) �(1) bvp [18, 19]
�p , (0 < p < 1) �(1) bvp [20]
c0, c, �∞ �m c0(�m), c(�m), �∞(�m) [21, 22]
�p , (1 ≤ p <∞) �(m) �p(�(m)) [23]
c0, c, �∞ �(m) c0(�(m)), c(�(m)), �∞(�(m)) [24]
er0, e

r
c �(m) er0(�

(m)), erc(�
(m)) [25]

wp
0 , w

p , wp∞ � wp
0 (�), wp(�), wp∞(�) [26]

wp
0 , w

p , wp∞ T wp
0 (T ), w

p(T ), wp∞(T ) [27]
�∞(p) S bs(p) [28, 29]
�(p) Aru ar (u,p) [30]
�(p) B(r, s) �̂(p) [31]
�(p) S �(p) [32]
c0(p), c(p), �∞(p) � �c0(p), �c(p), ��∞(p) [33]
c0(p), c(p), �∞(p) u� c0(u,�,p), c(u,�,p), �∞(u,�,p) [34]
c0(p), c(p), �∞(p) u�2 c0(u,�2,p), c(u,�2,p), �∞(u,�2,p) [35]
c0(p), c(p), �∞(p) G(u, v) c0(u, v;p), c(u, v;p), �∞(u, v;p) [36]
�(p) G(u, v) �(u, v;p) [37]
�(p), �∞(p) Az bv(z,p), bv∞(z,p) [38]
c0(u,p), c(u,p) Ar1 ar0(u,p), a

r
c(u,p) [39]

�(p) Rt rt (p) [40]
c0(p), c(p), �∞(p) Rt rt0(p), r

t
c(p), r

t∞(p) [41]
c0(p), c(p), �∞(p) �m �mc0(p), �mc(p), �m�∞(p) [42]
c0(p), c(p), �∞(p) u�(m) �(m)

u c0(p), �
(m)
u c(p), �(m)

u �∞(p) [43]
c0, c, �∞ , �p B(r, s) ĉ0, ĉ, l̂∞ , l̂p [44]
c0, c, �∞ , �p B(r, s, t) c0(B), c(B), �∞(B), �p(B) [45]

Let r̃ = (rn)∞n= and s̃ = (sn)∞n= be given convergent sequences of positive real numbers.
Define the sequential generalized difference matrix B(̃r,̃ s) = {bnk (̃r,̃ s)} by

bnk (̃r,̃ s) :=

⎧⎪⎪⎨⎪⎪⎩
rn (k = n),

sn (k = n – ),

 (≤ k < n –  or k > n),

for all k,n ∈ N, the set of natural numbers. We should record here that the matrix B(̃r,̃ s)
can be reduced to the generalized difference matrix B(r, s) in the case rn = r and sn = s for
all n ∈N. So, the results related to thematrix domain of thematrix B(r̃, s̃) are more general
and more comprehensive than the corresponding consequences of the matrix domain of
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B(r, s) and include them. For the literature concerning the domain λA of the infinite ma-
trix A in the sequence space λ, Table  may be useful.
The main purpose of the present paper is to introduce the sequence space λB(̃r,̃s) and to

determine the β- and γ -duals of the space, where λ denotes any one of the spaces �∞, c,
c or �p. Furthermore, the Schauder bases for the spaces c̃, c̃ and �̃p are given and some
topological properties of the spaces c̃, �̃ and �̃p are examined. Finally, some classes of
matrix mappings on the space λB(̃r,̃s) are characterized.
The paper is organized as follows. In Section , we summarize the studies on the dif-

ference sequence spaces. In Section , we introduce the domain λB(̃r,̃s) of the generalized
difference matrix B(̃r,̃ s) in the sequence space λ with λ ∈ {�∞, c, c,�p} and determine the
β- and γ -duals of λB(̃r,̃s). After proving the fact, under which conditions for the inclu-
sion λ ⊂ λB(r̃,s̃) and the equality λ = λB(̃r,̃s) hold, we give the Schauder basis of the spaces
(c)B(r̃,s̃), cB(̃r,̃s) and (�p)B(̃r,̃s). Finally, we investigate some topological properties of the spaces
(c)B(̃r,̃s), (�)B(̃r,̃s) and (�p)B(̃r,̃s) with p > . In Section , we state and prove a general theorem
characterizing the matrix transformations from the domain of a triangle matrix to any se-
quence space. As an application of this basic theorem, we make a table which gives the
necessary and sufficient conditions of the matrix transformations from λB(r̃,s̃) to μ, where
λ ∈ {�∞, c, c,�p} and μ ∈ {�∞, c, c,�}. In the final section of the paper, we note the signif-
icance of the present results in the literature about difference sequences and record some
further suggestions.

