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Abstract

Let 1 <p<oo,andlet T be a bounded linear operator defined on a Krein space K. We
prove the existence of a non-positive subspace £_ of K invariant under T with the
assumption that T is absolutely p-summing with some further conditions imposed
onit.
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1 Introduction
Let 1 < p < oco. In this article we consider the question of the existence of a non-negative
subspace invariant under an absolutely p-summing operator T defined on a Krein space /.
Recall that a complex linear space IC (or more precisely, (IC, (-, ) x)) on which a Hermitian
form (-, -)c is defined, that is, a complex valued function (-, -) x defined on K x /C such that
) (9= ma)
(il) (ax+by,z)x =alx,z)k +b{y,z)x forany x,9,z€ K and a,b € C,
is called a Krein space if in K there are two linear manifolds /C, and KC_ such that

K=K,®K_, (1.1)

Ky, () and (K_,—(-,-)x) are Hilbert spaces and (K,,_)x = {0}. By a linear man-
ifold here we mean a set M C K with the property that for any two vectors v,w € M
and any complex numbers A and u, we have Av + uw € M. It is always assumed that
K., K_ #{0}. Otherwise, (I, {-,-)x) or (IC,—(-,-)x) is a Hilbert space. The Hermitian
form (-, )k is called the indefinite inner product of the Krein space K. If, in particular,
x = min(dim KC,,dim K_) < oo, then K is called a =, -space or a Pontryagin space of in-
dex k. In most of the literature, it is always assumed that « = dim XC_ for a 7, -space.

The representation (1.1) is called a fundamental decomposition of the Krein space K and
is not unique in general. Using this decomposition, a Hilbert space inner product [-, -]k
can be defined on K as follows:

[x!y]lC = <x+1y+>lC - (x—’y—>’Cr (12)

wherex =x, +x_,y=y, +y_, withxp,yy € K.
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Although decomposition (1.1) is not unique in general, its components K. are uniquely
determined and the Hilbert norms generated by different decompositions (1.1) accord-
ing to (1.2) are equivalent and therefore define the same norm topology. All topological
notions such as continuity and convergence in a Krein space are understood to be with
respect to this norm topology.

Ifin the Hilbert space (/C, [+, -]x), the orthogonal projections onto K, and K _ are denoted
by P, and P_ respectively, then the operator

J=P, -P. 1.3)

is called the fundamental symmetry associated with decomposition (1.1) and has the fol-
lowing properties:
(i)
(f’ghc = Ufrg]’C (14)

for any vectors f and g in K, and
(ii) J2=J,] =], where ] denotes the Krein space adjoint of J.
On the other hand, given a Hilbert space (K, [+, -]x) and an operator J with the above two
properties defined on it (or, more generally, an operator G with G = G and 0 € p(G), the
resolvent set of G), then an indefinite inner product is defined on K by (1.4) (or, respec-
tively, by the relation

f.&)x =Gf . glk, f,gekK)

and (/C, (-, ) k) is a Krein space. Because of this construction, Krein spaces are sometimes
called J-spaces.

The indefinite inner product (-,-)x on a Krein space K gives rise to a classification of
elements of K. An element k € K is called positive, negative, or neutral if (k,k)x > 0,
(k,k)xc <0, or (k,k)xc = 0 respectively. A linear manifold or a subspace £ in K is called
indefinite if it contains both positive and negative elements. We say that L is semi-definite
if it is not indefinite. A semi-definite subspace L is called non-negative (positive, uniformly
positive) if (x,x) > 0 ({x,x) >0, (x,x) > §||x||, (§ > 0)) for all x in L. A non-positive (nega-
tive, uniformly negative) subspace is defined in a similar way. We say that the subspace £
is definite if (x,x) = 0 if and only if x = 0.

If a non-negative subspace £ admits no nontrivial non-negative extensions, then it is
called a maximal non-negative subspace. Maximal non-positive (positive, negative, etc.)
subspaces in K are similarly defined.

