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descent magnitude of objective function is obtained at every iteration. In addition,
the initial step size in the modified line search is adjusted automatically for each
iteration. On the basis of this line search, a new cautious Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm is developed. Under some mild assumptions, the global
convergence of the algorithm is established for nonconvex optimization problems.
Numerical results demonstrate that the proposed method is promising, especially in
comparison with the existent methods.
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1 Introduction

Consider the following unconstrained optimization problem:
minf (x), @)
X€ER"

where f': R” — R is a twice continuously differentiable function.

Amongst the variant methods to solve problem (1), it is well known that the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method has obtained great success either in the aspect
of the theoretical research or in the field of engineering applications. In this connection,
it is referred to, for example, the literature [1-11] and the references therein.

Summarily, in the framework of the BFGS method, a quasi-Newton direction dy at the

current iterate point xy is first obtained by solving the following linear system of equation:
Bydic = —gio 2)

where By is a given positive definite matrix, g : R” — R" is the gradient function of f, and
gk is the value of g at . At the new iterate point xx,1, Bx is updated by

T T
Bisksi Bk yiyx

T T T, '’
Si Brsk Vi Sk

Byi1 = By

where s; = X1 — Xk, Yk = G — &k
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Next, along the search direction dy, we choose a suitable stepsize ox by employing some
line search strategy. Thus, the iterate point x is updated by

Xkl = Xx + . (4)

Actually, it has been reported that a choice of suitable line search rule is important to
the efficiency and convergence of the BFGS method (see, for example, [7,12-15] and [16]).
It is well known that the Armijo line search is the cheapest and most popular algorithm to
obtain a step length among all line search methods. However, when the Armijo line search
algorithm is implemented to find a step length o, B, in (3) may not be positive definite
even if By is a positive definite matrix [17]. For this, in [5] a cautious BFGS method (CBFGS)
associated with the Armijo line search is presented to solve the nonconvex unconstrained
optimization problems. The update formula of By in [5] is

_ BkSkSZBk ykykT if J//Zsk > ellgell”
skTBksk ykTsk ’ lskll? = kil

By =

(5)

By, otherwise,

where € and y are positive constants.

In this paper, we shall first present a modified Armijo-type line search rule. Then, on
the basis of this line search, a new cautious BFGS algorithm is developed. It will be shown
that in our line search, a larger descent magnitude of an objective function is obtained with
lower cost of computation at every iteration. In addition, the initial step size is adjusted
automatically at each iteration.

The rest of this paper is organized as follows. In Section 2, a modified Armijo-type in-
exact line search rule is presented and a new cautious BFGS algorithm is developed. Sec-
tion 3 is devoted to establishing the global convergence of the proposed algorithm under
some suitable assumptions. In Section 4, numerical results are reported to demonstrate
the efficiency of the algorithm. Some conclusions are given in the last section.

2 Modified Armijo-type line search rule and new cautious BFGS algorithm
The classical Armijo line search is to find o such that the following inequality holds:

Sk + o) < fi) + orougy dr (6)

where 07 € (0,1) is a given constant scalar. In a computer procedure, o in (6) is obtained
by searching in the set {8, 8o, B0>...,} such that oy is the largest component satisfying
(6), where p € (0,1) and 8 > 0 are given constant scalars.

Compared with other line search methods, the computer procedure of the Armijo line
search is simplest, and the computational cost to find a feasible stepsize is very low, espe-
cially for 1 > p > 0 being close to 0. Its drawback lies in that at each iteration, there may be
only little reduction of an objective function to be obtained.

Inspired by this observation, we present a modified Armijo-type line search (MALS)
rule as follows. Suppose that g is a Lipschitz continuous function. Let L be the Lipschitz
constant. Let Ly be an approximation of L. Set

gl dr

N TAFAE)
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Different from the classical Armijo line search (6), we find a step size o as the largest
component in the set {Bx, Brp, Bcp? ...} such that the inequality

1
Sk + agedi) <f () + oo (ngdk - EaleLkHdkHz) (7)

holds, where o € (0,1), 1 € [0, +00), p € (0,1) are given constant scalars.
In the following proposition, we show that the new line search (7) is well defined.