2 Difference sequence spaces
In this section, we give some knowledge about the literature concerning the spaces of
difference sequences.
Let λ denote any one of the classical sequence spaces �∞, c or c. Then λ(�) consisting

of the sequences x = (xk) such that �x = (xk – xk+) ∈ λ is called the difference sequence
spaces which were introduced by Kızmaz []. Kızmaz [] proved that λ(�) is a Banach
space with the norm

‖x‖� = |x| + ‖�x‖∞; x = (xk) ∈ λ(�)

and the inclusion relation λ ⊂ λ(�) strictly holds. He also determined the α-, β- and γ -
duals of the difference spaces and characterized the classes (λ(�) : μ) and (μ : λ(�)) of
infinite matrices, where λ,μ ∈ {�∞, c}. Following Kızmaz [], Sarıgöl [] extended the
difference spaces λ(�) to the spaces λ(�r) defined by

λ(�r) :=
{
x = (xk) ∈ ω :�rx =

{
kr(xk – xk+)

} ∈ λ for r < 
}

and computed the α-, β-, γ -duals of the space λ(�r), where λ ∈ {�∞, c, c}. It is easily seen
that λ(�r) ⊂ λ(�), if  < r <  and λ(�)⊂ λ(�r), if r < .
In the same year, Ahmad andMursaleen [] extended these spaces to λ(p,�) and stud-

ied related problems. Malkowsky [] determined the Köthe-Toeplitz duals of the sets
�∞(p,�) and c(p,�) and gave new proofs of the characterization of the matrix transfor-
mations considered in []. In , Choudhary andMishra [] studied some properties
of the sequence space c(�r) for r ≥ . In the same year, Mishra [] gave a characteriza-
tion of BK-spaces which contain a subspace isomorphic to sc(�) in terms of matrix maps
and a sufficient condition for a matrix map from s�∞(�) into a BK-space to be a compact

http://www.journalofinequalitiesandapplications.com/content/2012/1/281
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operator. He showed that anymatrix from s�∞(�) into a BK-space which does not contain
any subspace isomorphic to s�∞(�) is compact, where

sλ(�) =
{
x = (xk) ∈ ω : (�xk) ∈ λ,x =  for λ = �∞ or c

}
.

In , Mursaleen et al. [] defined and studied the sequence space

�∞(p,�r) =
{
x = (xk) ∈ ω :�rx ∈ �∞(p)

}
(r > ).

Gnanaseelan and Srivastava [] defined and studied the spaces λ(u,�) for a sequence
u = (uk) of non-complex numbers such that

(i)
|uk|

|uk+| =  +O(/k) for each k ∈N = {, , , . . .}.
(ii) k–|uk|∑k

i= |ui|– =O().
(iii) (k|u–k |) is a sequence of positive numbers increasing monotonically to infinity.
In the same year, Malkowsky [] defined the spaces λ(u,�) for an arbitrary fixed se-

quence u = (uk) without any restrictions on u. He proved that the sequence spaces λ(u,�)
are BK-spaces with the norm defined by

‖x‖ = sup
k∈N

∣∣uk–(xk– – xk)
∣∣ with u = x = .

Later, Gaur and Mursaleen [] extended the space Sr(�) to the space Sr(p,�), where

Sr(p,�) =
{
x = (xk) ∈ ω :

(
kr|�xk|

) ∈ c(p)
}

(r ≥ )

and characterized the matrix classes (Sr(p,�) : �∞) and (Sr(p,�) : �). Malkowsky et al.
[] and, independently, Asma and Çolak [] extended the space λ(u,�) to the space
λ(p,u,�) and gave Köthe-Toeplitz duals of this spaces for λ = �∞, c or c. Recently,
Malkowsky and Mursaleen [] characterized the matrix classes (�λ : μ) and (�λ : �μ)
for λ = c(p), c(p), �∞(p) and μ = c(q), c(q), �∞(q).
Recently, the difference spaces bvp consisting of the sequences x = (xk) such that (xk –

xk–) ∈ �p have been studied in the case  < p <  by Altay and Başar [], and in the case
 ≤ p≤ ∞ by Başar and Altay [] and Çolak et al. [].

