Wang and Hu Journal of Inequalities and Applications 2012, 2012:272 ® Journal of Inequalities and Applications
http://www.journalofinequalitiesandapplications.com/content/2012/1/272 a SpringerOpen Journal

RESEARCH Open Access

A new proof of fractional Hu-Meyer formula
and its applications

Baobin Wang'" and Ting Hu?

“Correspondence:
wbb1818@126.com

'School of Mathematics and
Statistics, Central South University
for Nationalities, Wuhan, 430074,
China

Full list of author information is
available at the end of the article

@ Springer

Abstract

This paper is concerned with the Hu-Meyer formula for fractional Brownian motion
with the Hurst parameter less than 1/2. By the mollifier approximation, the Hu-Meyer
formula is explicitly obtained based on the multiple Stratonovich integral, and the
proof is different from the known methods. Moreover, the obtained Hu-Meyer
formula can be applied to derive the convergence rate of the multiple fractional
Stratonovich integral.
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1 Introduction

It is well known that Hu and Meyer [1] introduced a new multiple stochastic integral with
respect to a Wiener process, called a multiple Stratonovich integral, which is in general
different from the usually studied multiple Wiener-It6 integral. The authors also proposed
a formula (called Hu-Meyer formula) that gives the relationship of the Stratonovich inte-
gral with the It6 integrals of some functions called the traces that involve integrals of f on
the diagonals.

Anincreasing interest is visible in the last decade in modeling long dependence phenom-
ena in the fields of dynamical system, economics, hydrology, telecommunication network
by using fractional Brownian motion (fBm for short). The fBm is a suitable generalization
of standard Brownian motion which exhibits long-range dependence.

Recently, many authors have considered an integral with respect to fBm. Duncan et al.
[2] employed the Wick products to define a fractional stochastic integral whose mean
is zero. This property is very convenient for both theoretical development and practical
applications. For more details, one can see [3] and the references therein.

Bardina et al. [4] constructed a multiple Stratonovich integral with respect to fBm with
the Hurst parameter H < 1/2 under some conditions. They defined the traces to obtain the
Hu-Meyer formula that gives the Stratonovich integral as a sum of Itd integrals of these
traces.

In this paper, we consider a similar problem for the multiple Stratonovich integral. In-
spired by [5], we define the integral of Stratonovich type in the mollifier approximation
sense. Unlike our construction, in the paper [4], the Stratonovich integral is defined in the
Solé-Utzet sense (see [6]). Our aim here is to present a new proof of the Hu-Meyer formula
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for fBm. We also do not make use of the integral representation of fBm in terms of ordi-
nary Brownian motion as in [7], where the hypothesis involves the transferring operator
which is difficult to verify.

We have organized the paper as follows. Section 2 recalls some results from [3] on the
multiple Stratonovich integral, which will be used in the remainder of the paper. Section 3
gives the Hu-Meyer formula and its proof. As an application, the fourth section is devoted
to the convergence rate of the multiple fractional Stratonovich integral.

2 Multiple Stratonovich integral

In this paper, we denote by (2, F, P) the basic probability space. The expectation on this
basic probability space is denoted by E. The fBm (B!, ¢ > 0) of the Hurst parameter H is
a Gaussian process with mean 0 and covariance given by

E(B/Bl) = %(tZH +s — |t —s), 0<st<oo.

Throughout this paper, we assume H < 1/2.
For a fixed positive integer # and a suitable (deterministic) function f (¢, ..., t,) of n vari-
ables the multiple It6 integral

1,,(f)=/ f(&,...,t,)dB]! - dB]!
0<tyortn<T "

and the multiple Stratonovich integral

Su(f) = /M t <Tf(tl,...,tn) d°Bjl---d°Bj! (2.1)

are well defined (see [3, 8] and the references therein).
Following the notations in [9], we define

f(xlr“-’xn) = (22)

7 f(xh-n,xn) if(xlwu;xn) € [01 T]n;
0 otherwise,

with

Vif (%) =f (7).

This implies V,f(x) is obtained by using a variable y instead of x.
For a continuous function of » variables f (¢, ..., t,), we define

Vi = Viesf (ts oo tn) =f (815 1, S Eials -+ Bn)-
This means Vi f is obtained from f by replacing the kth variable ¢ by s.