Before winding up this review on Krein spaces, we note that the Cauchy-Schwarz in-

equality,
[w)k| < Iyl %y €K, (L5)
holds in a Krein space setting. This can be deduced from the following:

[l = |xeylc - oyl
< (I My Il + e ly-1)
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< (s I+ = 12) (Ily 12 + Nly-11%)

2 2
=[xl lyll=

More details on Krein space theory can be found in [1-4], and [5].

We now turn to the main problem under consideration here, which is the question of
the existence of semi-definite invariant subspaces for absolutely p-summing operators on a
Krein space K. For various classes of operators, this problem has been a subject of research
since the early days of the theory of operators in spaces with an indefinite metric. One of
the first results in this direction was obtained by Pontryagin [6] in 1944 for self-adjoint
operators acting on m, -spaces. In particular, he proved the following theorem.

Theorem 1.1 Let T be a self adjoint operator in a w, space. Then there exists a maxi-
mal non-negative T-invariant subspace M (of dimension «) such that the spectrum of the
restriction T'| p lies in the closed upper half plane.

One year earlier, Sobolev [7] had solved a similar problem for the case « = 1. After Pon-
tryagin’s result, the problem on the existence of invariant maximal semi-definite subspaces
turned out to be the focus of attention in the theory of operators in Pontryagin and Krein
spaces. In this regard, we note the articles by Krein [8, 9], Langer [10-12], Azizov [13, 14],
and some others. Krein [8] obtained an analogue of Pontryagin’s theorem for unitary op-
erators on 7, spaces and developed a new approach to the invariant subspace problem in
spaces with an indefinite metric. An important generalization of Pontryagin’s result was
obtained by Krein [9] and Langer [10]. As this subject developed, theorems on the exis-
tence of T-invariant subspaces were obtained for other classes of operators. Langer [11,12]
proved the existence of maximal definite invariant subspaces for a wider class of operators,
the definitizable operators. Krein and Langer [15], and independently Azizov [14], showed
that Pontryagin’s theorem remains true for maximal dissipative operators. Further details
on the development of this problem till the 1990s can be found in [2, 16]. More recently,
this problem has been considered in a series of papers by Shkalikov [17-21] and also by
Azizov and Gridneva [22], Azizov and Khatskevich [23], and Pyatkov [24, 25].

Let1 < p < co. Itis the aim of this paper to prove the existence of a non-positive invariant
subspace for an absolutely p-summing operator T (defined below) acting on a Krein space
K and having the following properties:

(i) there exists a circle I' := {§€ € C: |&| = r} which separates the spectrum of T for
which the scalar multiple £ R(¢) of the resolvent operator

RE):=(T-&D7 (€l)
is expansive, that is,
EIX(R(E)x, R(E)x) - = (%, %)k

for all x € IC;
(ii) there exists some real number « < 0 such that

[R(E)x, RE)x] - < E[RE)x, ax] + E[ax, R(E)x] .
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The subset of p-absolutely summing operators having both properties stated above is

nonempty as we shall show at the end of this article.

2 Preliminaries

We begin this section by defining the class of absolutely p-summing operators whose the-
ory was developed in the late sixties mainly by Pietsch [26]. The literature on these oper-
ators is very extensive and varied. References [27-29], and [30] are probably among the
most extensive ones in this regard.

The first results marking the beginning of the theory of these operators are contained in
Grothendieck’s paper [31], where one of the classical theorems of the time (Grothendieck’s
theorem) was obtained. It says that every bounded linear operator from ¢; to £; is abso-
lutely summing (see the definition below).

Let H,; and H; be Hilbert spaces with inner products [-, -]y, and [+, -]y, respectively, and
let 1 < p < 0o. A bounded linear operator T : H; — H, is called absolutely p-summing
if there exists a constant ¢ > 0 such that for each positive integer m and any vectors

hi,hy, ..., h, in Hq, we have

m 1/p m 1/p
(annp) sasupi(ZHhi,hmV’) :heH1,||h||51}, (2.1)
i=1

i=1

or equivalently,

m 1/p m 1/p
<Z ||Thi||p) <c sup! <Z|h*(hl->|"> th e My, Ih)| < 1},
i=1

i=1

where H, is the topological dual of H;. The smallest constant ¢ for which (2.1) holds is
denoted by m,(T), while IT,(H1, H,) stands for the set of all absolutely p-summing oper-
ators from H; into Hy. If H; = Hy = H, then this set is denoted by I1,(H). For the case
p =1, these operators are simply referred to as absolutely summing operators. Using the
Minkowski inequality for sums, one can easily prove that IT,(#, H>) is a linear subspace
of B(H1, H,), the set of all bounded linear operators from H; into H.