3 Some new sequence spaces derived by the domain of thematrix B(̃r, s̃)
In this section, we define the sequence spaces �̃∞, c̃, c̃ and �̃p, and determine the β- and
γ -duals of the spaces.
We introduce the sequence spaces �̃∞, c̃, c̃ and �̃p as the set of all sequences whose

B(̃r,̃ s)-transforms are in the spaces �∞, c, c and �p, respectively, that is,

�̃∞ :=
{
x = (xk) ∈ ω : sup

k∈N
|sk–xk– + rkxk| < ∞

}
,

c̃ :=
{
x = (xk) ∈ ω : ∃l ∈C � lim

k→∞
|sk–xk– + rkxk – l| = 

}
,

c̃ :=
{
x = (xk) ∈ ω : lim

k→∞
|sk–xk– + rkxk| = 

}
,

�̃p :=
{
x = (xk) ∈ ω :

∑
k

|sk–xk– + rkxk|p < ∞
}
.

http://www.journalofinequalitiesandapplications.com/content/2012/1/281
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With the notation of (.), we can redefine the spaces �̃∞, c̃, c̃ and �̃p by

�̃∞ := {�∞}B(̃r,̃s), c̃ := cB(̃r,̃s), c̃ := {c}B(r̃,s̃), �̃p := {�p}B(r̃,s̃).

Define the sequence y = (yk) by the B(̃r,̃ s)-transform of a sequence x = (xk), i.e.,

yk := sk–xk– + rkxk (k ∈N). (.)

Since the spaces λ and λB(̃r,̃s) are linearly isomorphic, one can easily observe that x = (xk) ∈
λB(r̃,s̃) if and only if y = (yk) ∈ λ, where the sequences x = (xk) and y = (yk) are connected
with the relation (.).
Prior to quoting the lemmas which are needed for deriving some consequences given in

Corollary . below, we give an inclusion theorem related to these new spaces.

Theorem . Let λ ∈ {�∞, c, c,�p} and B = B(r̃, s̃). Then
(i) λ = λB, if sup sn

inf rn < .
(ii) λ ⊂ λB is strict, if sup sn

inf rn ≥ .

Proof Let λ ∈ {�∞, c, c,�} and B = B(r̃, s̃). Since the matrix B satisfies the conditions

sup
n∈N

∑
k

|bnk| ≤ sup
n∈N

rn + sup
n∈N

sn,

lim
n→∞bnk = ,

lim
n→∞

∑
k

bnk = lim
n→∞ rn + lim

n→∞ sn

and

sup
k∈N

∑
n

|bnk| ≤ sup
k∈N

rk + sup
k∈N

sk ,

B ∈ (λ : λ). For any sequence x ∈ λ, Bx ∈ λ hence x ∈ λB. This shows that λ ⊂ λB.
(i) Let sup sn

inf rn < . Since the inverse matrix B– = (b–nk) of the matrix B also satisfies the
conditions

sup
n∈N

∑
k

∣∣b–nk∣∣ ≤ 
inf rn

∑
k

(
sup sn
inf rn

)k

< ∞,

lim
n→∞b–nk = lim

n→∞

rn

n–∏
i=k

–si
ri

= ,

lim
n→∞

∑
k

b–nk ≤ 
inf rn

lim
n→∞

n∑
k=

(
–
inf sn
inf rn

)k

exists

and

sup
k∈N

∑
k

∣∣b–nk∣∣ ≤ 
inf rk

∑
n

(
sup sk
inf rk

)n

< ∞,

http://www.journalofinequalitiesandapplications.com/content/2012/1/281
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B– ∈ (λ : λ). Therefore, if x ∈ λB, then y = Bx ∈ λ and x = B–y ∈ λ. Thus, the opposite
inclusion λB ⊂ λ is just proved. This completes the proof of Part (i).
(ii) Let us consider the sequences u := { 

rn

∏n–
i= –

si
ri
}, u := {(–)n(n + )} and u := {[ +

(–)n]/}.
If sup sn

inf rn > , then Bu = e() = (, , , . . .) ∈ λ. Hence, u ∈ λB \ λ.
Suppose that sup sn

inf rn = .
(a) Let λ = c,�p. If (sn) = (rn), then u ∈ λB \ λ.
(b) Let λ = �∞, c. If (sn) = (rn+), then Bu = {rn(–)n} ∈ �∞, Bu = (r, r, r, . . .) ∈ c.

