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1 Introduction and preliminaries
By a non-Archimedean field we mean a field K equipped with a function (valuation) | · |
from K into [,∞) such that |r| =  if and only if r = , |rs| = |r||s| and |r + s| ≤ max{|r|, |s|}
for all r, s ∈ K . Clearly, || = | – | =  and |n| ≤  for all n ∈ N. By the trivial valuation we
mean the mapping | · | taking everything but  into  and || = . Let X be a vector space
over a field K with a non-Archimedean non-trivial valuation | · |. A function ‖ · ‖ : X →
[,∞) is called a non-Archimedean norm if it satisfies the following conditions:

(i) ‖x‖ =  if and only if x = ;
(ii) for any r ∈ K , x ∈ X , ‖rx‖ = |r|‖x‖;
(iii) the strong triangle inequality (ultrametric) holds; namely

‖x + y‖ ≤ max
{‖x‖,‖y‖} (x, y ∈ X).

Then (X,‖ · ‖) is called a non-Archimedean normed space. From the fact that

‖xn – xm‖ ≤ max
{‖xj+ – xj‖ :m ≤ j ≤ n – 

}
(n >m)

holds, a sequence {xn} is Cauchy if and only if {xn+ – xn} converges to zero in a non-
Archimedean normed space. By a complete non-Archimedean normed space, we mean
the one in which every Cauchy sequence is convergent.
For any nonzero rational number x, there exists a unique integer nx ∈ Z such that

x = a
bp

nx , where a and b are integers not divisible by p. Then |x|p := p–nx defines a non-
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Archimedean norm onQ. The completion ofQwith respect to themetric d(x, y) = |x– y|p
is denoted by Qp, which is called the p-adic number field.
A non-Archimedean Banach algebra is a complete non-Archimedean algebra A which

satisfies ‖ab‖ ≤ ‖a‖‖b‖ for all a,b ∈A. Formore detailed definitions of non-Archimedean
Banach algebras, we refer the reader to [, ].
If U is a non-Archimedean Banach algebra, then an involution on U is a mapping t → t*

from U into U which satisfies
(i) t** = t for t ∈ U ;
(ii) (αs + βt)* = αs* + βt*;
(iii) (st)* = t*s* for s, t ∈ U .
If, in addition, ‖t*t‖ = ‖t‖ for t ∈ U , then U is a non-Archimedean C*-algebra.
The stability problemof functional equationswas originated froma question ofUlam []

concerning the stability of group homomorphisms. Let (G,∗) be a group and let (G,�,d)
be a metric group (a metric which is defined on a set with a group property) with the met-
ric d(·, ·). Given ε > , does there exist a δ(ε) >  such that if amapping h :G →G satisfies
the inequality d(h(x ∗ y),h(x) � h(y)) < δ for all x, y ∈ G, then there is a homomorphism
H : G → G with d(h(x),H(x)) < ε for all x ∈ G? If the answer is affirmative, we would
say that the equation of a homomorphismH(x ∗ y) =H(x)�H(y) is stable (see also [–]).
We recall a fundamental result in fixed point theory. Let � be a set. A function d : � ×

� → [,∞] is called a generalized metric on � if d satisfies
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x) for all x, y ∈ �;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ �.

Theorem . [] Let (�,d) be a complete generalized metric space, and let J :� → � be a
contractive mapping with the Lipschitz constant L < . Then for each given element x ∈ �,
either d(Jnx, Jn+x) = ∞ for all nonnegative integers n or there exists a positive integer n
such that
() d(Jnx, Jn+x) < ∞, ∀n≥ n;
() the sequence {Jnx} converges to a fixed point y* of J ;
() y* is the unique fixed point of J in the set � = {y ∈ � | d(Jnx, y) < ∞};
() d(y, y*) ≤ 

–Ld(y, Jy) for all y ∈ �.