Closely related to the class of absolutely p-summing operators is the class of absolutely

(p, q)-summing operators for 1 < p, g < co. If inequality (2.1) is replaced by

lq

m Up m 1
(Z I Thiup) <c sup{ <Z| iy M)y |">
i=1 i=1

theHy, llhll Sl}, (2.2)

then the operator T is called absolutely (p, g)-summing. In this case, the smallest constant
c for which (2.2) holds is denoted by 7,,(T), while I, ,(#;, H2) denotes the class of ab-
solutely (p, g)-summing operators from H; into H,. The class I, ,(#1,H2) can also be
characterized as a collection of operators T : H; — H, which take weakly g-summable
sequences in H; to strongly p-summable sequences in ;. We note that if p < g, then
I1,,(H1, Ha) = {0}. As before, we write IT,, ,(#) for I1,,,(H, H).

We now look at the above definitions in the context of Krein spaces. Let K7 and K, be

Krein spaces with inner products (-,-)x, and (-, -)x, respectively, and let T : K; — IC; be
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a bounded linear operator. If we replace (2.1) and (2.2) with

m 1/p m 1/p
<Z ||Tki||P> < c~sup{ (Z|<ki,k>;cl |") tk e Ky, k|l < 1}, (2.3)
i=1 i=1
and
m 1p m /g
(ZnTkinP) sc~sup{<Z|<ki,k>zcl|q> :keicl,nknsl}, (2.4)
i=1 i=1

respectively, we get the definitions of absolutely p-summing and absolutely (p, )-summing
operators between Krein spaces K; and K. The rest of the notation remains as in the
Hilbert space case.

Below is an example of an absolutely p-summing operator on an arbitrary Krein space
Kforl<p<oo.

Example 2.1 Let /C be a Krein space with the indefinite inner product (-, -)x, and let # and
k be fixed elements of I with ||4]| < 1. Let 1 < p < 0o and define an operator 7' : K — K
by

Tx = {x, h) k. (2.5)

Then T is clearly well defined and linear. The fact that this operator is bounded and abso-
lutely p-summing with 7,(T) < | k|| follows from

I Tl = || ¢, ) k]| = | (o6, Bn)ic |11,
since

I TP < kIIP | e, By ic |

’

and so

D Tl < 1KkIPY | |
i=1 i=1

for each positive integer m and any choice of vectors x1,%3, . .., %, in K.

Equipped with this example, we can construct many others by simply taking a linear
combination of operators of the form (2.5) since IT,(K) is a linear subspace of B(K).

Consider a Krein space K with the indefinite inner product (-, ) x. By |K| we denote the
Hilbert space associated with the Krein space /C, that is, the space K together with the
positive definite inner product [-,-]x = {J-,-) x, where J is the operator defined in (1.3).

Remark 2.2 Let ; and K, be Krein spaces, and let T : ; — K, be a bounded linear
operator. Then T is absolutely p-summing if and only if it is absolutely p-summing as an
operator from |y ] into |/Cy|.
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Proof Let1 < p < oo and suppose that T : K; — K, is absolutely p-summing. Since ||Jk|| =
|kl and / maps the open unit ball onto itself in a one-to-one way, then for some constant
¢ >0 and any positive integer m, we have

m /p m Up
(Z ||Tk,»||P> <c-sup <Z|</<l-,k>,<l |") tk e Ky, Ikl < 1}
i=1 i=1
m 1/p
= c-sup (Zy k,,]k];cl\p> tke Ky k| < 1}
i=1
m 1/p
= ¢-sup (ZI kz,fklfcll”> Jk e 1K, Ik < 1}
i=1
m 1/p
= c-sup <Z| knk]|/C1||p) kel’CILHk”Sl}’
i=1

where we have set Jk = k.

