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1. Introduction
The following definition is well known in literature:
A function £ I - R, 0 #I C R, is said to be convex on I if the inequality

fOx+ (1 =2)y) =Af(x) + (1 = 1)f (),

holds for all w, y € Iand A € [0, 1].

Many important inequalities have been established for the class of convex functions,
but the most famous is the Hermite-Hadamard’s inequality (see for instance [1]). This
double inequality is stated as:

b
a+b 1 f(a) +f(b)
f( ) )sb_aff(x)dxs , (1.1)

where I - R, 0 #1 C R a convex function, a, b € I with a <b. The inequalities in
(1.1) are in reversed order if fis a concave function.

The inequalities (1.1) have become an important cornerstone in mathematical analy-
sis and optimization and many uses of these inequalities have been discovered in a
variety of settings. Moreover, many inequalities of special means can be obtained for a
particular choice of the function f. Due to the rich geometrical significance of Her-
mite-Hadamard’s inequality (1.1), there is growing literature providing its new proofs,
extensions, refinements and generalizations, see for example [2-5] and the references
therein.

Let us consider now a bidimensional interval A =: [a, b] x [¢, d] in R? with a <b and
¢ <d, a mapping f: A — R is said to be convex on A if the inequality

fx+ (1 =2z Ay + (1 —Aw) < Af(x,y) + (1 — A)f(z w),
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holds for all (x, y), (z w) € A and A € [0, 1].

A modification for convex functions on A, which are also known as co-ordinated
convex functions, was introduced by Dragomir [6,7] as follows:

A function ff A — R is said to be convex on the co-ordinates on A if the partial
mappings f,: [a, b] = R, f,(u) = flu, y) and f;: [¢, d] — R, f.(v) = flx, v) are convex
where defined for all x € [a, b], y € [c d].

A formal definition for co-ordinated convex functions may be stated as follows:

Definition 1. [8]A function f: A — R is said to be convex on the co-ordinates on A if
the inequality

fltx+ (1 =)y, su+ (1 —s)w)
< tsf(xu) + (1= 9s)f (v w) +s(1 = Of (yu) + (1 —0)(1 = s)f (y, w),

holds for all t, s € [0, 1] and (x, u), (y, w) € A.

Clearly, every convex mapping ff A — R is convex on the co-ordinates. Furthermore,
there exists co-ordinated convex function which is not convex, (see for example [6,7]).
For recent results on co-ordinated convex functions we refer the interested reader to
[6,8-13].

The following Hermite-Hadamrd type inequality for co-ordinated convex functions
on the rectangle from the plane R* was also proved in [6]:

Theorem 1. [6]Suppose that f. A — R is co-ordinated convex on A. Then one has the
inequalities:

()
i{biaa/bf(x,C;d)dmdicjf(a;b,y)dy}
(b—a)l(d_c) fb /d (. y)dydx
‘1‘{biaafbﬂx'ﬁ)dx*biaa/bf(x,d)dx

d d
sl [ fanars dlc/f(b,y)dy}

_ f(@,0)+ fla,d) + f(b,0) + f(b, )
< : .

(1.2)

The above inequalities are sharp.

In a recent article [13], Sarikaya et al. proved some new inequalities that give esti-
mate of the difference between the middle and the rightmost terms in (1.2) for differ-
entiable co-ordinated convex functions on rectangle from the plane R Motivated by
notion given in [13], in the present article, we prove some new inequalities which give
estimate between the middle and the leftmost terms in (1.2) for differentiable co-ordi-
nated convex functions on rectangle from the plane R,

2. Main results
The following lemma is necessary and plays an important role in establishing our main
results:
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Lemma 1. Let £ A € R*> > R be a partial differentiable mapping on A: = [a, b] x [c,

