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Abstract

In this article, we characterize the surjective isometric composition operator C� on
the weighted Dirichlet-type spaces of the unit disk D , where � is an analytic self-
map of D , and show that C� is a surjective isometry if and only if � is a rotation
map.
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1. Introduction
The Lebesgue area measure on the unit disk D in the complex plane is defined by dA

(z) = rdrdt = dxdy. Denote by H(D) the class of all analytic functions on D and S(D)

the collection of all the analytic self mappings of D .

Given real numbers p > 0 and a > -1, the weighted Bergman space Ap
α is defined as

the space of f in H(D) such that

∥∥f∥∥Ap
α
=

⎛
⎝

∫

D

∣∣f (z)∣∣p(1 − |z|2)α(α + 1)dA

⎞
⎠

1/p

< ∞.

The weighted Dirichlet-type space Dp
α is the space of f in H(D) such that f ′ ∈ Ap

α ,

equipped with the “norm":
∥∥f∥∥Dp

α
=

∣∣f (0)∣∣ + ∥∥f ′∥∥
Ap

α
.

It is not a true norm for 0 <p < 1, but it satisfies
∥∥f + g

∥∥
Dp

α
≤ Cp(

∥∥f∥∥Dp
α
+

∥∥g∥∥Dp
α
),

where the constant Cp depends only on p. We write Dp = Dp
0 . The space D = D2 is

the classical Dirichlet space of analytic functions whose image Riemann surface has

finite area. Clearly, Dp ⊂ Dq when q <p < ∞.

For u ∈ H(D) and ϕ ∈ S(D) , the composition operator C� induced by � is defined

as C�f = f ○ � for f ∈ H(D) ; the multiplication operator Mu induced by u is defined

by Muf(z) = u(z)f(z); and the weighted composition operator Wu,� induced by � and u

is defined by (Wu,�f)(z) = u(z)f(�(z)) for z Î Ω and f Î H(Ω). If we let u ≡ 1, then
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Wu,� = C�; if we let � = id, then Wu,� = Mu. So we can regard weighted composition

operator as a generalization of a multiplication operator and a composition operator.

These operators are linear. In [1], Hibschweiler studied the boundedness and compact-

ness of composition operators on Dp . In [2], Roan studied the boundness of composi-

tion operators on Sp, where Sp = {f ∈ H(D) : f ′ ∈ Hp} .
An operator T on a normed space X is said to be an isometric operator if ||Tf||X = ||

f||X, for any f Î X.

The isometric composition operator on analytic functions spaces has been studied by

many authors. In [3], Martín and Vukotić studied the isometric composition operators

on Hp, Ap
α (see also Kolaski [4,5]) for 1 ≤ p < ∞ and the analytic Besov spaces Bp for 1

<p < ∞. They obtained that C� is an isometry of Hp if and only if � is inner and �(0)

= 0, and C� is an isometry of Ap
α if and only if � is a rotation. Also Carswell and Ham-

mond [6] obtained that Cϕ : A2
α → A2

α is an isometry if and only if � is a rotation; this

fact differs somewhat from the analogs results that are known for other Hilbert spaces.

The isometric composition operators on the Bloch spaces in the unit disk were dis-

cussed by Martín and Vukotić [7], Colonna [8], Allen and Colonna [9,10], Li and Zhou

[11]. The same problems were studied on the Bloch spaces in the unit polydisk by

Cohen and Colonna [12], in unit ball by Li [13], and Li and Ruan [14]. For the BMOA

space, see [15]. In [16], Martín and Vukotić also studied the isometric composition

operators on the classical Dirichlet spaces in the unit disk. They obtained that C� is an

isometric operator if and only if � is a univalent map of the unit disk such that

A[D\ϕ(D)] = 0 and �(0) = 0. In [17], Novinger and Oberlin studied the isometric

composition operators on Sp with different norms.

The present article continues this line of research and discusses the isometric com-

position operators on the weighted Dirichlet-type space in the unit disk.

2. Main results
Our proofs will depend upon a characterization of the linear isometries of weighted

Bergman spaces due to Kolaski [4]. Although not stated by Kolaski explicitly, the fol-

lowing result is a direct consequence of Theorems 1 and 4 in [4], which are much

more general results than we will need here.

Theorem 2.1. Let 0 <p < ∞, p ≠ 2, and a > -1. Then every linear isometry

T : Ap
α → Ap

α takes the form (Tf)(z) = g(z) · f(�(z)), for all f ∈ Ap
αand z ∈ D , for some

function � which maps D conformally onto a dense subset of D , and where g = T1.

