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1 Introduction

Let C be a closed convex subset of a real Hilbert space H with the inner product (-, -)
and the norm || - ||. We denote weak convergence and strong convergence by notations —
and —, respectively. A mapping A is a nonlinear mapping. The Hartmann-Stampacchia
variational inequality [1] for finding x € C such that

(Ax,y—x) >0, VyeC. (1.1)

The set of solutions of (1.1) is denoted by VI(C,A). The variational inequality has been
extensively studied in the literature 2, 3].

Let f: C — C be called a p-contraction if there exists a constant p € [0,1) such that

If® -fo)| <plx-yll, V¥x,yeC.
A mapping T : C — C is said to be nonexpansive if
ITx =Tyl < llx—yll, Vx,yeC.

A point x € C is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points
of T;thatis, F(T) = {x € C: Tx = x}. If C is bounded closed convex and T is a nonexpansive
mapping of C into itself, then F(T) is nonempty [4].
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We discuss the following variational inequality problem over the fixed point set of a
nonexpansive mapping (see [5-13]), which is called a hierarchical problem. Consider a
monotone, continuous mapping A : H — H and a nonexpansive mapping 7 : H — H.
Find x" € VI(F(T),A) = {x" € F(T) : (Ax",x — x) > 0,Vx € F(T)}, where F(T) # #. This
solution set is denoted by E.

We introduce the following variational inequality problem over the solution set of the
variational inequality problem over the fixed point set of a nonexpansive mapping (see
[14-18]), which is called a triple hierarchical problem. Consider an inverse-strongly mono-
tone A : H — H, a strongly monotone and Lipschitz continuous B: H — H and a nonex-
pansive mapping 7 : H — H.Findx € VI(E,B) = {x" € E: (Bx ,x—x") > 0,Vx € E}, where
E:= VI(F(T),A) #0.

A mapping A : H — H is said to be monotone if

(Ax —Ay,x—y) >0, Vx,yeH.

A mapping A : H — H is said to be a-strongly monotone if there exists a positive real
number « such that

(Ax - Ay,x—y) > alx—y||>, VxyeH.

A mapping A : H — H is said to be S-inverse-strongly monotone if there exists a positive
real number 8 such that

(Ax — Ay,x —y) > BllAx — Ay||*>, Vx,yeH.

A mapping A : H — H is said to be L-Lipschitz continuous if there exists a positive real
number L such that

lAx — Ayl < Lllx-yll, Vx,yeH.

A linear bounded operator A is said to be strongly positive on H if there exists a constant
y > 0 with the property

(Ax,x) > 7|x|1>, VxeH.

In 2009, liduka [14] introduced an iterative algorithm for the following triple hierarchi-
cal constrained optimization problem. The sequence {x,} defined by the iterative method
below, with the initial guess x; € H, is chosen arbitrarily,

Yn = T(xn - )\nAlxn)) (12)
Xn+l = Yn — ManAZynv Vn >0,

where o, € (0,1] and X, € (0, 2¢] satisfy certain conditions. Let A; : H — H be an inverse-
strongly monotone, A, : H — H be a strongly monotone and Lipschitz continuous and
T : H — H be a nonexpansive mapping, then the sequence converges strongly to the set
solution of (1.2).
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In 2011, Yao et al. [19] studied new algorithms. For xy € C chosen arbitrarily, let the

sequence {x,} be generated iteratively by
Xns1 = Prn + (1= ,Bn)TPC[I — (A - Vf)]xm Vn >0,

where the sequences {o,} and {8,} are two sequences in [0,1]. Then {x,} converges

strongly to x~ € F(T) which is the unique solution of the variational inequality:
Find & € F(T) such that ((A —yf)x,x— x) >0, VxeF(T). (1.3)

Let A: C — H be a strongly positive linear bounded operator, f : C — H be a p-
contraction and 7' : C — C be a nonexpansive mapping satisfying some conditions. The
solution set of (1.3) is denoted by Q2 := VI(F(T),A — yf).