In this paper, using the fixed point method, we prove the generalized Hyers-Ulam sta-
bility of homomorphisms and derivations in non-Archimedean random C*-algebras and
non-Archimedean random Lie C*-algebras for the following additive functional equation
(see []):

m∑
i=

f

(
mxi +

m∑
j=,j �=i

xj

)
+ f

( m∑
i=

xi

)
= f

( m∑
i=

mxi

)
(m ∈N,m ≥ ). (.)

2 Random spaces
In the section, we adopt the usual terminology, notations, and conventions of the theory
of random normed spaces as in [–]. Throughout this paper, �+ is the space of distri-
bution functions, that is, the space of all mappings F : R ∪ {–∞,∞} → [, ] such that F
is left-continuous and non-decreasing on R, F() =  and F(+∞) = . D+ is a subset of �+

consisting of all functions F ∈ �+ for which l–F(+∞) = , where l–f (x) denotes the left
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limit of the function f at the point x, that is, l–f (x) = limt→x– f (t). The space �+ is partially
ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and only if F(t)≤ G(t)
for all t in R. The maximal element for �+ in this order is the distribution function ε

given by

ε(t) =

⎧⎨
⎩ if t ≤ ,

 if t > .

Definition . [] A mapping T : [, ]× [, ]→ [, ] is a continuous triangular norm
(briefly, a continuous t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) T(a, ) = a for all a ∈ [, ];
(d) T(a,b)≤ T(c,d) whenever a≤ c and b ≤ d for all a,b, c,d ∈ [, ].

Typical examples of continuous t-norms are TP(a,b) = ab, TM(a,b) = min(a,b) and
TL(a,b) =max(a + b – , ) (the Lukasiewicz t-norm).

Definition . [] A non-Archimedean random normed space (briefly, NA-RN-space) is
a triple (X,μ,T), where X is a vector space, T is a continuous t-norm, and μ is a mapping
from X into D+ such that the following conditions hold:
(RN) μx(t) = ε(t) for all t >  if and only if x = ;
(RN) μαx(t) = μx( t

|α| ) for all x ∈ X , α �= ;
(RN) μx+y(t)≥ T(μx(t),μy(t)) for all x, y ∈ X and all t ≥ .

Every normed space (X,‖ · ‖) defines a non-Archimedean random normed space
(X,μ,TM), where

μx(t) =
t

t + ‖x‖
for all t > , and TM is the minimum t-norm. This space is called the induced random
normed space.

Definition . [] A non-Archimedean random normed algebra (X,μ,T ,T ′) is a non-
Archimedean random normed space (X,μ,T) with an algebraic structure such that
(RN-) μxy(t)≥ T ′(μx(t),μy(t)) for all x, y ∈ X and all t > , in which T ′ is a continuous

t-norm.

Every non-Archimedean normed algebra (X,‖ · ‖) defines a non-Archimedean random
normed algebra (X,μ,TM), where

μx(t) =
t

t + ‖x‖
for all t >  iff

‖xy‖ ≤ ‖x‖‖y‖ + t‖y‖ + t‖x‖ (x, y ∈ X; t > ).

This space is called an induced non-Archimedean random normed algebra.
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Definition .
() Let (X,μ,TM) and (Y ,μ,TM) be non-Archimedean random normed algebras. An

R-linear mapping f : X → Y is called a homomorphism if f (xy) = f (x)f (y) for all
x, y ∈ X .

() An R-linear mapping f : X → X is called a derivation if f (xy) = f (x)y + xf (y) for all
x, y ∈ X .

Definition . Let (U ,μ,T ,T ′) be a non-Archimedean random Banach algebra, then an
involution on U is a mapping u → u* from U into U which satisfies

(i) u** = u for u ∈ U ;
(ii) (αu + βv)* = αu* + βv*;
(iii) (uv)* = v*u* for u, v ∈ U .
If, in addition,μu*u(t) = T ′(μu(t),μu(t)) foru ∈ U and t > , thenU is a non-Archimedean

random C*-algebra.