The reverse implication can be proved in a similar way and is omitted. O

We conclude this section by introducing the concept of a Riesz projector (see [32] for
more properties of this operator). Let I' be a Cauchy contour, and let g: I’ — X be a
continuous function on I" with values in a complete normed linear space X. Then (as in
complex function theory) the integral

1
= /F gy da (2.6)

is defined as a Stieltjes integral, where the corresponding Stieltjes sum converges in the
norm of X'. Thus, the value of (2.6) is a vector in X which appears as a limit (in the norm
of X) of the corresponding Stieltjes sum. From this definition, it is clear that

1 1
F(an/ (A)d/\) 27”/ F(g(n)) da (2.7)

for any continuous linear functional F on X. Note that the integrand of the second integral
in (2.7) is just a scalar valued function.

Of interest to us is the case when X is the Banach space B(X},X3) consisting of all
bounded linear operators from the Banach space Xj into the Banach space X;. So, let
X; and X, be Banach spaces, and let g : ' — B(X3,X3) be a continuous function. Then
the value of the integral (2.6) is a bounded linear operator from X; into X3, and for each
x € X7, we have

1 1
(ﬁ /1_ g(A)dA)x: T /r g0)xdh. (2.8)

Let T be a bounded linear operator on an arbitrary Hilbert space . Suppose that T
has a separated spectrum, and let o be an isolated part of the spectrum of 7. Let I" be a
Jordan closed rectifiable contour lying in p(7T'), the resolvent set of T, and containing o7.
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Suppose further that o (7)\o7 lies outside this contour. Then the value of the integral

p:_i,f(r_u)dx,
2mi r

which is understood to be the strong limit of the integral sums, is a bounded linear opera-
tor on H and is called a Riesz projector. The following theorem, which can be found in [2]

enumerates some of the various properties of this integral.

Theorem 2.3
(a) The operator P does not depend on the choice of the contour T isolating the set ot
and it is a projection;
(b) The subspaces PH and (I — P)YH are invariant under T and o (T |py) = o7,
o (T|g-pyn) = o (T)\or.
(c) If T is a bounded linear operator and or = o (T), then P =I.

In this theorem, it is understood that T is an everywhere defined operator on . Other-
wise, the Riesz projector P has the additional property that PH C D(T), the domain of T
in H.

3 Non-positive invariant subspace
Let p be such that 1 < p < co. In this section we show the existence of a non-positive
invariant subspace for an absolutely p-summing operators T acting on a Krein space
satisfying the two conditions stated at the end of Section 1.

Let1 < p < 00, and let K be a Krein space. The following lemma establishes a contractive-
like relation for any T’ € 7, (K) with the constant 7,(T) < 1.

Lemma 3.1 Let K be a Krein space with some fixed fundamental decomposition, and for
1<p<oo,let T € I1,(K) be such that n,(T) < 1. Then with respect to this fixed funda-

mental decomposition, the inequality
(Tx, Tx) ¢ < [, %]
holds.

Proof The Cauchy-Schwarz inequality together with the fact that 7,(T) <1 yields the
following series of inequalities:

(Tx, Tx) < |(Tx, Tx)|

2
< Il x|l < 7,(T)? sup |(x,)]

Iyl=1
2
< sup |(x,)]
Iyl=1
< |lxll* = [x %]k O

Let C be a Krein space. For 1 < p < 00, let T € IT,(K). In the theorem below, which is our
main result, we prove the existence of a non-positive invariant subspace for 7" under the
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assumption that the operator £(T — £1)~! is contractive, where £ € I" for some specified

contour I'.

Theorem 3.2 Let K be a Krein space, and for 1 < p < 00, let T € T1,(K). Assume that T
has the following properties:
(i) there exists a positive real number r for which the circle T := {& : |&| = r} separates the

spectrum of T and is such that the scalar multiple & R(§) of the resolvent operator
R(E):=(T-¢N™" (5€l)

is expansive, that is, |E|>(R(&)x, R(E)x) i > (%, %) 1,

(ii) there exists some real number a < 0 such that

[R(E)x, RE)x] . < E[RE)x, ax] . + E[a, RE)x] .
Then there exists a non-positive subspace L_ C IC which is invariant under T.