Very recently, Marino and Xu [20] generated a sequence {x,} through the recursive for-

mula
Xni1 = Anfn + (1= 1) (0 Vaoy + (1 — ) Tx), V=0,

where f is a contraction on C, the initial guess x¢ € C is arbitrary and {A,}, {,} are two
sequences in (0,1) and 7,V : C — C are two nonexpansive self mappings. Strong conver-
gence of the algorithm is proved under different circumstances of parameter selection.
In this paper, we introduce iterative algorithms and prove a strong convergence theorem
for the following variational inequality over the triple hierarchical problem (1.4) below. Let

B:C — C bea -strongly monotone and L-Lipschitz continuous. Find x” € Q such that
(Bx*,x —x*> >0, Vxeq, (1.4)

where Q := VI(F(T),A — yf) #9, T is a nonexpansive mapping, A : C — H is a strongly
positive linear bounded operator and f : C — H is a p-contraction. This solution set
of (1.4) is denoted by Y := VI(2,B) := VI(VI(F(T),A — yf),B). Then the sequence {x,}
strongly converges to the unique solution of (3.2) in Section 3 and we shall denote the set
of such solutions by ® := VI(Y,I — ¢).

2 Preliminaries
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Recall that
the (nearest point) projection Pc from H onto C assigns, to each x € H, the unique point

in Pcx € C satisfying the property
¥ — Pcx|| = min ||lx — y|l.
yeC

The following characterizes the projection Pc. We recall some lemmas which will be
needed in the rest of this paper.

Lemma 2.1 The function u € C is a solution of the variational inequality (1.1) if and only
if u € C satisfies the relation u = Pc(u — AMu) for all . > 0.
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Lemma2.2 Foragivenze H,ueC,u=Pcz& (u—z,v—u)>0,VveC.

It is well known that Pc is a firmly nonexpansive mapping of H onto C and satisfies
[|Pcx — Pcyll* < (Pcx — Pcy,x—y), Va,y€H. (2.1)
Moreover, Pcx is characterized by the following properties: Pcx € C andforallx e H,y € C,
(x — Pcx,y — Pcx) < 0. (2.2)
Lemma 2.3 The following inequality holds in an inner product space H:
o+ y1> < llxl*> + 2(p,x +y), Vx,y€H.
Lemma 2.4 [21] Let C be a closed convex subset of a real Hilbert space H and let T :
C — C be a nonexpansive mapping. Then I — T is demiclosed at zero, that is, x, — x and
X%y — Ty — 0 imply x = Tx.

Lemma 2.5 [22] Assume A is a strongly positive linear bounded operator on a Hilbert space
H with the coefficient 7 >0 and 0 < p < ||A||™Y, then | — pA| <1-py.

Lemma 2.6 [23] Each Hilbert space H satisfies Opial’s condition, that is, for any sequence
{x,} C H with x,, — x, the inequality

liminf ||x, — x| < liminf|x, — ||
holds for each y € H with y # x.

Lemma 2.7 [24] Let {x,} and {y,} be bounded sequences in a Banach space X and let
{Bu} be a sequence in [0,1] with 0 < liminf,_~ B, < limsup,_, . B, < 1. Suppose x,.1 =
(1= Bu)yn + Buxn for all integers n > 0 and limsup,,_, .. (Y441 — Yull = %1 — %) < 0. Then

1imn—>oo "yn _xn” =0.
Lemma 2.8 [10] Let B: H — H be B-strongly monotone and L-Lipschitz continuous and

let 1 € (0, ’j—é’). For A €[0,1], define T, : H— H by T, (x) := x — AuB(x) for all x € H. Then,
forallx,y e H,

| T5.(x) - T2 < @ =20)llx -yl

holds, where T :=1— /1 - u(2B — uL?) € (0,1].

Lemma 2.9 [25] Assume {a,} is a sequence of nonnegative real numbers such that
1 < (1= Y)an +68,, Yn=0,

where {y,} C (0,1) and {8,} is a sequence in R such that
(i) 2221 )/n = OO,
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(ii) limsup,_, o f/—z <0o0r ) o2 |8, < 00.

Then lim,_, o a,, = 0.

3 Strong convergence theorem
In this section, we introduce an iterative algorithm for solving the monotone variational

inequality over a triple hierarchical problem.