Hence, u ∈ (�∞)B \ �∞ and u ∈ cB \ c.
This step completes the proof. �

The set S(λ,μ) defined by

S(λ,μ) :=
{
z = (zk) ∈ ω : xz = (xkzk) ∈ μ for all x = (xk) ∈ λ

}
(.)

is called themultiplier space of the spaces λ and μ. One can easily observe for a sequence
space ν with λ ⊃ ν ⊃ μ that the inclusions

S(λ,μ)⊂ S(ν,μ) and S(λ,μ)⊂ S(λ,ν)

hold. With the notation of (.), the α-, β- and γ -duals of a sequence space λ, which are
respectively denoted by λα , λβ and λγ , are defined by

λα := S(λ,�), λβ := S(λ, cs) and λγ := S(λ,bs).

Lemma . [, p., Exercise .(i)] Let λ, μ be the sequence spaces and ξ ∈ {α,β ,γ }. If
λ ⊂ μ, then μξ ⊂ λξ .

We read the following useful results from Stieglitz and Tietz []:

sup
n∈N

∑
k

|ank|q < ∞, (.)

sup
k,n∈N

|ank| < ∞, (.)

lim
n→∞ank = αk (k ∈N), (.)

lim
n→∞

∑
k

|ank| =
∑
k

|αk|, (.)

lim
n→∞

∑
k

ank = α. (.)

Lemma . The necessary and sufficient conditions for A ∈ (λ : μ) when λ ∈ {�∞, c, c,�,
�p} and μ ∈ {�∞, c} can be read from Table .

Basic Lemma [, Theorem .] Let C = (cnk) be defined via the sequence a = (ak) ∈ ω

and the inverse matrix V = (vnk) of the triangle matrix U = (unk) by

cnk :=

⎧⎨⎩
∑n

j=k ajvjk ( ≤ k ≤ n),

 (k > n)

http://www.journalofinequalitiesandapplications.com/content/2012/1/281
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Table 2 The characterization of the class (λ1 : λ2) with λ1 ∈ {�∞, c, c0,�p,�1} and λ2 ∈ {�∞, c}
To From

�∞ c c0 �p �1

�∞ 1. 1. 1. 2. 3.
c 4. 5. 6. 7. 8.

Here 1. (3.3) with q = 1. 2. (3.3). 3. (3.4). 4. (3.5) and (3.6). 5. (3.3) with q = 1, (3.5) and (3.7). 6. (3.3) with q = 1 and (3.5). 7. (3.3) and
(3.5). 8. (3.4) and (3.5).

for all k,n ∈N. Then

{λU}γ :=
{
a = (ak) ∈ ω : C ∈ (λ : �∞)

}
and

{λU}β :=
{
a = (ak) ∈ ω : C ∈ (λ : c)

}
.

Combining Lemma . with Basic Lemma, we have

Corollary . Define the sets d(̃r,̃ s), d(r̃, s̃), d(̃r,̃ s), d(̃r,̃ s) and d(̃r,̃ s) by

d(̃r,̃ s) :=

{
a = (ak) ∈ ω : sup

n∈ N

n∑
k=

∣∣∣∣∣
n∑
j=k


rj

j–∏
i=k

–si
ri

aj

∣∣∣∣∣
q

< ∞
}
,

d(̃r,̃ s) :=

{
a = (ak) ∈ ω : lim

n→∞

n∑
j=k


rj

j–∏
i=k

–si
ri

aj exists

}
,

d(̃r,̃ s) :=

{
a = (ak) ∈ ω : lim

n→∞

n∑
k=

∣∣∣∣∣
n∑
j=k


rj

j–∏
i=k

–si
ri

aj

∣∣∣∣∣ =
∞∑
k=

∣∣∣∣∣ limn→∞

n∑
j=k


rj

j–∏
i=k

–si
ri

aj

∣∣∣∣∣
}
,

d(̃r,̃ s) :=

{
a = (ak) ∈ ω : lim

n→∞

n∑
k=

n∑
j=k


rj

j–∏
i=k

–si
ri

aj exists

}
,

and

d(̃r,̃ s) :=

{
a = (ak) ∈ ω : sup

k,n∈N

∣∣∣∣∣
n∑
j=k


rj

j–∏
i=k

–si
ri

aj

∣∣∣∣∣ < ∞
}
.