2
d] with a <b, c <d. If ;;c € L(A), then the following identity holds:
sot

(b—a;d—c)/i;f“”°@“x+f<a;b'czd>

b d
1 c+d 1 a+b
_b_a/f(x, ) )dx—d_C/f< ) ,y)dy (2.1)

1 1
- (b—a)(d—c)//K(t,s) az;f(tcu(l — )b, sc + (1 — s)d)dsdt,
0 0

where
1 1
/ , 0, 0,
ts (t,s) e Nk [ )
1 1
t(s—1), (t,s) |0, x| ., 1
K(t,s) = 1 2 2 1
s(t—1) (t,s) € 1{x]0
’ ’ 2/ ’ 2
1 1
-1 -1 ’ 1 1 1 ’ 1
(-06-1.69¢e (5] %
Proof. Since
11
32
(b—a)(d—- c)//K(t,s) 858tf(m+ (1 —t)b,sc+ (1 — s)d)dsdt
0 0
1
2

= (b—a)d—0)

1
2 52
/ ts 858tf(m + (1 —16)b,sc+ (1 — s)d)dsdt
0

(2.2)

1 52
+(b—a)(d— c)/ s(t— 1)858tf(m + (1 —1t)b,sc+ (1 —s)d)dsdt
1
11 5
+(b—a)(d—c) / [ (t—1)(s— 1)828tf(m+ (1 —1t)b,sc+ (1 — s)d)dsdt
11

22
=Il+12 +I3 +I4.
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Now by integration by parts, we have

1

1
2
L =(b—-a)d- c)f / f(ta+ (1 —t)b,sc+ (1 —s)d)ds | dt
0

1

2
1 (a+b c+d 1 c+d
=4f(2, 2)—2/f<m+(1—t)b, 2)dt

0

1 11
1 z a+b 22
_2O/f( . ,sc+(1—s)d>d5+0/0/f(ta+(1—t)b,sc+(1—s)d)dsdt.

If we make use of the substitutions x = ta + (1 - )b and y = sc + (1 - s)d, (¢ s) € [0,
1]% in (2.3), we observe that

) st [

(2.3)

a+b
2
1 ; b
a+
- Y dy + dyd.
2(d—¢) ff( 2 V) (- a)d- 9 / /f(”)”
c+d bc+d
2 2 2
Similarly, by integration by parts, we also have that
a+b c+d c+d
ne (5050 z(b—a) f e
2
c+d c+d
1 Z b 1 7 Z
a+
_ v )d ,y)dydx,
2(d—0) ff( 2 V)”(b_a)(d_c) [ ] sena
¢ a+b ¢
2
a+b
a+b c+d c+d
I = ’
} 4f< 2 2) 2(b—a) / < )d‘x
a+b
1 ; b 1 Z ;
a+
- v )d L y)dyd
2(d—¢) /f( 2 V) " —a)yd-o) / /f(”)”
c+d @ c+d

2 2
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and

a+b

n= (5050 2(b—a)f (x5 e

c+d a+bc+d

2 2 2
_Z(dl—c) C/f<a;b'}’)dy+(b_a)l(d_c) a/ C/f(x,y)dydx.

Substitution of the I3, I», I3, and I in (2.2) gives the desired identity (2.1).
Theorem 2. Let f A € R> — R be a partial differentiable mapping on A:= [a, b] x [,

32
d] with a <b, ¢ <d. If ‘8 E{t is convex on the co-ordinates on A, then the following
s

inequality holds:

- c)f/f(”)dyd“f<a+b C;d)_A

9?2 (2.4)
_(b-a)d-0) asat) @[ * | s t(“d)‘ ‘a ol € )‘ ‘ S )‘
- 16 4
where
1 7 d 1 ; b
c+ a+
o G LR F G T
Proof. From Lemma 1, we have
a+b c+d
- a)d- c)//f‘x’ )dyd“f< 2 )‘A
“ f ) (2.5)
2
< (b—a)(d—c)//|K(t,s)| '828tf(ta+(l—t)b,sc+(l—s)d) dsdt
0 0
. f . .
Since is convex on the co-ordinates on A, we have
dsot
’ 0 f(ta+(1 )b, sc+(1—s)d)‘ <ts f(a,c) +t(1—=3) a;f( d)’
(2.6)
+s(1—1) 9 atf(b,c) +(1=01-y3) 3 atf(b'd)"
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Substitution of (2.6) in (2.5) gives the following inequality:

(- a)(d C)/ff(x}/)dydx+f(a+b C;d)_A
(b—a)(d—c)//|K(t 5)|H f@d)

(b c)

1

2
fts
0

s+

82
Bsatf(a' d)|t(1 —5s)

s(1—1)+

a at(b,d)‘ (1 —0)(1 —s)] dsdt = (b— a)(d — ¢)

2

asat(a' c)|ts + Baat(a' d)|t(1 —s)+ s(1—1)

32
asar] 09

1
+ !]//H :
01
2

(2.7)
92 02
‘ af(a,d) t(1—5)+ f(b c) 5(1—t)+ (b d)‘(l—t)(l—s)]dsdt
1
12 52
+//s(1 Ha Btf(a ,C)| ts + 8sdt f(a d)|t(1 —s)+ Satf(b,c) s(1—1¢)
10
2

s+

f(b A (1 -0 —s) | dsde + 1 1(1—t)(1—5) ” f(a,c)
dsot ) dsot
2 2

82
]a N d)' -9+ |0 0.0

s(1—1t)+

/0| (1= 001 =9}

Evaluating each integral in (2.7) and simplifying, we get (2.4). Hence the proof of the
theorem is complete.

Theorem 3. Let f A € R* — R be a partial differentiable mapping on A: = [a, b)] x

32f q
lc, d] with a <b, ¢ <d. If
dsot

is convex on the co-ordinates on A and p, q > 1,

1 1
" + ; =1, then the following inequality holds:

. c)//f(x'”dyd’”f(m C;d)_A

2

3t(a' 4)

q 2

1
q (2.8)
A wal |

3sdt

82 q
b,
* 1 asar &9

_-a)d- c) ’a ot

4(p + 1)1‘7

where A is as given in Theorem 2.
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Proof. From Lemma 1, we have

(o= a)— c)/ff(x' )dyd“f<a+b C;d>‘A

(2.9
82
<(b—a)(d—-rc) / / |K(t,5)] ‘asatf(ta + (1 = t)b,sc + (1 — s)d)| dsdt.
00
Now using the well-known Holder inequality for double integrals, we obtain
11
32
// |K(t,5)] ’8s8tﬂm+ (1 =t)b,sc+ (1 —s)d)|dsdt
00
1 (2.10)
11 1 q q
< (//|K(t,s)|pdsdt) (//’ f(ta+(1 )b, sc + (1 — 5)d) dsdt)
00 0
32f q
Since 25 is convex on the co-ordinates on A, we have
sot
11 52 q
[/‘ f(ta+(1 —t)b,sc + (1 —s)d)| dsdt
0 0
b q 52 q
’ t 1 - ,d
<[ [ {7 fwo| +e1-9|." s
00 (2.11)
a q 2 q
+s(1—1) ) atf(b,c) +(1-0)(1-5) 25 dsdt
a1 52 2 2
‘a o/ @)+ 55, (@
4
Also, we notice that
11 1
11 22 21
//|K(t,s)|pdsdt=//tpspdsdt+//tp(1 — s)Pdsdt
00 00 01
2
(2.12)

1
12 11
+f/s”(1 —t)pdsdt+//(l — t)P(1 — s)Pdsdt
10 11
2

22

4 1 2(p+1)
T o+ 1)2<2) '
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Using (2.11) and (2.12) in (2.10), we obtain

dsdt

11

2
//|K(t,s)}'aiatf(ta+(l—t)b,sc+(1—s)d)
00

1
Ma

82
858tf(b’ 4

92 q 52 q q
, ,d
1 ’3s3tf(a R PFRICT *

2 4
4(p+1)P

82
asa! U

=

Utilizing the last inequality in (2.9) gives us (2.8). This completes the proof of the
theorem.