Definition . Let (X,μ,T) be an NA-RN-space.
() A sequence {xn} in X is said to be convergent to x in X if, for every ε >  and λ > ,

there exists a positive integer N such that μxn–x(ε) >  – λ whenever n≥ N .
() A sequence {xn} in X is called a Cauchy sequence if, for every ε >  and λ > , there

exists a positive integer N such that μxn–xn+ (ε) >  – λ whenever n≥ m ≥ N .
() An RN-space (X,μ,T) is said to be complete if and only if every Cauchy sequence in

X is convergent to a point in X .

3 Stability of homomorphisms and derivations in non-Archimedean random
C*-algebras

Throughout this section, assume that A is a non-Archimedean random C*-algebra with
the norm μA· and that B is a non-Archimedean random C*-algebra with the norm μB· .
For a given mapping f :A→ B, we define

Dλf (x, . . . ,xm) :=
m∑
i=

λf

(
mxi +

m∑
j=,j �=i

xj

)
+ f

(
λ

m∑
i=

xi

)
– f

(
λ

m∑
i=

mxi

)

for all λ ∈ T := {ν ∈C : |ν| = } and all x, . . . ,xm ∈A.
Note that a C-linear mapping H :A → B is called a homomorphism in non-Archime-

dean random C*-algebras ifH satisfiesH(xy) =H(x)H(y) andH(x*) =H(x)* for all x, y ∈A.
We prove the generalized Hyers-Ulam stability of homomorphisms in non-Archime-

dean random C*-algebras for the functional equation Dλf (x, . . . ,xm) = .

Theorem . Let f : A → B be a mapping for which there are functions ϕ : Am → D+,
ψ :A →D+, and η :A→D+ such that |m| <  is far from zero and

μB
Dλf (x,...,xm)(t) ≥ ϕx,...,xm (t), (.)

μB
f (xy)–f (x)f (y)(t) ≥ ψx,y(t), (.)

μB
f (x*)–f (x)* (t) ≥ ηx(t), (.)
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for all λ ∈ T, all x, . . . ,xm,x, y ∈ A and t > . If there exists an L <  such that

ϕmx,...,mxm
(|m|Lt) ≥ ϕx,...,xm (t), (.)

ψmx,my
(|m|Lt) ≥ ψx,y(t), (.)

ηmx
(|m|Lt) ≥ ηx(t), (.)

for all x, y,x, . . . ,xm ∈ A and t > , then there exists a unique random homomorphism
H :A→ B such that

μB
f (x)–H(x)(t) ≥ ϕx,,...,

((|m| – |m|L)
t
)

(.)

for all x ∈A and t > .

Proof It follows from (.), (.), (.), and L <  that

lim
n→∞ϕmnx,...,mnxm

(|m|nt) = , (.)

lim
n→∞ψmnx,mny

(|m|nt) = , (.)

lim
n→∞ηmnx

(|m|nt) = , (.)

for all x, y,x, . . . ,xm ∈A and t > .
Let us define � to be the set of all mappings g : A –→ B and introduce a generalized

metric on � as follows:

d(g,h) = inf
{
k ∈ (,∞) : μB

g(x)–h(x)(kt) > φx,,...,(t),∀x ∈A, t > 
}
.

It is easy to show that (�,d) is a generalized complete metric space (see []).
Now, we consider the function J : � –→ � defined by Jg(x) = 

mg(mx) for all x ∈ A and
g ∈ �. Note that for all g,h ∈ �, we have

d(g,h) < k =⇒ μB
g(x)–h(x)(kt) > φx,,...,(t)

=⇒ μB

m g(mx)– 

mh(mx)(kt) > |m|φmx,,...,
(|m|t)

=⇒ μB

m g(mx)– 

mh(mx)(kLt) > φmx,,...,(t)

=⇒ d(Jg, Jh) < kL.