Then
(i) {�̃∞}γ := c̃γ := {̃c}γ := d(̃r,̃ s) with q = .
(ii) {�̃p}γ := d(̃r,̃ s).
(iii) {�̃}γ := d(̃r,̃ s).
(iv) {�̃∞}β := d(r̃, s̃)∩ d(̃r,̃ s).
(v) c̃β := d(̃r,̃ s)∩ d(̃r,̃ s)∩ d(̃r,̃ s) with q = .
(vi) {̃c}β := d(̃r,̃ s)∩ d(̃r,̃ s) with q = .
(vii) {�̃p}β := d(̃r,̃ s)∩ d(̃r,̃ s).
(viii) {�̃}β := d(r̃, s̃)∩ d(̃r,̃ s).

http://www.journalofinequalitiesandapplications.com/content/2012/1/281
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A sequence space λ with a linear topology is called a K-space provided each of the
maps pi : λ → C defined by pi(x) = xi is continuous for all i ∈ N. A K-space λ is called
an FK-space provided λ is a complete linear metric space. An FK-space whose topology
is normable is called a BK-space. If a normed sequence space λ contains a sequence (bn)
with the property that for every x ∈ λ, there is a unique sequence of scalars (αn) such that

lim
n→∞

∥∥x – (αb + αb + · · · + αnbn)
∥∥ = ,

then (bn) is called a Schauder basis (or briefly basis) for λ. The series
∑

αkbk which has
the sum x is then called the expansion of x with respect to (bn) and written as x =

∑
αkbk .

Since it is known that the matrix domain λA of a normed sequence space λ has a basis
if and only if λ has a basis whenever A = (ank) is a triangle (cf. [, Remark .]), we have

Corollary . Define the sequences z = (zn) and b(k)(̃r,̃ s) = {b(k)n (̃r,̃ s)}n∈N for every fixed
k ∈N by

zn :=
n∑

k=


rk

k–∏
i=

–si
ri

and b(k)n (̃r,̃ s) :=

⎧⎨⎩ (n < k),

rn

∏n–
i=k

–si
ri

(n≥ k).

Then
(a) the sequence {b(k)(̃r,̃ s)}k∈N is a basis for the spaces c̃ and �̃p, and any x in c̃ or in �̃p

has a unique representation of the form

x :=
∑
k

αk(r)b(k)(̃r,̃ s),

where αk(r) := {B(̃r,̃ s)x}k for all k ∈N.
(b) the set {z,b(k)(̃r,̃ s)} is a basis for the space c̃, and any x in c̃ has a unique

representation of the form

x := lz +
∑
k

[
αk(r) – l

]
b(k)(̃r,̃ s),

where l := limk→∞{B(̃r,̃ s)x}k .

By λμ, we mean the set

λμ :=
{
z = (zk) ∈ ω : zk = xkyk ∀k ∈N,x = (xk) ∈ λ, y = (yk) ∈ μ

}
for the sequence spaces λ and μ.
Given a BK-space λ ⊃ φ, we denote the nth section of a sequence x = (xk) ∈ λ by x[n] :=∑n
k= xke(k), and we say that x has the property
AK if limn→∞ ‖x – x[n]‖λ =  (abschnittskonvergenz),
AB if supn∈N ‖x[n]‖λ < ∞ (abschnittsbeschränktheit),
AD if x ∈ φ (closure of φ ⊂ λ) (abschnittsdichte),
KB if the set {xke(k)} is bounded in λ (koordinatenweise beschränkt).

http://www.journalofinequalitiesandapplications.com/content/2012/1/281
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If one of these properties holds for every x ∈ λ, then we say that the space λ has that
property (cf. []). It is trivial that AK implies AD and AK iff AB and AD. For example,
c and �p are AK-spaces and c and �∞ are not AD-spaces.
The sequence space λ is said to be solid if and only if

λ̃ :=
{
(uk) ∈ ω : ∃(xk) ∈ λ such that |uk| ≤ |xk| for all k ∈ N

} ⊂ λ.