Theorem 3.1 Let H be a real Hilbert space, C be a closed convex subset of H. Let A : C — H
be a strongly positive linear bounded operator, f : C — H be a p-contraction, y be a positive
real number such that % <y< %. Let T : C — C be a nonexpansive mapping, B: C — C
be a B-strongly monotone and L-Lipschitz continuous. Let ¢ : C — C be a k-contraction
mapping with k € [0,1). Assume that Y := VI(VI(F(T),A - yf), B) is nonempty set. Suppose
{x,} is a sequence generated by the following algorithm xo € C arbitrarily:

Zy = TPC[I_ Sn(A - Vf)]xnr
Yn =L = 1BnB)zy, (3.1)

Xn+l = an¢(xn) + (1 - an)ym Vn > 0’

where {a,},{8,} C [0,1]. If u € (O, j—?) is used and if {B,} C (0,1] satisfies the following con-

ditions:
(CL): 3050 181 = 8ul < 00, 3702, 85 = 005
(C2): 355 Bt = Bul < 003
(C3): D021 lotnst — 0ty | < 00, limy, o0 @ty = 0;
(C4): 8, < B and B < .
Then {x,} converges strongly to x” € X', which is the unique solution of the variational in-

equality:
Find x € Y such that ((1 —¢)x,x —x) >0, VxeT. (3.2)

Proof We will divide the proof into four steps.
Step 1. We will show {x,} is bounded. For any g € Y, we have

Iz —qll = | TPc[I = 8,(A = v)]xn — TPcq|
< |[1-8sA=yN]xu—4|
< 8l vf@n) = vf @) + 8u] vf (@) - Aq| + I - 8,Allllx: - gl
< 8uypllxn —qll + 8, vf(q) — Aq| + A - 8,7)llx, —qll

= [1-@ - yo)su]llxn —qll + 84| vf(q) - Aq||. (3.3)

By Lemma 2.8, it is found that

lyn —qll = | - nBuB)zy — I - 1B,B)q|
<1-B:0)lz.—ql
<@ -BOf[1- T = vp)Su]llxn — qll + 8| vf () - Aq] }. (3.4)
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From (3.1), we get

%041 — gll < ot | @) — d(@) | + | (@) —g| + X =) llyn — gl
< a,kllx, — qll + au|$(q) - d(@ + A - e)llyn — gl
< aukllxy = gll + (1 = 0t,)(1 = B, 7)
X A[L= (7 = v0)8u] % = qll + 84| 7 (q) - Aq | }
<yl —qll + (1 =)A= B0 [1 = (7 = v0)8u] %0 — 4
+ (1= a,) (1= B0)8 | vf(q) - Aq]
=yl — gl + A= ) [L= (7 = ¥0)8n — BuT + BuT (7 = ¥)Su ] 1% — 4
+ (1= a,)(1 - B,T)8 | v (q) - Aq]
= ol — gl + A= ) [L= {(7 = ¥0)8n + BaT = BuT(7 = v0)8u} ] l%n — gl
+ (1 - a1 - Bu7)da | vf(q) - Aq|
= oty — gl
+[1= 0w ={(7 = ¥P)8u + BuT = BuT(¥ — ¥0)8, } (1 — )% — g
+ (1= a,) (1= B0)8 | vf () - Adq]
(1= (=) {7 = yP)su + But = But (¥ — vP)Su}]l1%n — 4l
+ (- a,)(1 - B,T)8u | v () - Adq]
= [1- A=) {7 - vp)8u(1 = Bu7) + But}]llxn — qll
+ (1= o)A~ Bu7)8,||vf (@) - Aql|
= [1- Q=) = yp)8s - Bu7) = A = an)But]ll%n — gl
+ (1 - a1 = Bu7)d, | vf (q) - Aq|
= [1- Q-7 - yp)8,(1 = But)|lI%x — qll = A = ) BuT %0 — gl
+ (1) (1= 1) | v/ (q) - Aq

< [1 - (J7 - )/IO)(]- - c(;'1)(1 - ,3,/,‘[)8”] ”xn _ q”
+ (7 - yp)1— )1 - o0, LD AT
v -vp
v/ (@)~ Aql
y-vo

= (l_an)”xn_qn + 0y

where o, := (y — yp)(1 — a,)(1 — B,7)8,. Then the mathematical induction implies that

lvf(a) - Aqll

}, Vn>0.
Y -vp

Imn—qHSHMXhMo—qH

Therefore, {x,} is bounded and so are {y,}, {z.}, {Ax,}, {Bx,}, {¢(x,)} and {f (x,,)}.