Proof For 1 < p < 00, let T € I1,(K) and assume that T satisfies the conditions of the
theorem. For any real number & with 0 < a < 1, the operator 4T belongs to IT,(X) and sat-
isfies the conditions of the theorem with & replaced by a&. It is clear that the first two
conditions are satisfied. To see that the third condition is satisfied, we first recall that
R(a&):=(aT - a&l)™ = L(T - &)™ = LR(). Then

[R(at ), Rag )], = — [REmRER]

© RG], + 5[ R,

IA

[R(a& )%, om]]C + % [ax, R(a“g‘)x],C

o

a

= a[R(a§)x, Bx| . + a& [ Bx, R(ag)x],.,

where g8 = :—2 Hence, the third condition holds.

Since the operators T and aT have the same invariant subspaces, we will consider the
case when the constant 7,(T') < 1. So, without loss of generality, assume that the operator
T is such that 7,(T) < 1. Lemma 3.1 implies that for k € KL with k #0 and &£ € I", we have

(T(T - &0k, T(T - £1)k) . < [(T - &0k, (T - £1) k] . (3.1)
Let (T —&I) 'k =z Then k = (T — £I)z = Tz — £z and so Tz = k + £z. This implies that

(Tz, Tz)ic = (k+Ez,k + E2)

= (k, k)i +&(z, k)i + E(k,2)c + E1* (2, 2) k.
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From inequality (3.1) we see that

(k, k)i + E((T - €17k, k) + &k, (T — E1) 7'k,
+EP((T - €1k, (T - )7k,
<[(T-&D"k (T - £D7'k] .

Since
EP((T = D)7k, (T = ED7'K), = (k, k)i,

we see that

(k, k) + E((T = E1)7'k, k) + E(k, (T = EI) k) + (K k) e
<[(T -0k, (T - £1) k] . (3.2)

Since by assumption
(T —&D'k (T - 6D7'k] . <E[(T - D"k, k] + E[ak, (T - ED7'K]
for some real number «, inequality (3.2) can be written as

(k,k)ic + E((T = E1)7'k, k), + E(k, (T — E1) k) + (K, k) ic
<E((T -&D7'k,ak], +E[ak, (T - £D7'K] .,

which is equivalent to

(k,k)ic + E((T = E1)7'k, k) + E(k, (T — E1) k) + (K, k) ¢
<&((T -&D7'k k) + ElaJk, (T - E1)7'k) . (3.3)

We now introduce the Riesz projector

P= —i, (T -&eDtde.
2mi
[§l=r

First, we put & = re? in (3.3), divide either side of this equation by 27, and integrate from

0 to 27 with respect to 6 to get

21 2
kk;c+—/ (T - re®1)” kk) d9+—/ re((T - reI)” kk) do

2
<i/ re®((T - re”I)” koc]k) d«9+—/ re((T —re)” kot]k)

- 27 0

Page9of 13
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Hence,

1 2 . i -1
2(k,k);¢+ﬁ/o ire”((T - re®I) k, k), d6

1 ” irei®((T - reiQI)_lk k), do
2mi Jo K

< L Zﬂ ireie((T - reml)_lk a]k) de

~ 2mi 0 ’ K
1 2n irei"((T - rei"l)_lk Ol]/(> do
2mi 0 ’ K ’

which we write as

1 a1 1 _
2k, k) ic + 9] \s|=r<(T_§1) k,k),cdé + %./w:r«T_El) lk,k),cdé

1 —eD™! e — reif )7
<5 |E:r<(T £l k,a/k)Kdg+2niﬁll((T re® )"k, ajk),. ds.