3 Hu-Meyer formula

Now, the Wick product ¢ of two functionals is introduced. To extend the theory of stochas-
tic calculus from Brownian motions to fBms, the Wick calculus for Gaussian processes (or
Gaussian measures) is used. The Wick product of two exponential functions (see [2]) £(f)
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and £(g) is defined as
e(f) oe(@) =&(f +g), (3.1)
where

e(f):= exp{/oooftdBf - %[ﬂi}

Using the linear property, we can generalize the Wick product to the linear combination
of exponential functionals. Then the Wick product can be extended to a general random
variable by taking limit.

Proposition 1 Let X and Y be two random variables. Then we have
XoY=X-Y-EXY).

Proof By the definition of an exponential function,
e(X) 1= X IPEXY | p(y) iz Y2 RO

using the expression (3.1)

e(X)oe(Y) = etX—%tzE(Xz) o esY—%szE(Yz) _ etX+SY—%E(tX+SY)2

’

we will compare the coefficients of the term s - £ in the two sides of the above equality.
Observe that the coefficient of s - £ in the leftis X ¢ Y and the one in the right is X - Y — E(XY).
This fact implies the truth of the proposition. 0

As in [5], for ¢.(t,s) and fixed ¢, as € tends to zero, ¢.(t, -) tends to the Dirac function at
t, 8(t —s). Define

T T .
B = f 0. (t,5)dB! = / . (t,5)BH ds. (3.2)
0 0

Obviously,
. T . .
B! — / 8(t —s)BH ds = B
0

when ¢ tends to zero. Then Bf is a Gaussian random variable (see [10]). Furthermore, from
[4], we have
lim E(B,, B;,) = lim(g: (t1,5), ¢: (t2,5))

(I = Vi) @e(t1,s1)I — Vi, )@e(t2, 1)
_52|2—2H

1
=1lim —H( - 2H) dsi ds,
e—0 2 R2

|1

1 I1-V,
= ZH(1-2H) 2

5 TeTA=Ik (3.3)
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Lemmal For BZ defined by (3.2),i=1,...,n, we have

3 e _ & . e & BE ... & e
B ---B = § T letin o <>Btin_2k_115(Bti1 Btiz) E(Btizk_lBtl_zk), (3.4)
[1seensin

where iy, ..., i, run over all permutations of {1,...,n} and t; € [0, T1,j=1,...,n.
Proof Let X; = BZ = fOT gog(ti,si)Bg ds; (i=1,...,n), by (3.1) we obtain
e(trXy) oo et Xy,) =e(tr Xy + -+ - + £,X,).
Then, by the definition of an exponential function,
et XurttnX _ g3 EOXi+4taXn) o X ) 6 - 0 8(8,X,,). (3.5)

Next we will compare the coefficients of ¢; - - - £,,. On the one hand, it is obvious that the
left-hand side of (3.5) is equal to

til...tin . .
1 n vy in

E P 'Xl "'Xn’
Lo 1y

therefore, the coefficient of the term £ - - - t,, on the left-hand side is X7 - - - Xj,.
On the other hand, the right-hand side of (3.5) coincides with

00
1
Z (E(t1X1 +0+ t,,X,,)z)ks(thl) SO E(tan)

k
Py 2k k!
S Xk yrok Xk yok
1 2\k HX X,
:Z2k.k!(E(t1X1+...+tan)) Z k| T
k=0 k=0 k=0
0 k 00 kyrok 0k yok
1 nXy L, X,
- Z 2’<—k'< Z tizij(Xi)(j)) Z TR o
k=0 1<i<j<n k=0 k=0

Notice that the coefficient of #; - - - £, on the right-hand side is

1
Z ﬂXin O <>Xin—2k—1E(XiIXi2) e 'E(Xi2k—1Xi2k)’

[

where o are the permutations of {1,2,...,n}. This completes the proof. O

Let us state the main result of this section. The following explains the relations between

the multiple It6 integral and the Stratonovich integral.

Theorem 1 (Hu-Meyer formula) Letf € L2([0, T1"). There exists the limit in L*($2) of

Su(f€) = [OT]nf(tl,...,tn)Bil---Bindtl---dt,,,


http://www.journalofinequalitiesandapplications.com/content/2012/1/272

Wang and Hu Journal of Inequalities and Applications 2012, 2012:272 Page 5 of 12
http://www.journalofinequalitiesandapplications.com/content/2012/1/272

and the limit is given by the extended Hu-Meyer formula

5]
Sn(f) =

k=0

n! X
(7 2K TKIk -2k (777),

where

Hle(f = Vaistyi s f(ts, ...t )

dty - - - dityy,
] _ K»
R2K [Ties 12im1 — £ >

T(f) := (H(1 - 2H))"

with the convention that Tr'f = f.