Proposition 1 Let f : R" — R be a continuously differentiable function. Suppose that the
gradient function g of f is Lipschitz continuous. Let Ly > 0 be an approximation value of
the Lipschitz constant. If d is a descent direction of f at x, then there is an o > 0 in the set
{Bi, Bkp, Bip? ...} such that the following inequality holds:

fx+ady) <flx) + oo <ngdk - %aﬂLk”dk”z) (8)

where o € (0,1), € [0,+00), p € (0,1) are given constant scalars.

Proof In fact, we only need to prove that a step length « is obtained in finitely many steps.
If it is not true, then for all sufficiently large positive integer m, we have

S+ Bep™di) —f (i) > o (ngdk - %ﬂkﬂmﬂfuk”dknz) 9)

By the mean-theorem, there is a 6 € (0,1) such that

1
Bip™g (% + Qkﬁkpmdk)Tdk > o™ (ngdk - EﬁkpmMLklldkHz)- (10)
Thus,

1
(o + OcBrp™dr) — &) di > (0 — gl dy - 50,3kpmﬂLk||dk||2~ (11)
As m — 00, it is obtained that
(0 -1)gidy <0.

From o € (0,1), it follows that ng dir > 0. This contradicts the fact that dy is a descent
direction. O

Remark 1 Since the third term on the right-hand side of (7) is negative, it is easy to see
that the obtained step size o ensures a larger descent magnitude of the objective function
than that in (6).

It is noted that (7) reduces to (6) when u = 0.

Remark 2 In the MALS, the parameter L; should be estimated at each iteration. In this
paper, for k > 1, we choose

T
_ Sk k-1

- , 12)
llse-111?
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where sg_1 = % — X1, Yk-1 = gk — Zk—1. Actually, Ly in (12) is a solution of the minimization
problem

min || Lgsj-1 = Y-l (13)
Therefore, it is acceptable that L is an approximation of L.

Based on Proposition 1, Remarks 1 and 2, a new cautious BFGS algorithm is developed
for solving problem (1).

Algorithm 1 (New cautious BFGS algorithm)

Step 1. Choose an initial point xy € R” and a positive definite matrix By. Choose o €
(0,1), w >0, € >0and Ly > 0. Set k:=0.

Step 2. If ||gk|l <€, the algorithm stops. Otherwise, go to Step 3.

Step 3. Find dj that is a solution of the following system of linear equations:
By = —gk.

Step 4. Determine a step size oy satisfying (7).
Step 5. Set %1 := &k + axdy. Compute s; and y. Update By as Bi,1 by (5). Set k:=k +1,
return to Step 2.

3 Global convergence
In this section, we are going to prove the global convergence of Algorithm 1.
We need the following conditions.

Assumption 1
1. The level set Q = {x € R"|f(x) <f(x0)} is bounded.
2. In some neighborhood N of Q, f is continuously differentiable and its gradient is
Lipschitz continuous, namely there exists a constant L > 0 such that

l¢@) -] <Llx-yl, VYxyeN. (14)
3. The sequence {Li}, 0 < Ly < ML, where M is a positive constant.

Before the statement of the global convergence, we first prove the following useful lem-

mas.

Lemma 1 Let {x;} be a sequence generated by Algorithm 1. If Ly > 0 for each k > 0, then
for any given initial point x, the following results hold:

1. {fx} is a decreasing sequence.

2. {xi} € Q.

3. > poy (i = fis1) < +00.

Proof The first and second results are directly from the condition L > 0 for each k > 0,
Proposition 1 and the definition of 2. We only need to prove the third result.
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Since {fx} is a decreasing sequence and is bounded below, it is clear that there exists a
constant f” such that

klgroloﬁ( =/ 15)

From (15), we have

o) N
> Vi—fin) = im D (e —fin) = lim (f —fen) =fi —f . (16)
k=1 k=1

Thus,
> (fic —fen) < +00. (17)
k=1 g

Lemma 2 Let {x;} be a sequence generated by Algorithm 1. Let {dy} be the sequence of
search direction. If Assumption 1 holds, then