We now use the fact that (-, k) and (-,¢/k) are bounded linear functionals on K together
with (2.7) to rewrite the above inequality as

2k, k)i — (Pk, k) e — (k, Pk)ic < —(Pk,aJk)ic — {aJk, PK)xc, (3.4)

where

__ 1 _epl
P_—zni/(T £l de.
|&|=r

Denote by £_ the subspace (I — P)K. Inequality (3.4) implies that for k € £_, we have
(k,k)xc <0, and Theorem 2.3 ensures that this is the required invariant subspace. This
concludes the proof. d

Note that the requirement o < 0 in the theorem cannot be dropped. If we do, then (3.4)
yields the invalid inequality

2(k,Jk)c =0

for all k € PIC.
We conclude this article by showing that an operator with the properties stated in The-
orem 3.2 above does exist, and therefore, our result does not hold on an empty set.

Example 3.3 Let K be a Krein space and fix a negative element /2 € C with the property
that ||%1]| < 1, and there exists a circle I" centered at the origin and small enough such that
2(Re &) > (M) and |(h,h)c — £)* = ||h||? for all £ € T'. Such an element / exists (for
example, we can pick a suitable /4 in K_). Define a bounded linear operator T on C by

Tx = (x, h)ch.
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This operator satisfies all the conditions of Theorem 3.2 and clearly has a non-positive
invariant subspace. To show that this is the case, we first note that from Example 2.1,
one readily sees that T is absolutely p-summing with 7(7T) <1 for 1 < p < co. The only
eigenvalues of this operator are A; = 0 and A, = (i1, ). Since T has finite rank, these
eigenvalues are also the only spectral values of T. Hence, the circle " lies in the resolvent
set p(T') of T and separates its spectrum. For any & € T, the resolvent operator R (T) :=
(T - &I)7 is defined. A little manipulation shows that R¢(T) is given by

Rﬂnzl&&@gi 4.

Elh-¢
Now
1 e | |(h, %) xc |2
Re(T)x, R (T =—|—| (hh) - ———
(Rs (T Re (T EP{(hMK—E T -
_|mmm2+mm}
by —g 8
1 he |?
=—|—————| (hh
Ew{wmm—s< e
_Hh@ﬂ%%hk—@+Hh@M%%Mm—@+wx>}
(1, e — €7 R
L [ PE+E) | (e [
'Eﬁ{uhmm—a2_<th—J<hMK+““m}
1 h 2
:Eﬁ{%%gﬁ Mma—mmd+mw4
>@(x,x);g

The last inequality holds because 2(Re &) > (/, /1) . Hence,
|&1(Re (T)x, Re (T)x), > (%, %) xc

and so the operator £R; (7)) is expansive.
We now show that there exists some real number « < 0 such that

[R(E)x, R(E)x] - < E[RE)x, ax] - + E[ e, R(E)x] .

Now,
1 (x,h)ch (x, hyich
R ,R = 75 - -
[REm RiE)x] @PLth—s Y e ¢ 4K
:L{ | (x, 1) x| 1] _ {mx)klx hx
EP L1 —£2 " k-
_(x:h>IC[h:x]lC [ ] }
e —¢ 0K

1 { [x)x]lC”h”4 _ (hrx)lC[xrh])C (x’h>)C[h:x]lC [ ]IC}
Kby —§1> (b -§ (hh -§ '
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< L{[x x] _ (hfx)K[xfh]’C _ <xrh>K[hrx]’C [ ] }

SEPUTTYT -8 bhe-g
1 {2 (x’h>/C[h:x]7C (h’x)K[x’h]lC}

—12[x %]k - - ,

HE (h,h) - & (h,h) - &

where we have used the Cauchy-Schwarz inequality to obtain the first inequality and the
fact that | {1, k) — £|*> > ||1]|? and || /1]| <1 to obtain the second inequality.

We also have that

1 I 1
& [R(E )%, —@xL +& [—@x,R(S )x}

_[M_x_ix}
Lk - 77 JERT

+[_Lx M_x]
EP7 (i) —€ i

K

=_L <x,h)lC[h’x]IC n L[x x]]C _ i (h,.?C))C[x,h]]C n L[x x]IC
€2 (hh)—& 2" lE2 (b h)—¢ .
_ L{Z[x i - o hlhxlc (h,x)zc[xyhlzc}
ER 1T k) -6 iy -¢ |
Witha:—#,we see that

[R()x, R(€)x] - < E[R(E)x, ax] - + &, R(E)x] .
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