Now we state our next result in:

Theorem 4. Let f A € R> — R be a partial differentiable mapping on A: = [a, b] x
82f q

lc, d] with a <b, ¢ <d. If
asot

is convex on the co-ordinates on A and q > 1, then the

following inequality holds:

- a0 ﬁf(’“”dy"“f(a;b’czd)“

1

32 T 52 q 2 q 2 P (2.13)
_(b-a)d—0) a5t @ 9| ¥ ‘3s3t(a'd) +‘858t(b'6) " ‘Bsat(b'd)
- 16 4
where A is as given in Theorem 2.
Proof. By using Lemma 1, we have that the following inequality:
1 L b d
a+b c+
6w [ [renmaser (43000 —A|
. ; (2.14)
<(b—-a)d—c) // ]K(t,s)| ‘asatf(m + (1 —t)b,sc+ (1 —s)d)|dsdt.
0 0
By the power mean inequality, we have
1 1
82
// |K(t,5)] ‘asatf(t“ (1 —1)b, sc+ (1 — s)d)| dsdt
00
1
11 1—q
< // |K(t, )| dsdt
0 0
1 (2.15)
q q
dsdt
1

82
atf(ta+ (1 —16)b,sc+ (1 —s)d)

11
2
x(//|K(t,s)|’;Zatf(ta+(l—t)b,sc+(1—s)d)
00
< as

1_1 11
116> q(/f“((t’s)'
00

q q
dsdt
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2¢ 14
Using the fact that ; ; is convex on the co-ordinates on A, we get
sot
82 q
’Bsatf(m + (1 =10)b,sc+ (1 —5s)d)
82 q 2 q 82 q
=1t ’ (1 — ,d 1—-1¢ b,
@] +e0=9) 7 f@ )| +s0-0) 7 0.0

q

82
+(1—-1t)(1—-5) 858tf(b' d)

and hence, we obtain

11
q

// |K(t,s)] ai;f(tcu (1 =1t)b,sc + (1 —s)d)| dsdt
00

. 92 q 52 q
5//|K(t,s)| |:ts'asatf(a,c) +t(1—5s) aSatf(a,d)

00

32 q 82 q

as(1— t)‘ o S0 (=00 =9)| ) fb.d) :|dsdt

1 32 q 2 q 32 q 32 q
" 64 [ asar) (49| * | gsar/ (D) +'853tf (0:0) +'853tf (0.d) }

Therefore (2.15) becomes
1 1
82
// |K(t,s)| ‘8Satf(ta+ (1 =1)b,sc+(1 —s)d)‘ dsdt
00
1
82 q 82 q 82 q 82 q (216)

1 ‘asatf (@ + ] psal @D| |55,/ 0O + |5,/ (0:)

— 16 4

Substitution of (2.16) in (2.14), we obtain (2.13). Hence the proof is complete.
Remark 1. Since 2° >p + 1 if p > 1 and accordingly

1 1

= 1
2(p+1
(p )p

and hence we have that the following inequality:

1 11 1 1 1
< - <
16 4

’

17 1 - 2
2p+ 1 2(p + 1 a(p+1
(p+ )p (p+ )p (p+ )p

and as a consequence we get an improvement of the constant in Theorem 3.
Following theorem is about concave functions on the co-ordinates on A:

Page 9 of 13
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Theorem 5. Let f A € R> — R be a partial differentiable mapping on A: = [a, b] x

q
is concave on the co-ordinates on A and q > 1, then we

. 0%f
lc, d] with a <b, ¢ <d. If
asdt

have the inequality:

- a0 fhjf(xly)dydx+f(“;bf;d> A

S(b—a)(d—c)[ 32f<a+2b’c+2d)‘+ 9?2 <a+2b 2c+d)‘ (2.17)

64 3sdt 3 3 3sdt 3 " 3
82f 2a+b c+2d 9?2 2a+b 2c+d
7 + 7 7
dsot 3 3 dsat 3 3

where A is as defined in Theorem 2.

a%f

asat

q

Proof. By the concavity of on the co-ordinates on A and power mean

inequality, we note that the following inequality holds:

q 2 q

5 9
> A ,
= ‘asatf (x.v)

82
e+ (1= A(y,
asar] X+ (1= 2(rv) 9sdt

q
e —A)‘ f.0)

).

2 2
> (3] |+ =2 7 s

for all x, y € [a, b], L € [0, 1] and for fixed v € [¢, d].
Hence,

2

2 82
’ asot

asat

o

+(1—A)’

fOx+(1 =2y, v) f(xv) fyv)

’

asat

for all x, y € [a, b], L € [0, 1] and for fixed v € [c, d].
Similarly, we can show that

’

9?2 9?2 9?2
}asatf(”’ rz+(1— )\)w)} > A ’ aSatf(u,z) +(1-=2) lasatf(u, w)

2

for all z we [¢ d], L € [0, 1] and for fixed u € [a, d], thus is concave on the

co-ordinates on A.

Page 10 of 13
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It is clear from Lemma 1 that

(b—a)(d—c)/bfdf(" ”dyd“f(m Cj)‘A

11
2
<(b-a)(d— c)//|K(t,s)\ ‘;Zatf(tcu (1 — )b, sc + (1 — s)d)|dsdt
00
11
22
=(b—a)(d-c) //st 25t f(ta+ (1 —t)b,sc+ (1 — s)d)|dsdt
00
1
F I (2.18)
+ t((1—ys) f(ta+(17t)b sc+ (1 —s)d)| dsdt :
/| +
2
1
12
//s(l ‘6 atf(ta+ (1 —t)b,sc+ (1 —s)d)| dsdt
10
2
f(ta+ (1 —10)b,sc+ (1 —s)d)|dsdt

o),
11
22

Since

3%f
dsdt

is concave on the co-ordinates, we have, by Jensen’s inequality for inte-

grals, that:

f(ta+(1 )b, sc + (1 — s)d)| dsdt

dsdt

C—r =
P — =
©
&

953 flta+ (1 —t)b,sc+(1 7s)d)‘ds dt

1l
Ct— =
-
Ct— =
P

1
2
2 J s(sc+ (1 —s)d)ds
flu+@ =0 ° dt

dsot 1
7 sas (2.19)
0

IA
Ct— =

-
Ct— =

v

&

1
o
C— =
-

dt

9?2 c+2d
asatf<ta+(l—t)b, 3 )

1
1 2
N /ztdt "Zf {[(ta+(17t)b)dt’c+2d
-8 dsot 1 3
0 2
[t
0
1|82 (a+2b c+2d
Y asazf< 3 3 )’

Page 11 of 13
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In a similar way, we also have that

1
21
82
/ft(l—s) asatf(ta+(l—t)b,sc+(1—s)d) dsdt
01 (2.20)
2
1] 0? <a+2b 2c+d>‘
< f ' ;
64 | dsot 3 3
1
12
82
//5(1 —t)‘asatf(ta+(1 —t)b, sc + (1 — s)d)| dsdt
10 (2.21)
2
1| 9? <2a+b c+2d>’
< f /
64 | dsot 3 3
and
11
82
//(1—t)(1 —5) asatf(ta+(1—t)b,sc+(l—s)d) dsdt
11
2.22
) 5 (2.22)

1
<
64

82f 2a+b c+2d
dsot 3 3 '

By making use of (2.19)-(2.22) in (2.18), we get the desired result. This completes the
proof.
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