Remark1 This result is not the same as Theorem 4.4 in [4], where the traces that appear

are defined by a limit procedure, not in the way stated here.

Proof Using Lemma 1 and the property of the Wick product, we have that

Sa(ff) = [OT]nf(tl,...,tn)Bil...Bindtl_..dtn
_ 1 Bg BE E Bg Bg
_Z2k-k! [OT}nf(tl""’t”) tyoks © 7Dy, ( n tz)
.. 'E(Bizk—lBizk) dt ---dt,

1 , .
B Z 2k 1 [0 T]nf(tl’ crta)By 0 <>Bfn<§08(t1, ) ez, )>H

e ((/)8 (tZk—ly ')’ De (t2k, ))H dtl N dtn

1 . .
= Z ﬂ f o gs(t2k+1, vees t”)Bin—Zk—l St <>B§n dtn—Zk—l [EKS dtn
pu * K Jlo, 1)

1 . .
= Z 2](—/(' / - gg(t2k+1y~ IR tn)ng+1 SRRE OB; dt2k+l T dtrn
> * K Jlo, 1=

where

gs(t2k+1: ey tn)

= [ ]2kf(tlr veey tn)<(p8(t11 '): ‘ps(tZ) )>H e <§0£(t2k—1’ ‘)r %(tzk; )>H dtl e dt2k~
0,T

Submitting (3.3) to the above expression,

lirngs(tZkﬂ; )
e—0

1_[5‘(:1(1 - V2i,t21,1 )f(tlr <o bk )

X -
R2 [Ty 8201 — 822720

= (H(-2H))" dty - da

= Tr'f.
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By the continuity of the multiple Ito-type integrals on the (£4)®(-2K) spaces [11], it follows
that

[t oo B dta -,
[0,T]"~
T
[t [ o dsl,
[0,T]"— 0

T
LR / @e(tnrSn) ABL diir - -~ dty
0
—)1,,_2]((Trkf),

which is in the L?(2) sense as ¢ — 0.
Denote

/ gs(tl,...,tk)Bﬁl<>~~~<>Bfkdt1mdtk=/ hf(sl,...,sk)dijo-..odBﬁ‘k’,
[0,T]k [0,T]k

where
hs(sl’ e ,Sk) = / kga(tlr veey tk)¢8(tl:sl) e (Dg(tk, Sk) dtl e dtk'
[0,7]

It is easy to prove that /#°(sy, . .., Sx) converge to h(sy, .. .,sx) in the same way as in [4]. Since
o are the permutations of {1,2,..., n}, we get the desired result. g

4 Applications to the convergence rate of the multiple Stratonovich integral
To complement the paper, we introduce some notations. Let 7 : 0=ty <ty <---<t, =T
be a partition of the interval [0, T']. Denote

Ai:ti+l_tir A:max Ai.
13
Without ambiguity, we will also denote the interval (¢;, ¢;,1] by A;. We also consider a class
of partitions IT such that
g

Cpp = sup sup —jT < o0. (4.1)
well ij 4]

Let Bi"™ be the interpolation approximation of BH,

H

AB;
Bit™ = BIT 4 Atl (t—t;), whente A,
i

where
ABP =B _ M,
i i+1 i

Consider the approximation of the multiple stochastic integral

ST(f) = / Fty..,t) dBI BT (4.2)
0<t1,...tn<T
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It is proved in [4] that, under some mild conditions, S, (f) converges to S,(f) in the mean
square sense. Then the natural question is: what is the precise asymptotic, i.e., convergence
rate?

Our main result in this section is stated as follows.

Theorem 2 Suppose that f € C"*1([0, T1"). Given a sequence partition w of the interval
[0, T'] satisfying (4.1), there is a random variable S, (f) such that S (f) converges to S,(f) in
the mean square sense. Moreover, there is a constant C, independent of partition 1, such
that

E|ST(f) - Su(f)|* < A (4.3)

We must point out that the Hu-Meyer formula will be the key tool used in order to
obtain the convergence rate of the interpolation approximation for general » considered
in the section. In order to prove the above theorem, we also need the following results.