Page 6 of 17
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Step 2. We claim that lim,,_,  [|%,41 — %, || = 0 and lim,,_, , ||, — T, || = 0. From (3.1), we
have

zne1 = zull = | TPc[I = 851(A = yf) 1 = TPC[I = 8,(A = )] % |

< ||Pc[I = 8ni1(A = ) |%ni1 = Pc[I = 8u(A = vf) ] |

< |1 = 8nea(A = )]s = [1 = 84(A = yf) ]|

= |81 (Y Gener) = F () + it = 80) v ®n) + (I = 8,424) (i1 — %)
+ (8 — 8ne1) Ay |

< Suna¥ [f onet) —f o) | + (1 = 81 7)1 %1 — %,
181 = 8ul ([ Cen) || + 1A 1)

< 81V P %ns1 — Xl + (L= 8ps1 V) %041 — x|
+ 181 = 8l (| 7/ @) | + A1)

= [1= 7 = ¥0)8na1 | 18s1 = ull + 18,501 = 8l (| vf )| + 1A% ]l) (3.5)

and

lyns1 = yull = ”(1 — Bni1B)zyi1 — (I — uBuB)z, “
= || (I - /’LIBVHIB)ZrHl - (I - Mﬂn+lB)Zn ||
+ | = 1BriB)za — (I — uBuB)za||

< (1= BuO)Izne1 — zull + 1] Busr — Bulll Bzl (3.6)

Using (3.5) and (3.6), we get

[%ns2 = Znet | = | @ni1@ @) + (1 = Cra1) Va1 — ud () — (1 = )y |
< [ $@ni1) = @) | + lotnir = @l ]| plenn) | + (1= @s1) Y1 = 2l
+ (o1 — ot [|y
< k191 = 2| + [eta = @l (| @na) || + l1yall)
+ (1= ) 91 =
< k%1 = | + [otr = @l (| ®ni) || + 1yall)
+ (1= 2pe){ (1 = Bu) |21 = Zull + 141 Bns1 — Bul | Bzl }
= W1 kl|%ne = Full + (e — il ([ @Gnn) | + 1yall)
+ (L= 1) A = BuT) |21 = Zull + (L = ) ] Busr — Bl 1Bzl
< %1 = %l + |01 — a0l (| S i) | + [1yall)
+ (1= 1) 4| Brat = Bul Bz
+ (1= am){[1= (7 = ¥0)8na1 | 1ni1 — %4l
+ 1801 = 8ul ([ vf @) || + 1A%, 1) }
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< A %1 = %l + letns = | (| ) | + 171

+ (1= 1) 4| Bust = Bul 1Bz

+ (1= o) [1= (7 = ¥0)8 a1 | 1ns1 — %l

+ (L= )81 = 8ul (|| 7/ () || + 1A%, 1))
< [1= @ = v0)8u (1 = @psn) | %1 — 2l

+ o1 =l ([ @Genn) || + 1yl

+ 141 Busr = BulllBzall + 18,01 = 84l ([| v/ ) | + 1A 1)
< (1= 7 = 7)1 = o) | 1%ns1 — %l

+ {|an+1 =yl +1Bus1 = Bul + 81 —8n|}M’

where M is some constant such that

Slilg{”(p(xn)” +1Ynll, wll Bz, l, yf(xn)” + ”Axn”} <M.