S ngdk 2

k=1
In particular,
T
& i
= 19)
k=oo || di ||
Proof Denote
Ky = {k | ox = Bihs Ky = {k | ax < Br}.
For k € Ki, we have
T 1 2
Sk —fre1 = —og (gk dy — Eak,Uva”dk” )
T T
—&i ( T 1 —g dk 2)
ok (gl - = L)
Lilldel2 \* ™7 2 Leflde )2
(1+1) 14
=0 —
2" ) Lilldi 2
T 7 \2
0@+ (gk dk) | 00)
2ML  \ |ldkll

For k € K, it follows from (7) that

1
S ok + p 7 ordd) — f () > op " ek <ngdk - Ep_lakMLk”dk”Z)' (21)
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By the mean-theorem, there is a 6 € (0,1) such that

_ _ T _ 1 _
p~ g (x + Oxp okdie) " dic > op (ngdk -5 lakﬂLkHdkHZ)-

Hence,

1
(g(xi + O i) — gi) i > (0 = 1)gl ey — 50 Ll

From the Lipschitz continuity of g, it is obtained that

1
(L + EGML/(> o alldicll* > (o — 1)gf di.

It reads

_2p(1-0) gidk
2L + oLy [l

From (7) and (25), it is deduced that

1
Ji—Jfin1 = —00 (ngdk - Eakl/va”dk”z)

Denote

C[o@2+u) 200(1-0)
n = min ,
2ML " 2L+ ouML

Then from (26), we obtain

naz(f)-

From Lemma 1, it is clear that
SHCT
2\ el

That is to say
o0 Td 2
k
3 (g_; ) < +00,
2\ g
since n > 0. It is certain that

& _
koo || di ||

—2/0(1 o) gldi
ng k
2L+0MLk kI

- 2p0(1-0) gkdk 2
“2L+ouML\ |ldill )

|

(22)

(23)

(24)

(25)

(28)

(29)

(30)
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Lemma 3 Let {xi} be a sequence generated by Algorithm 1. Suppose that there exist con-
stants ay,ay > 0 such that the following relations hold for infinitely many k:

IBesill < anllsklls as skl < s{ Bisk. (32)
Then

liminf || g || = 0. (33)

k— 00

Proof Let A be the indices set of k satisfying (32).
From (32) and gx = —Byd, it follows that for each k € A,

as||di|1* < dY Brdy = —g{ di. (34)
Thus,
T
& Ak
aylldill < == (35)
2= ]

Combined with (31), it yields
(e 1961 =0 o0
On the other hand, from (32) and gx = —Bd, it is deduced that for each k € A,

0 < llgll = 1 Bxdk|l < arlldkll- (37)

From (36) and (37), it is easy to see that

li =0. 38
reim gl (38)
The desired result (33) is proved. d

Lemma 3 indicates that for the establishment of the global convergence, it suffices to
show that (32) holds for infinitely many k in Algorithm 1. The following lemma gives suf-
ficient conditions for (32) to hold (see Theorem 2.1 in [18]).

Lemma 4 Let By be a symmetric and positive matrix and By be updated by (3). Suppose

that there are positive constants my, my (my < my) such that for all k > 0,

T
YieSk llyxll? -m
skl — VEsk

(39)

Then there exist constants a1, a, such that for any positive integer t, (32) holds for at least
[¢/2] values of k € {1,2,...,t}.
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Now, we come to establish the global convergence for Algorithm 1. For the sake of con-

venience, we define an index set

T
K= {i ”y” ﬁ; zenginV}. (40)
Si

Theorem 1 Let {xi} be a sequence generated by Algorithm 1. Under Assumption 1, (33)
holds.

Proof From Lemma 3, we only need to show that (32) holds for infinitely many k.

If K is a finite set, then By remains a constant matrix after a finite number of iterations.
Hence, there are constants a;, g, such that (32) holds for all k sufficiently large. The proof
of the result is completed.

In the following, we prove (33) in the case that K is a infinite set.

Suppose that (33) is not true. Then there is a constant § > 0 such that ||g|| > § for all k.
From (4.0), the inequality

T

S
i > e (41)
lIskl

holds for all k € K.
Combined with (14), it is obtained that

2 2 2
lyll - [yl _L

Vs~ eovllscl? ~ ed?