Proposition 2 Assume t1,x1 € Ay, ty,x2 € Ay and s1,y1 € Ay, $2,y2 € Aj,. Let f continu-
ously bound first and second derivatives on [0, T)?. Then we have

2 2 2
(]‘[(1 ~ Vi f (b, t2) - [ [ - vk,yk)f(xl,xz)>

k=1 k=1

< Clu =1 A% + Claz = 32 A% + CA™
Proof Notice that
(t1 —s1)(t2 = 52) = (81 + %1 = y1)(82 + %2 = ¥2),
where
S1=t—x1+y1—51,
Oy =ty — X + Y2 — Sa.
Since t1,x1 € Ay, y1,51 € Ajy, we get

181] = |t1 =21 + y1 = s1] < |&y —x1| + |y1 = s1

< Ail + All < 2A.

Similarly, we also have |§;] < 2A.

2
We denote f; = %, fia = %, a simple computation implies that

2

[ [0 - Ves (@, 12)

k=1

1 1
- / / Fras + 00(ts = 510,52 + st — 52)) 6, dB (61 — 51)(12 52, (4.4)
0 0
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and

2
[ 10 - Viyf (r,20)

k=1

1 1
- / / Fia1 + 0051 = 31), 72 + Oa(2 — 32)) By d6s (31 — 1) (2 — 32)
0 0

=A(x - xz)(yl —J’z),

where A = fol folfu(yl +61(%1 — y1),¥2 + O2(x2 — y2)) dby dB, is a bounded constant.

Denote

83 = fiz(s1 + 01(t1 — 51),82 + O2(t2 — 5))

—fia(y1 + 61 (%1 = 1), 32 + Oa2(x2 — 32)),

obviously, |§3] < C|A|. According to (4.4) and (4.5), we have

2

2
l_[(l - Vis f (B, 1) — 1_[(1 = Vi i (21, %2)
k=1

k=1 -
= [(A +83)(81 + X1 — y1)(82 + %2 — y2) — A1 — y1) (%2 — y2)|
= |A5152 +A(xy — 2)01 + A(x1 — y1)82 + 818283 + (%2 — ¥2)8103
+ (%1 = 3108283 + (%1 — 31) (32 — )8
< |A818| + |A(xs — y2)81| + [A(w1 — 71)82| + 1818283] + | (%2 — ¥2)8185]
+ | (o1 = 92)8283 | + | (v — y1) (%2 — ¥2)83]
< CA*+ Clxy — 32| A + Clay — 31A,

the proof is complete.
It is easy to obtain the following result by calculation.
Lemma 2 Letf € C™Y([0, T1"). If we denote

an—zkf
8x2k+1 cee 8xn ’

of

’
8kaJrl

f2k+1 =

) ka+1<--n =
then we have

|T7J<f27;<+1...n(x1, ce s X2y X2t 15+ o5 X)) — Trkf2k+1~-n(xly ce s XU K2h415 0 o yxn)|

<CA*,
Lemma 3 Suppose that f € C"*1([0, T1"). If we denote

2 n
_% fl2_ af ey flzu.n:L,

- dx, - dx10x5 0x1 -+ -+ 0Xy

h

Page 8 of 12


http://www.journalofinequalitiesandapplications.com/content/2012/1/272

Wang and Hu Journal of Inequalities and Applications 2012, 2012:272 Page 9 of 12
http://www.journalofinequalitiesandapplications.com/content/2012/1/272

we have

n

1_[(1_ Vi o (1, .., %)

k=1

n

1 1
= / s / Sizn ()/1 + 6011 = Y1)5 s Y + Onxy —J’n)) do, - --do, H(xk - Yi)»
0 0

k=1
and
n n
l_[(l— Vi f @1, %,)| < Cl_[ [k — yil.
k=1 k=1
Proof It follows easily by induction. O

Lemma 4 Suppose that f € C"*\([0, T)"). Then, for t;,x; € Ay, spyre Ny, l=1,...,n,

n n 2
(]‘[(1 ~ Vi ) (s t) = [ [T = Vi ) 31, ,x,,))

k=1 k=1

n-1

= CZ( Z (e = ya)* -+ (i _yik)2> AX=R oA,

k=1 “<ij<ip<--<ig<n

Proof Observe that for ;,x;, € Ay, s,y € Aj, [=1,..., 1,
Li—si=t—Xi+x—y1+y1—S8; =:51+x1—y1,

where
Si=ti—x+y -8

It is obvious that |§;| < |ty — x| + [y — 81| < Ay + Aj, < 2A.
Set

Sizen(s1+ 616 = 51), .80 + 0t — 51))

::ﬁz...,,(yl +01(x1 = 1),y Y + Oy(xy —yn)) + 841 (4.6)

where

8n+l =f12~--n(51 + 91(t1 - Sl); cesSp t en(tn - Sn))

—fizn (y1 +01(x1 = 91)5 - Y + On(xy —yn)). (4.7)

Moreover, |5,,1| < C|A].