Moreover, if T is surjective, then � is a disk automorphism and g = l(�’)(2+a)/p for some

|l| = 1.

Following the ideas of Theorem 4.5.1 in [18], we investigate the surjective isometric

composition operators on the weighted Dirichlet-type space.

Theorem 2.2. Let � be a self-map of the unit disk. Then the induced composition

operator C� is a surjective isometry on the weighted Dirichlet-type space Dp
α , 1 ≤ p <

∞, p ≠ 2, -1 <a < ∞ if and only if � is a rotation map.

Proof. Since the composition operator induced by a rotation is clearly an isometry, it

suffices to show that if C� is a surjective isometry, then � is a rotation.

Suppose that C� is a surjective isometric composition operator. Let n be a positive

integer and t be a real number. We define the function pn(z) = zn for all z ∈ D . The
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weighted Dirichlet-type space contains the polynomials and thus 1 + tpn ∈ Dp
α for

every real number t and positive integer n.

Using the definition of norm of Dp
α and that C� is an isometry, we have

∥∥Cϕ1
∥∥
Dp

α
= ‖1‖Dp

α
,

∥∥Cϕpn
∥∥
Dp

α
=

∥∥pn∥∥Dp
α

and
∥∥Cϕ(1 + tpn)

∥∥
Dp

α
=

∥∥1 + tpn
∥∥
D0

α

.

It follows that

∥∥1 + tpn
∥∥
Dp

α
= 1 +

⎛
⎝

∫

D

∣∣(tpn)′∣∣p(1 − |z|2)α(α + 1)dA

⎞
⎠
1
p

= ‖1‖Dp
α
+

∥∥tpn∥∥Dp
α
= ‖1‖Dp

α
+ |t| ∥∥pn∥∥Dp

α

=
∥∥Cϕ1

∥∥
Dp

α
+ |t| ∥∥Cϕpn

∥∥
Dp

α

=
∣∣Cϕ1(0)

∣∣ + |t| ∣∣Cϕpn(0)
∣∣ + ∥∥(Cϕ1)′

∥∥
Ap

α
+ |t| ∥∥(Cϕpn)′

∥∥
Ap

α

and
∥∥Cϕ(1 + tpn)

∥∥
Dp

α
=

∣∣Cϕ1(0) + tCϕpn(0)
∣∣ + ∥∥(Cϕ1)′ + t(Cϕpn)′

∥∥
Ap

α
.

So
∣∣Cϕ1(0) + tCϕpn(0)

∣∣ + ∥∥(Cϕ1)′ + t(Cϕpn)′
∥∥
Ap

α

=
∣∣Cϕ1(0)

∣∣ + |t| ∣∣Cϕpn(0)
∣∣ + ∥∥(Cϕ1)′

∥∥
Ap

α
+ |t| ∥∥(Cϕpn)′

∥∥
Ap

α
.

A simple application of the triangle inequality for the norms shows that
∣∣Cϕ1(0) + tCϕpn(0)

∣∣ ≤ ∣∣Cϕ1(0)
∣∣ + |t| ∣∣Cϕpn(0)

∣∣
and

∥∥(Cϕ1)′ + t(Cϕpn)′
∥∥
Ap

α
≤ ∥∥(Cϕ1)′

∥∥
Ap

α
+ |t| ∥∥(Cϕpn)′

∥∥
Ap

α
.

Consequently,
∣∣Cϕ1(0) + tCϕpn(0)

∣∣ = ∣∣Cϕ1(0)
∣∣ + |t| ∣∣Cϕpn(0)

∣∣
and

∥∥(Cϕ1)′ + t(Cϕpn)′
∥∥
Ap

α
=

∥∥(Cϕ1)′
∥∥
Ap

α
+ |t| ∥∥(Cϕpn)′

∥∥
Ap

α
.

In particular, for n = 1, we get |1 + t�(0)| = 1 + |t||�(0)| which implies, since t is an

arbitrary real number, that �(0) = 0.

Therefore
∥∥Cϕ f

∥∥
Dp

α
=

∥∥f∥∥Dp
α
is equivalent to

∥∥(Cϕ f )′
∥∥
Ap

α
=

∥∥f ′∥∥
Ap

α
.

Let Dp
α,0 denotes the subspace of functions in Dp

α that vanish at the origin. The dif-

ferentiation operator D maps Dp
α,0 isometrically onto Ap

α and its inverse I is given by

Ig(z) =

z∫

0

g(ξ)dξ
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and maps Ap
α isometrically onto Dp

α,0.