From this it is easy to see that d(Jg, Jk) ≤ Ld(g,h) for all g,h ∈ �, that is, J is a self-function
of � with the Lipschitz constant L.
Putting μ = , x = x and x = x = · · · = xm =  in (.), we have

μB
f (mx)–mf (x)(t)≥ φx,,...,(t)

for all x ∈A and t > . Then

μB
f (x)– 

m f (mx)(t) ≥ φx,,...,
(|m|t)

http://www.journalofinequalitiesandapplications.com/content/2012/1/251
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for all x ∈ A and t > , that is, d(Jf , f ) ≤ 
|m| < ∞. Now, from the fixed point alternative, it

follows that there exists a fixed point H of J in � such that

H(x) = lim
n→∞


|m|n f

(
mnx

)
(.)

for all x ∈A since limn→∞ d(Jnf ,H) = .
On the other hand, it follows from (.), (.), and (.) that

μB
DλH(x,...,xm)(t) = lim

n→∞μB


mn Df (mnx,...,mnxm)(t)

≥ lim
n→∞φmnx,...,mnxm

(|m|nt) = .

By a similar method to the above, we get λH(mx) =H(mλx) for all λ ∈ T and all x ∈A.
Thus, one can show that the mapping H :A→ B is C-linear.
It follows from (.), (.), and (.) that

μB
H(xy)–H(x)H(y)(t) = lim

n→∞μB
f (mnxy)–f (mnx)f (mny)

(|m|nt)
≥ lim

n→∞ψmnx,mny
(|m|nt) = 

for all x, y ∈A. So,H(xy) =H(x)H(y) for all x, y ∈A. Thus,H :A→ B is a homomorphism
satisfying (.) as desired.
Also by (.), (.), (.) and by a similar method, we have H(x*) =H(x)*. �

Corollary . Let r >  and θ be nonnegative real numbers, and let f :A → B be a map-
ping such that

μB
Dλf (x,...,xm)(t) ≥

t
t + θ · (‖x‖rA + ‖x‖rA + · · · + ‖xm‖rA)

,

μB
f (xy)–f (x)f (y)(t) ≥

t
t + θ · (‖x‖rA · ‖y‖rA)

,

μB
f (x*)–f (x)* (t) ≥

t
t + θ · ‖x‖rA

for all λ ∈ T, all x, . . . ,xm,x, y ∈ A and t > . Then there exists a unique homomorphism
H :A→ B such that

μB
f (x)–H(x)(t) ≥

(|m| – |m|r)t
(|m| – |m|r)t + θ |m| – |m|r‖x‖rA

for all x ∈A and t > .

Proof The proof follows from Theorem .. By taking

ϕx,...,xm (t) =
t

t + θ · (‖x‖rA + ‖x‖rA + · · · + ‖xm‖rA)
,

ψx,y(t) :=
t

t + θ · (‖x‖rA · ‖y‖rA)
,

http://www.journalofinequalitiesandapplications.com/content/2012/1/251
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ηx(t) =
t

t + θ · ‖x‖rA
for all x, . . . ,xm,x, y ∈ A, L = |m|r– and t > , we get the desired result. �

Weprove the generalizedHyers-Ulam stability of derivations on non-Archimedean ran-
dom C*-algebras for the functional equation Dλf (x, . . . ,xm) = .

Theorem . Let f : A → A be a mapping for which there are functions ϕ : Am → D+,
ψ :A →D+, and η :A→D+ such that |m| <  is far from zero and

μA
Dλf (x,...,xm)(t) ≥ ϕx,...,xm (t),

μA
f (xy)–f (x)y–xf (y)(t)≥ ψx,y(t),

μA
f (x*)–f (x)* (t) ≥ ηx(t),

for all λ ∈ T and all x, . . . ,xm,x, y ∈ A and t > . If there exists an L <  such that (.),
(.), and (.) hold, then there exists a unique derivation δ :A→A such that

μA
f (x)–δ(x)(t) ≥ ϕx,,...,

((|m| – |m|L)
t
)

for all x ∈A and t > .

4 Stability of homomorphisms and derivations in non-Archimedean Lie
C*-algebras

A non-Archimedean random C*-algebra C , endowed with the Lie product

[x, y] :=
xy – yx



on C , is called a Lie non-Archimedean random C*-algebra.

Definition . Let A and B be random Lie C*-algebras. A C-linear mapping H :A → B
is called a non-Archimedean Lie C*-algebra homomorphism if H([x, y]) = [H(x),H(y)] for
all x, y ∈A.