For a sequence J of N and a sequence space λ, we define λJ by

λJ :=
{
x = (xi) : there is a y = (yi) ∈ λ with xi = yni , ∀ni ∈ J

}
and call λJ the J-stepspace or a J-sectional subspace of λ. If xJ ∈ λJ , then the canonical
preimage of xJ is the sequence x̄J which agrees with xJ on the indices in J and is zero
elsewhere. Then λ is called monotone provided λ contains the canonical preimages of all
its stepspaces.

Lemma . [, Theorem . and Lemma .] Let λ, μ be the BK-spaces and CU
μ = (cnk)

be defined via the sequence α = (αk) ∈ μ and the triangle matrix U = (unk) by

cnk :=
n∑
j=k

αjunjvjk

for all k,n ∈N. Then the domain of the matrix U in the sequence space λ has the property
(i) KB if and only if CU

�
∈ (λ : λ),

(ii) AB if and only if CU
bv ∈ (λ : λ),

(iii) monotone if and only if CU
m ∈ (λ : λ),

(iv) solid if and only if CU
�∞ ∈ (λ : λ).

From Lemma ., we have

Corollary . If sn = rn for all n ∈N, then �̃ has the KB- and AB-properties.

Lemma . [, Theorem .] Let λ be a BK-space which has the AK-property, U be a
triangle matrix and λU ⊃ φ. Then the sequence space λU has the AD-property if and only
if the fact tU = θ for t ∈ λβ implies the fact t = θ .

Since c and �p have the AK-property, we can employ Lemma . for the matrix U =
B(̃r,̃ s). Then we have

Corollary . c̃ and �̃p (p > ) have the AD-property if and only if sn ≤ rn for all n ∈ N.

4 Somematrix transformations related to the sequence spaces ˜�∞, c̃, c̃0 and ˜�1
In the present section, we characterize some classes of infinite matrices related to new
sequence spaces.

Theorem. Let λ be an FK-space,U be a triangle, V be its inverse andμ be an arbitrary
subset of ω. Then we have A = (ank) ∈ (λU : μ) if and only if

C(n) =
(
c(n)mk

) ∈ (λ : c) for all n ∈N (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/281
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and

C = (cnk) ∈ (λ : μ), (.)

where

c(n)mk :=

⎧⎨⎩
∑m

j=k anjvjk ( ≤ k ≤ m),

 (k >m)
and cnk :=

∞∑
j=k

anjvjk for all k,m,n ∈N.

Proof Let A = (ank) ∈ (λU : μ) and take x ∈ λU . Then we obtain the equality

m∑
k=

ankxk =
m∑
k=

ank

( k∑
j=

vkjyj

)

=
m∑
k=

( m∑
j=k

anjvjk

)
yk =

m∑
k=

c(n)nk yk (.)

for all m,n ∈ N. Since Ax exists, C(n) must belong to the class (λ : c). Letting m → ∞ in
equality (.) we have Ax = Cy. Since Ax ∈ μ, then Cy ∈ μ, i.e., C ∈ (λ : μ).
Conversely, let (.), (.) hold and take x ∈ λU . Then we have (cnk)k∈N ∈ λβ , which to-

gether with (.) gives that (ank)k∈N ∈ λ
β

U for all n ∈ N. Hence, Ax exists. Therefore, we
obtain from equality (.) asm → ∞ that Ax = Cy and this shows that A ∈ (λU : μ). �

Now, we list the following conditions:

sup
m∈N

m∑
k=

∣∣∣∣∣
m∑
j=k


rj

j–∏
i=k

–si
ri

anj

∣∣∣∣∣
q

< ∞, (.)

lim
m→∞

m∑
j=k


rj

j–∏
i=k

–si
ri

anj = cnk , (.)

lim
m→∞

m∑
k=

∣∣∣∣∣
m∑
j=k


rj

j–∏
i=k

–si
ri

anj

∣∣∣∣∣ = ∑
k

|cnk| for each n ∈N, (.)

lim
m→∞

m∑
k=

m∑
j=k


rj

j–∏
i=k

–si
ri

anj = αn for each n ∈N, (.)

sup
k,m∈N

∣∣∣∣∣
m∑
j=k


rj

j–∏
i=k

–si
ri

anj

∣∣∣∣∣ <∞, (.)

sup
n∈N

∑
k

|cnk|q < ∞, (.)

lim
n→∞ cnk = βk , (.)

lim
n→∞

∑
k

|cnk| =
∑
k

|βk|, (.)

lim
n→∞

∑
k

cnk = β , (.)
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Table 3 The characterization of the class (˜λ :μ) with λ ∈ {�∞, c, c0,�p,�1} and
μ ∈ {�∞, c, c0,�1}

To From

˜�∞ c̃ c̃0 ˜�p ˜�1

�∞ 1. 2. 3. 4. 5.
c 6. 7. 8. 9. 10.
c0 11. 12. 13. 14. 15.
�1 16. 17. 18. 19. 20.