Without loss of generality, we can write

1 1
A= / e / ﬁZ---n(yl + 01(.?61 —yl), cesYn t 9n(x,, _yn)) d@l cee d@n
0 0
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Clearly, A is a bounded constant.
Putting together (4.6) and (4.7) and using Lemma 3, we get that

n

[10-Vis )@, t) = [ U = Vi s )

k=1 k=1

1 1
// [fizn (1 + 61001 = Y1), o3 Y + Oun — Yn)) + 841 A6 - - - By
0 0

X (81 +x1=91) (6 +%u —yu) —Alxr —31) -+ (X — V)

= [(A +8,1) (S + %1 = y1) -+ (8 + X = Yu) = Alwr = 1) -+ - (0 = ¥)|
n-1

§CZ( > |x,«1—yi1|---|x,»k—yik|>A"k+CA”. -
k=1 “<ij<ip<--<ig<n

Proof of Theorem 2 If we take ¢.(x,7) = ), %lAi(x)lAi(y), then we have the polygonal
approximation (4.2). By using Theorem 1, it is easy to see that

n!

SZ(f)_Sn(f): Z mln—Zk(Trkf”)

k<[n/2]

n!
-2 2kk!(n—2k)!1”’2k(Trkf )

k<[n/2]

Set

X1 xn) = T (X1 x) = f (1,0, %)

Then
SH0-5:0= Y s (T4)
k<[n/2]
) kS[ZH/Z] Wl—zmh%(ﬂkﬁ
- kf%;z] 2kk!(: '_ 2k)![”‘2k(Trkgﬂ)'

Using the properties of multiple Wiener-It6 integrals (see [11]), we derive the following:

(n!)?

2
]22k(k!)2[(n_2k)!]2E|I,,_2k(Trkg )|

EIST() -S| = Y

k<[n/2

- ¥ s 7l
2R -2k | e

k<[n/2

In order to prove (4.3), we will check | T g™ ||2CH’”‘2/< forall 0 < k < [n/2].
For k = 0, we get

| T ik = & | i < CAHEH,
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For 1 < k < [n/2], we also write

| TP = T | o

of Ml Voo
R2(1-2K) [Tk i = yil22H

= CFjl i+ +CF} ypy o+ +CF oy (1<K <n-2k),

AXypsr -+ - dxy dy2k+1 cee dyn

where F™ = Trkf™ — Trkf.

By some elementary calculations, we know that the main terms which determine the
convergence rate are Fy, ., and F; ,;, whose expressions are similar to the correspon-
dence terms F], and F} respectively.

On the one hand, by Lemma 2 and Lemma 3, we obtain

n 2
< l_[ (I_ ‘/i,y,')Fn(ka+l"H)xrl)>
i=2k+1

1 1
/ s / ng+1...n (y2k+1 + Ogks1 (X2k 11 —y2k+1), cees
0 0

2
Y + On (% _yn)) dOps1 - - - AOy(Xoks1 — Yore1) - - - (X = Yn)

= ALLH(QCZIHI _y2/<+1)2 e (% _yn)z'

Note that

£ _ / (H?zzkH(I - Vi,y,-)FTr (%2k415 -+ rxn))z
2(n-2k) 12240 1—[;12]”1 |o; — yi|2—2H

dAXoge1 -+ - dxy dy2k+1 cee dyn

n

4H 2H

<A f H loe; — il =" dxggesr - - - A% AYopsr - - - Ay

[p20n-2K)
i=2k+1

< CA*,

On the other hand, clearly, we have

n
FZ-zk:/I‘n_zk(F”(xzkw-wxn))z H Hx) dxopsr - - - dxy
T

i=2k+1

Therefore, we obtain

| T = T || o < CAZ L CAM 4 CA2

<CcAY,

and the proof is complete. O

Page 11 of 12
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