From (C1)-(C3) and the boundedness of {x,}, {y.}, {Ax,}, {Bz.}, {¢(x,)} and {f(x,)}, by
Lemma 2.9, we have

lim ||%,.1 — 4] = 0. (3.7)
n— 00
On the other hand, we note that

2w = Toull = | TPC[I = 8,(A — )] — Tt |
= | TPc[1 - 8,(A - y )]s — TPc|
< {1 = 8a(A = v)]n = |
< 8u [ (A = 7))

’

by (C3)-(C4) and it follows that
lim ||z, — Tx,| = 0. (3.8)
n— o0

From (3.1), we compute

1011 — znll = Hanqb(xn) + (1= an)yn = 2zn ”
= H(an/’(xn) + (1 =) = uBuB)zy — 2y ”
=oay ||¢(xn) —Zn “ +(1- Ol,,)” (I - uBnB)zn — zu ||

E ank”xn —Zy ” +Qay ||¢(zn) —Zy || + (1 - an)M,Bn ”an ”
By (C3) and (C4), it follows that

lim |[%41 — zx = 0. (3.9)
n—00


http://www.journalofinequalitiesandapplications.com/content/2012/1/280

Wairojjana et al. Journal of Inequalities and Applications 2012, 2012:280 Page9of 17
http://www.journalofinequalitiesandapplications.com/content/2012/1/280

Since
e = Toull < 10 = %ne1ll + %01 = Zull + 1120 = Tl

By (3.7), (3.8) and (3.9), we obtain
lim [|%, — T, = O. (3.10)
n—oQ0

From (3.1), we compute

lns1 = yull = ||an¢(xn) + (1= 0p)yn = Yn ”
= Hanqb(xn) +Yn —®nYn —Yn ”
=ay ”‘»b(xn) —Jn ” (3.11)

By (C3), it follows that

Tim 1~ 72 = 0. (312)
Since

%0 = yull < N0 = Xparll + 16021 = Yull.-
From (3.7) and (3.12), we obtain

Him_ o, =yl = 0. (3.13)

Step 3. First, limsup,,_, . (#,—x , yf(x') —Ax’) < 0 is proven. Choose a subsequence {x,}
of {x,} such that

lim sup(x,, -x, yf(x) - Ax*) = lim (x,,l. -x, yf(x) - Ax)

n—00

The boundedness of {x,, } implies the existences of a subsequence {x,,,.i } of {x,,} and a point
X € H such that {x,,ij} converges weakly to ¥. We may assume, without loss of generality,
that lim,_, o (x,,,, W) = (&, w), w € H. Assume % # T'(%). lim,,_. o ||, — Tx,, || = 0 with F(T) # ¢

guarantees that
liminf ||x,, — %

<liminf|x,, - T®)||
11— 00

= liminf|a,, — T(x,) + T(x,) — TR)|
1—> 00

= liminf| T(x,,) - TQ)|
11— 00

< Timinf [lx,, - &1
1— 00
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which is a contradiction. Therefore, & € F(T). From x™ € VI(F(T), A — yf), we find

limsup<x,, -x ,yf(x ) —Ax) = iliTo(x”" -x ,yf(x‘) —Ax )

n—0o0

(Z—a,yf(x) - Ax)

<0.
Setting u,, = [I — §,(A — yf)]x,, by (C3)-(C4), we notice that
= %]l < 84| (A= yf)| = 0.
Hence, we get

lim sup(u,, -, yf(x) —Ax*> <0. (3.14)

n—o0

Second, lim supn_mo(x* —%1,Bx) <0is proven. lim,_, o [|¥441 — %]l = 0 guarantees the
existences of a subsequence {x,, .1} of {x,, } and a point ¥ € H such that limsup,,_, . (x" —
K1 BE) = My 00 (8 =241, Bx ) and limye, o0 (%, W) = im0 (K01, W) = (X, w), w € H.
By the same discussion as in the proof of & € F(T), we have x € F(T). Let y € F(T) be
fixed arbitrarily. Then it follows that 7': C — C is a nonexpansive mapping with F(T) # ¥,
A : C — H is a strongly positive linear bounded operator and f : C — H is a contraction
for all 7 € N. From (3.1),

2w =yl = | TPcuy — TPcy||

< llun =yl (3.15)
By (C3)-(C4), we observe that

ity =yl = |[I =844~y )]an—y|
< 1% = Yl + 8| (A = v )