Here 1. (4.5), (4.6) and (4.9) with q = 1. 2. (4.5), (4.7) and (4.4), (4.9) with q = 1. 3. (4.5) and (4.4), (4.9) with q = 1. 4. (4.4), (4.5) and
(4.9). 5. (4.5), (4.8) and (4.13). 6. (4.5), (4.6), (4.10) and (4.11). 7. (4.5), (4.7), (4.10), (4.12) and (4.4), (4.9) with q = 1. 8. (4.5), (4.10)
and (4.4), (4.9) with q = 1. 9. (4.4), (4.5), (4.9) and (4.10). 10. (4.5), (4.8), (4.10) and (4.13). 11. (4.5), (4.6) and (4.15). 12. (4.5), (4.7),
(4.10) with βk = 0 and (4.12) with β = 0, and (4.4), (4.9) with q = 1. 13. (4.5), (4.10) with βk = 0 and (4.4), (4.9) with q = 1. 14. (4.4),
(4.5), (4.9) and (4.10) with βk = 0. 15. (4.5), (4.8), (4.10) with βk = 0 and (4.13). 16. (4.5), (4.6) and (4.16). 17. (4.4) with q = 1, (4.5),
(4.7) and (4.16). 18. (4.4) with q = 1, (4.5) and (4.16). 19. (4.4), (4.5) and (4.17). 20. (4.5), (4.8) and (4.14).

sup
k,n∈N

|cnk| <∞, (.)

sup
k∈N

∑
n

|cnk| <∞, (.)

lim
n→∞

∑
k

cnk = , (.)

sup
N ,K∈F

∣∣∣∣∑
n∈N

∑
k∈K

cnk
∣∣∣∣ < ∞, (.)

sup
N∈F

∑
k

∣∣∣∣∑
n∈N

cnk
∣∣∣∣q < ∞, (.)

where F denotes the collection of all finite subsets of N.
We have from Theorem .

Corollary . The necessary and sufficient conditions for A ∈ (λ : μ) when λ ∈ {�̃∞, c̃, c̃,
�̃p, �̃} and μ ∈ {�∞, c, c,�} can be read from Table .

Now, wemay present our final lemma given by Başar and Altay [, Lemma .] which is
useful for obtaining the characterization of some new matrix classes from Corollary ..

Lemma . Let λ, μ be any two sequence spaces, A be an infinite matrix and U be a
triangle matrix. Then A ∈ (λ : μU ) if and only if UA ∈ (λ : μ).

We should finally note that if ank is replaced by rnank + sn–an–,k for all k,n ∈N in Corol-
lary ., then one can derive the characterization of the class (̃λ : μ̃) from Lemma . with
U = B(̃r,̃ s).

5 Conclusion
Quite recently, Kirişçi and Başar [] studied the domain of the generalized difference
matrix B(r, s) in the classical sequence spaces �∞, c, c and �p. Later, Sönmez [] general-
ized these results by using the triple bandmatrix B(r, s, t). Since the generalized difference
matrix B(r, s) is obtained in the special case rn = r and sn = s for all n ∈ N from the double
sequential band matrix B(̃r,̃ s), our results are much more general than the corresponding
results given by Kirişçi and Başar [].
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Finally, we should note that our next paper will be devoted to the investigation of the
domain of the double sequential band matrix B(̃r,̃ s) in the space f of almost convergent
sequences introduced by Lorentz in [] which generalizes the corresponding results of
Başar and Kirişçi [].
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30. Aydın, C, Başar, F: Some generalizations of the sequence space arp . Iran. J. Sci. Technol., Trans. A, Sci. 30(A2), 175-190

(2006)
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37. Altay, B, Başar, F: Generalization of the sequence space �(p) derived by weighted mean. J. Math. Anal. Appl. 330(1),

174-185 (2007)
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