Since C� is a surjective isometry on Dp
α , for every f ∈ Dp

α,0 , there exists g ∈ Dp
α such

that C�g = f. Because

0 = f (0) = (Cϕg)(0) = g(ϕ(0)) = g(0),

then g ∈ Dp
α . Thus the isometric composition operator C� maps the subspace Dp

α,0

onto itself. So the composition DCϕI : A
p
α → Ap

α is a surjective isometric operator. Set

T = DC�I. Then by Theorem 2.1, there exists an automorphism � of D such that Tf(z)

= g(z)f(�(z)), for all f ∈ Ap
α , z ∈ D , where g = T1. Then, noting that I(f’) = f - f(0), we

obtain

g(z)f ′(φ(z)) = Tf ′(z) = DCϕIf ′(z) = DCϕ(f (z) − f (0)) = f ′(ϕ(z))ϕ′(z).

Therefore,

f ′(ϕ(z))ϕ′(z) = g(z)f ′(φ(z)) (2:1)

for any f ∈ Dp
α .

Letting f = id in (2.1), then �’(z) = g(z) (Alternatively, one can see that �’ = g since g

(z) = (T1)(z) = DC�I1(z) = �’(z)). Letting f = p2, then �(z)�’(z) = g(z)�(z), so from g(z) ≠

0, we have �(z) = �(z). Since � is an automorphism of D and �(0) = 0, it follows that

�(z) = lz, where |l| = 1, that is � is a rotation.

From the proof of the above theorem, it is easy to see that if C� is an isometry on

Dp
α , 1 ≤ p < ∞ then �(0) = 0. We can get the following corollary.

Corollary 2.3. Let ϕ ∈ Aut(D) . Then the induced composition operator C� is an iso-

metry on the weighted Dirichlet-type space Dp
α , 1 ≤ p < ∞ and -1 <a < ∞, if and only

if � is a rotation map.

Clearly, if both C� and Mu are isometries, then Wu,� is an isometry, the following

theorem will show that the converse is also true.

Theorem 2.4. The weighted composition operator Wu,� is an isometric operator on

Dp
α , 1 ≤ p < ∞ and a > -1, if and only if both C� and Mu are isometric operators.

Proof. Suppose Wu,� is an isometry. Replacing C� by Wu,� and using the same meth-

ods and the same assumption in Theorem 2.2, we get
∥∥(Wu,ϕ1)′ + t(Wu,ϕpn)′

∥∥
Ap

α
=

∥∥(Wu,ϕ1)′
∥∥
Ap

α
+ |t| ∥∥(Wu,ϕpn)′

∥∥
Ap

α
(2:2)

It follows from (2.2) that the real valued function

p(t) =
∥∥(Wu,ϕ1)′ + t(Wu,ϕpn)′

∥∥
Ap

α

is not a differentiable function of t at t = 0. However, in the terminology of [19], the

Lp norm is weakly differentiable at every point except the zero vector, that is ‖·‖Ap
α
is

not weakly differentiable at (Wu,�1)’. Consequently

(Wu,ϕ1)′(z) = 0

for every z ∈ D . So (Wu,�1)’ ≡ 0, which implies that u = Wu,�1 is a constant.
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Since Wu,� is an isometry, ‖u‖Dp
α
=

∥∥Wu,ϕ1
∥∥
Dp

α
= ‖1‖Dp

α
= 1 , and consequently, u ≡

l, for some |l| = 1. Hence the multiplication operator Mu is an isometry. Now,
∥∥f∥∥Dp

α
=

∥∥Wu,ϕ f
∥∥
Dp

α
=

∥∥(uCϕ)(f )
∥∥
Dp

α
=

∥∥λCϕ(f )
∥∥
Dp

α
=

∥∥Cϕ(f )
∥∥
Dp

α

for every f ∈ Dp
α . Hence the composition operator C� is an isometry.

Remark. From the above the theorem, we can get that the multiplier operator Mu is

an isometric operator on Dp
α , 1 ≤ p < ∞, -1 <a < ∞ if and only if u is a constant of

modulus one. In [20], Aleman et al. characterized the nontrivial isometric multipliers

on the Dirichlet-type space Dp
w , 1 ≤ p < ∞ (here w is the weighted function). For the

sake of completeness, we state their results as follows.

Theorem 2.5. Let 1 ≤ p < ∞. Suppose that the Dirichlet-type space Dp
w is complete

and that point-evaluations are bounded. Then Dp
whas nonconstant isometric pointwise

multipliers if and only if p = 2 and w(z) = -2log|z| a.e. in D . In this case Dp
w = H2and

the isometric multipliers are precisely the inner functions.
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