< % = yll. (3.16)
Using (3.15) and (3.16),

et = y11% = |[1 = 844 = )] =]
= 80 ) — A7) + (T = 8,4, - )|
< (1= 8,7) %0 = y1I” + 28,(vf (%) — Ay, 1t — 3)
< (1-28,7 + 8,7%) 1xn = 17 + 28,7 p 1% — ¥l 4, = ¥
+28,(vf () = Ay, 1y, — )
< (1=28,7 + 8372 %0 = yII* + 28,5y plew — Y11* + 28u(vf () = Ay, s — )

= [1-28,(7 = yo)lew = y1? + 8577 1% = ¥1I* + 28,4(y.f () — Ay, u — ),
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which implies that

0 < (llotn = y1I* = lltn = y1I%) = 2847 = ) lloew = ¥1I* + 8572 |20 — y1I*
+28,(vf () — Ay, 1y — y)
= (% =yl + Netw = y11) (110 = ¥l = N2t = y1I)
= 28,(7 = yP)lxn = yI* + 8,7 1%n — ¥II?
+28,(vf () — Ay, 1 — )

< Mo |1y — thll = 28,7 = yo)lotw = Y11 + 827> n = ¥11* + 28,y f () — Ay, 1 — y),

where M, := sup{||x, —y|| + ||, —y| : n € N} < 0o for every n € N. By the weak convergence
of {u,,} to x € F(T), limy,_, o |ltt, — %, || = 0 and (C3)-(C4), we get ((yf —A)y,x —y) <0 for
all y € F(T). A mapping A being a strongly positive linear bounded operator and f being
a contraction ensure {(yf — A)y,x —y) < 0 for all y € F(T), that is, x € VI(F(T),A - yf).
Thus, x” € VI(VI(F(T), A — yf), B), we have

lim sup(x* — Xy, Bx*> = lim sup(x* — X Bx")

n—00 i—00
= (v -%,Bx)

<0.
From (3.13), we notice that

lim sup(x* - Y Bx*) <0. (3.17)

n—0o0

Third, limsup,,_, ,, {x, -, ¢(x") —«") < 0 is proven. Choose a subsequence {x,, } of {x,}
such that

lim sup(x,, —x*,qﬁ(x*) —x*> = lim <xng —x*,qﬁ(x*) —x*>.
e 00 g—00

The boundedness of {x,,} implies the existence of a subsequence {%ng, } of {x,,} and
a point ¥ € H such that {x,,gh} converges weakly to x. By lim,_, o [[%441 — %4l = 0, we
have limy o0 (Xng, +1, W) = (%, w), w € H. We may assume, without loss of generality, that
limys o (X, W) = (x,w), w € H. Assume % # T'(x). limy—oo ¥, — Tx, |l = 0 with F(T) # ¢
guarantees that
liminf |x,, - %|| < liminf]x,, - T(%)|
g—>00 g—>00
= lim infl s, — T06,) + T06) = TR
= liminf| T'(x,,) - T(®)|
g—00

< liminf [, — X||.
g—00
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This is a contradiction, that is, x € F(T). From x~ € VI(VI(VI(F(T),A — yf),B),I — ¢), we
find

lim sup(x,, —x,0 (x) - x>
= gli)rgo(xng -x, qb(x*) - x)
-4 0() )
<0. (3.18)

Step 4. Finally, we prove lim,,_, ||, — % || = 0. By Lemma 2.8, we compute

||xn+1 _x* ||2 _ ||Oln¢(xn) + (1 —oz,,)yn _x* ||2
= o (@) = $(x)) + en(d(x) = #) + A= ctn) (=) |
< ol pen) = (x) |* + (L= ) [ =2 |* + 20 (x) - ', 201 — )