(42)

From Lemma 4, it follows that there exist constants a;, g, such that (32) holds for infinitely
many k. It contradicts the result in Lemma 3.
The proof is completed. d

4 Numerical experiments

In this section, we report the numerical performance of Algorithm 1. The numerical ex-
periments are carried out on a set of 16 test problems from [19]. We make comparisons
with the cautious BEGS method associated with the ordinary Armijo line search rule.

In order to study the numerical performance of Algorithm 1, we record the run time of
CPU, the total number of function evaluations required in the process of line search and
the total number of iterations for each algorithm.

All MATLAB procedures run in the following computer environment: 2GHz CPU, 1GB
memory based operating system of WINDOWSs XP. The parameters are chosen as follows:

€=107°, Bo = L, p=0.3, 0=02, w=1, L=1

As to the parameters in the cautious update (5), we firstlet y = 0.01if ||gk|| > 1,and y = 3
if flgell <1.

The performance of algorithms and the solution results are reported in Table 1. In this
table, we use the following denotations:

Dim: the dimension of the objective function;
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Table 1 Comparison of efficiency with other method

Functions Algorithm Dim GV NI NF cT
Rosenbrock CBFGS 2 6.2782e-007 35 74 0.0310s
NCBFGS 2 1.1028e-007 40 70 0.0310s
Freudenstein and Roth CBFGS 2 7.9817e-007 28 82 0.0310s
NCBFGS 2 2.7179e-007 11 25 0.0320s
Beale CBFGS 2 7.2275e-007 40 55 0.0310s
NCBFGS 2 3.1136e-007 18 23 0.0470s
Brown badly CBFGS 2 7.7272e-007 36 223 0.0310s
NCBFGS 2 0 29 50 0.0620s
Broyden tridiagonal CBFGS 4 7.5723e-007 26 126 0.0320s
NCBFGS 4 3.8712e-007 15 21 0.0310s
Powell singular CBFGS 4 9.9993e-007 13,993 14,031 2.4530s
NCBFGS 4 9.4607e-007 31 38 0.0320s
Kowalik and Osborne CBFGS 4 9.9783e-007 3126 3128 2.1250s
NCBFGS 4 4.4454e-007 30 45 0.0470s
Brown almost-linear CBFGS 6 9.5864e-007 263 300 0.1100s
NCBFGS 6 1.2290e-007 22 30 0.0160s
Discrete boundary CBFGS 6 8.6773e-007 79 85 0.0470s
NCBFGS 6 3.3650e-007 14 17 0.0320s
Variably dimensioned CBFGS 8 3.4688e-008 7 51 0.0470s
NCBFGS 8 3.1482e-007 10 21 0.0320s
Extended Rosenbrock CBFGS 8 8.2943e-007 91 190 0.0470s
NCBFGS 8 7.7959e-007 99 149 0.0320s
Extended Powell singular CBFGS 8 9.9975e-007 6154 6199 1.4690s
NCBFGS 8 6.5685e-007 42 55 0.0630s
Brown almost-linear CBFGS 8 9.8392e-007 364 379 0.1880s
NCBFGS 8 4.8080e-007 20 27 0.0780s
Broyden tridiagonal CBFGS 9 4.4261e-007 38 86 0.0470s
NCBFGS 9 6.2059e-007 41 56 0.0310s
Linear-rank1 CBFGS 10 - - - -
NCBFGS 10 2.6592e-007 4 15 0.0310s
Linear-full rank CBFGS 12 9.5231e-007 18 36 0.0160s
NCBFGS 12 9.4206e-016 2 3 0.0150s

GV the gradient value of the objective function when the algorithm stops;
NI: the number of iterations;

NF: the number of function evaluations;

CT: the run time of CPU;

CBEGS: the CBFGS method associated with Armijo line search rule;
NCBEGS: the new BFGS method proposed in this paper.

In Table 1 it is shown that the developed algorithm in this paper is promising. In some
cases, it requires less number of iterations, less number of function evaluation or less CPU

time to find an optimal solution with the same tolerance than another algorithm.

5 Conclusions

A modified Armijo-type line search with an automatical adjustment of initial step size has
been presented in this paper. Combined with the cautious BFGS method, a new BFGS
algorithm has been developed. Under some assumptions, the global convergence was es-
tablished for nonconvex optimization problems. Numerical results demonstrate that the

proposed method is promising.
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