Throughout this section, assume that A is a non-Archimedean random Lie C*-algebra
with the normμA and thatB is a non-Archimedean randomLieC*-algebra with the norm
μB .
We prove the generalized Hyers-Ulam stability of homomorphisms in non-Archime-

dean random Lie C*-algebras for the functional equation Dλf (x, . . . ,xm) = .

Theorem . Let f :A→ B be a mapping for which there are functions ϕ :Am →D+ and
ψ :A →D+ such that (.) and (.) hold and

μB
f ([x,y])–[f (x),f (y)](t) ≥ ψx,y(t) (.)

for all λ ∈ T, all x, y ∈ A and t > . If there exists an L <  and (.), (.), and (.) hold,
then there exists a unique homomorphism H :A→ B such that (.) holds.

http://www.journalofinequalitiesandapplications.com/content/2012/1/251
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Proof By the same reasoning as in the proof of Theorem ., we can find the mapping
H :A→ B given by

H(x) = lim
n→∞

f (mnx)
|m|n (.)

for all x ∈A. It follows from (.) and (.) that

μB
H([x,y])–[H(x),H(y)](t) = lim

n→∞μB
f (mn[x,y])–[f (mnx),f (mny)]

(|m|nt)
≥ lim

n→∞ψmnx,mny
(|m|nt) = 

for all x, y ∈A and t > , then

H
(
[x, y]

)
=

[
H(x),H(y)

]
for all x, y ∈ A. Thus, H : A → B is a Lie C*-algebra homomorphism satisfying (.), as
desired. �

Corollary . Let r >  and θ be nonnegative real numbers, and let f :A → B be a map-
ping such that

μB
Dλf (x,...,xm)(t) ≥

t
t + θ (‖x‖rA + ‖x‖rA + · · · + ‖xm‖rA)

,

μB
f ([x,y])–[f (x),f (y)](t) ≥

t
t + θ · ‖x‖rA · ‖y‖rA

,

μB
f (x*)–f (x)* (t) ≥

t
t + θ · ‖x‖rA

for all λ ∈ T, all x, . . . ,xm,x, y ∈ A and t > . Then there exists a unique homomorphism
H :A→ B such that

μB
f (x)–H(x)(t) ≥

(|m| – |m|r)t
(|m| – |m|r)t + θ‖x‖rA

for all x ∈A and t > .

Proof The proof follows from Theorem . and a method similar to Corollary .. �

Definition . LetA be a non-Archimedean randomLieC*-algebra. AC-linearmapping
δ :A→A is called a Lie derivation if δ([x, y]) = [δ(x), y] + [x, δ(y)] for all x, y ∈A.

We prove the generalizedHyers-Ulam stability of derivations on non-Archimedean ran-
dom Lie C*-algebras for the functional equation Dλf (x, . . . ,xm) = .

Theorem . Let f :A→A be a mapping for which there are functions ϕ : Am →D+ and
ψ : A →D+ such that (.) and (.) hold and

μA
f ([x,y])–[f (x),y]–[x,f (y)](t)≥ ψx,y(t), (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/251
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for all x, y ∈ A. If there exists an L <  and (.), (.), and (.) hold, then there exists a
unique Lie derivation δ :A→A such that (.) holds.

Proof By the same reasoning as the proof of Theorem ., there exists a unique C-linear
mapping δ :A→A satisfying (.); the mapping δ :A→A is given by

δ(x) = lim
n→∞

f (mnx)
|m|n (.)

for all x ∈A.
It follows from (.) and (.) that

μA
δ([x,y])–[δ(x),y]–[x,δ(y)](t)

= lim
n→∞μA

f (mn[x,y])–[f (mnx),·mny]–[mnx,f (mny)]
(|m|nt)

≥ lim
n→∞ψmnx,mny

(|m|nt) = 

for all x, y ∈A and t > , then

δ
(
[x, y]

)
=

[
δ(x), y

]
+

[
x, δ(y)

]
for all x, y ∈A. Thus, δ :A→A is a Lie derivation satisfying (.). �
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