< a,k* Hxn -x ||2 +(1- oc,,)” (I - uB.B)z, -x ||2

2

+ 200, (P (%) — &, X1 — X )
= 0k ay = ||* + (1= @) | (2 = 10BaBn) = (5 — 1uBx") — fuBa” |
+20(¢ (%) =&, X1 — %)
< Ry =5 + (1= )
x {|(@n — 1BuBzn) = (= 1BuBx )| + 218l — y, Bx'))
+ 20, (x) = &1 — %)
< Ry =8P + (L= )1 = ) 2n = 5 + 2Bl =y B)
+20,(¢ (%) =&, 01 — %)
< 0k [y = x| + (L= )1 = ) |1t =2 | + 2B’ — 3 B
+ 200, (P (%) — &, K1 — &)
= @ k2 ||xy x|+ (L= ) (A= B [T = 8u(A = y)]xu =2 |
+ 2UBulx” = Y B ) + 200, (%) — &, K01 — &)
= 0, k|, — &P + (1= ) (1 - TBy)
X (1 = 8,4) (%, — %) + 8, (yf (x,) — Ax') |*
+ 2UBulx” = Y Bx ) + 200, (%) — &, K01 — &)
< k2 ||xy = | * + (1 - @)1 - 18,)
{1 = 8,7) |20 = | + 28,y f (%) — A% 1y — )}
2B = B ) + 20y p() =t =)
< aukay =" * + (1= )1 = B (1= 28,7 +827%) | — %]

+ 26,,<yf(x,,) - yf(x*), Uy —x*) + 28,,<yf(x*) —Ax ,u, —x)}
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2Bl — 3 B ) 4 200 () — 1 — )
< auk |y =2 |* + (L - )L - B (1 - 28,7) |2 - 2|
+ 87 [wn = |+ 28,70 n = 2 |t —
+28,(yf(x) — Ax,uy — &)}
4 2Bl — Y BE) + 200 () = 2t — )
< el =" + (- @)1 - TB)[1-28,(7 - vp)] | n — |
+ (1= a,) (1= 8,827 s — & ||* + 28,0 f () — A%, — &)
+ 20Bu(x” =y Bx') + 20,(p (%) = &, 20001 — %)
= alan -]
+ (1= a,)[1=28,(7 = yp) = tBu + 1B,28,(7 — y)] | n — ||
+ (1= a,) (1= 78,0827 ||xs =& ||* + 28,y f () — A%, 1, — &)
BN = 9B )+ 20, (5) — K 61 — )
S P
+ (1= a,)[1-{28,(7 = y0) + T8 — 82847 —v0)}] |0 — %
+ (L= o)1 = TB)82 72 |20 — || + 28,0 f (x) - Ax, 1, - &)
4 2Bl — Y BE) + 200 () = %2t — )
= [1- A=) {28,(7 - vp) + T8y — TBu26,(7 — yo)} ]| — 5|
+ (1= a,) (1= B,)827% s — & |* + 28,0 f () — Ax", 1, — &)
+ 20Bu(x” =y Bx') + 20,(p (%) = &, 20001 — %)
= [1- (- a){26,(7 - vp) (1 = TBy) + B} ][ — 2|
+ (L= a) (1 = TB)82 72 2w — || * + 28,0 f (x) - Ax, 1, - &)
+ 2UBulx” = Y B ) + 200, (%) — &, K01 — X )
= [1- A= @287 —yp) (A= B)] |00 = #'||* = A = @) tBu 0 — 2|
+ (L= o)1 = B2 72 |20 — || + 28,0 f (x) - Ax 1, - &)
+ 2UBulx” = Y B ) + 200, (%) — &, X1 — %)
< [1-2(7 - yp)(1 - )1 = 7B,)8, ] [ n —
+ (1= a,) (1= 8,082 s =& ||* + 28,0 f (x) — Ax", 1, — &)

+ 20Bu(x” = Y Bx ) + 20 (p (%) — &, 2001 — %), (3.19)

Since {x,}, {Ax,}, {Bx,}, {¢(x,)} and {f(x,)} are all bounded, we can choose a constant
M; > 0 such that
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It follows that

”xn+1 - x* ” [1 2(J/ )//0)(1 Ol,,)(l - t,Bn ]Hxn - X ||

* 2(77 - )/,0)(1 —oty)(1 - 7-',3;'1)8;15';1: (3.20)
where
1 * * *
oM y —Ax ,u, -

: v (v —V,O)(l—an)(l—rﬁ,,)(yf(x) XUy —X )
UbBn
TG =y A - and- B, (¥ =y Bx)

oy, *

' ¥y —yp)1 —o,)(A - 784)8, (") =" 201 —x).

By (3.14), (3.17), (3.18) and (C3)-(C4), we get limsup,,_, ., 5, < 0. Applying Lemma 2.9, we
can conclude that x,, — . This completes the proof. g

4 An example
Next, the following example shows that all the conditions of Theorem 3.1 are satisfied.

Example 4.1 For instance, leta, = —, Bn= and O =35, We will show that the condition

(C1) is achieved. Then, clearly, the sequence {8,,}

> 8,-3 5o
oy — 3n
and
oo o0
1 1
Sns1 — 8| = -—
n2=1:| n+l n| 2’3(ﬂ+1) 31
1 1 1 1 1 1
Sle—m-—=lt|lz—=-"=|+* |-+
3-1 3-2 3-2 3-3 3-3 3-4
:g,

The sequence {§,,} satisfies the condition (C1).
Next, we will show that the condition (C2) is achieved. We compute

Z|,3n+1—/3n| = Z‘m—%
n=1 n=1

1
+—_—+.-o
2.

-3

The sequence {8, } satisfies the condition (C2).
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Next, we will show that the condition (C3) is achieved. We compute

oo
=1

00
Z |an+1 _anl = Z
n=1 n

1 1 1 1 1 1
<|---= ———|+|===]+
1 2 2 3 3 4
=1
and
. .1
lim ¢, = lim — =0.
n—00 n—-oo y

The sequence {«,,} satisfies the condition (C3).
Finally, we will show that the condition (C4) is achieved.

Corollary 4.2 Let H be a real Hilbert space, C be a closed convex subset of H. Let A : C —
H be inverse-strongly monotone. Let T : C — C be a nonexpansive mapping. Let B: C — C
be B-strongly monotone and L-Lipschitz continuous. Assume that VI(F(T),A) is nonempty
set. Suppose {x,} is a sequence generated by the following algorithm x, € C arbitrarily:

Zn =T = 8,A)x,,
Yn =L = 1BnB)zn, (4.1)

Xn+l = (1 - an)_yrn Vn > 0)

{a,}, {8,} C [0,1]. If u € (O, j—?) isused and if {B,} C (0,1] satisfies the following conditions:
(C1): Z:il [841 — 8y < 00, ZEZ1 8y = 00;
(C2): Zzil |Bns1 — Bul < 00;
(C3): Y02, otus — el < 00, limy,s 00 @ty = 05
(C4): 8y < By and By < ay.
Then {x,} converges strongly to x” € VI(F(T), A), which is the unique solution of the varia-
tional inequality:

Find x € VI(F(T),A) such that (Bx ,x—x) >0, Vxe VI(F(T),A). (4.2)

Proof Putting Pc is the identity and f,¢ = 0 in Theorem 3.1, we can obtain the desired
conclusion immediately. O

Remark 4.3 Corollary 4.2 generalizes and improves the results of liduka [14].

Corollary 4.4 Let H be a real Hilbert space, C be a closed convex subset of H. Let
A : C — H be a strongly positive linear bounded operator, f : C — H be a p-contraction,
y be a positive real number such that VT_I <y< % Let T : C — C be a nonexpansive map-
ping. Assume that Q2 is nonempty set. Suppose {x,} is a sequence generated by the following
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algorithm xo € C arbitrarily:

Zy = TPC[I_ 571(14 - yf)]xm
Y= — 1BuB)zy, (4.3)

Xn+l = an(xn) + (1 - an)ynr Vn > 07

where {a,},{8,} C [0,1]. If u € (O, i—fj) is used and if {B,} C (0,1] satisfies the following con-
ditions:

(C1): 3%, 18e1 — 8l < 00, Y2, 8, = 003

(C2): Z:il |Bns1 — Bul < 005

(C3): D02 st — 0ty < 00, limy, o0 @ty = 0;

(C4): 8, <Bnand B, <a,.
Then {x,} converges strongly to x~ € Q, which is the unique solution of the variational in-
equality:

Find x € Q such that (Bx*,x — x) >0, VxeQ. (4.4)

Proof Putting ¢ is the identity in Theorem 3.1, we can obtain the desired conclusion im-
mediately. O

Remark 4.5 Corollary 4.4 generalizes and improves the results of Marino and Xu [20].
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