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Abstract
In this paper we expand Jensen’s inequality to two-variable convex functions and find
the lower bound of the Hermite-Hadamard inequality for a convex function on the
bounded area from the plane.

1 Introduction
Let μ be a positive measure on X such that μ(X) = . If f is a real-valued function in L(μ),
a < f (x) < b for all x ∈ X and ϕ is convex on (a,b), then

ϕ

(∫
X
f dμ

)
≤

∫
X
(ϕ ◦ f )dμ. ()

The inequality () is known as Jensen’s inequality [].
In recent years, there have been many extensions, refinements and similar results of the

inequality (). Recall that the function F :� = [a,b]× [c,d] →R is convex on � if

F
(
λx + ( – λ)z,λy + ( – λ)w

) ≤ λF(x, y) + ( – λ)F(z,w)

holds for all (x, y), (z,w) ∈ � and λ ∈ [, ]. A function F : � → R is called co-ordinated
convex on � if the partial functions Fy : [a,b] → R, Fy(u) = F(u, y) and Fx : [c,d] → R,
Fx(v) = F(x, v) are convex for all x ∈ [a,b] and y ∈ [c,d]. Note that every convex function
F : � → R is co-ordinated convex, but the converse is not generally true; see []. Also
note that if F is a convex function on R

 and g , h are real-valued functions such that
Dg =Dh =R, then f (t) = F(g(t),h(t)) may be not convex on R.
In this paper under suitable conditions, we expand Jensen’s inequality to two-variable

convex functions and deduce some further important inequalities. Finally, we find a lower
bound for the integral

∫ b
a (g(x) – h(x))dx

∫ b

a

∫ g(x)

h(x)
F(x, y)dydx,

where F is convex on the convex bounded area by y = g(x), y = h(x) and x = a, x = b.
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2 Main results
Theorem  Let p be a non-negative continuous function on [a,b] such that

∫ b
a p(x)dx > .

If g and h are real-valued continuous functions on [a,b] and

m ≤ g(x)≤ M, m ≤ h(x)≤ M

for all x ∈ [a,b], and F is convex on

� = [m,M]× [m,M],

then

F
(∫ b

a g(t)p(t)dt∫ b
a p(t)dt

,
∫ b
a h(t)p(t)dt∫ b

a p(t)dt

)
≤

∫ b
a F(g(t),h(t))p(t)dt∫ b

a p(t)dt
()

and

F
(∫ b

a g(t)dt
b – a

,
∫ b
a h(t)dt
b – a

)
≤ 

b – a

∫ b

a
F
(
g(t),h(t)

)
dt. ()

The inequalities hold in reversed order if f is concave on �.

Proof Denote

α(x) =
∫ x
a g(t)p(t)dt∫ x

a p(t)dt

and

β(x) =
∫ x
a h(t)p(t)dt∫ x

a p(t)dt
.

Then by L’Hospital’s rule, we have limx→a α(x) = g(a) and limx→a β(x) = h(a). So, α and β

are continuous on [a,b]. Denote

H(x) = F
(
α(x),β(x)

)
–

∫ x
a F(g(t),h(t))p(t)dt∫ x

a p(t)dt
.

We will show that H(b) ≤ . We have

H ′(x) =
∂F(α(x),β(x))

∂α
α′(x) +

∂F(α(x),β(x))
∂β

β ′(x)

–
F(g(x),h(x))p(x)∫ x

a p(t)dt
+ p(x)

∫ x
a F(g(t),h(t))p(t)dt

(
∫ x
a p(t)dt)

.

By the convexity of F , we obtain

F
(
g(x),h(x)

)
– F

(
α(x),β(x)

) ≥ ∂F(α(x),β(x))
∂α

(
g(x) – α(x)

)
+

∂F(α(x),β(x))
∂β

(
h(x) – β(x)

)
.
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So, we get

H ′(x) ≤ ∂(α(x),β(x))
∂α

α′(x) +
∂(α(x),β(x))

∂β
β ′(x)

–
p(x)∫ x

a p(t)dt

[
F
(
α(x),β(x)

)
+

∂(α(x),β(x))
∂α

(
g(x) – α(x)

)

+
∂F(α(x),β(x))

∂β

(
h(x) – β(x)

)]
+ p(x)

∫ x
a F(g(t),h(t))p(t)dt

(
∫ x
a p(t)dt)

.

Hence,

H ′(x) ≤ ∂(α(x),β(x))
∂α

[
α′(x) –

p(x)∫ x
a p(t)dt

(
g(x) – α(x)

)]

+
∂(α(x),β(x))

∂β

[
β ′(x) –

p(x)∫ x
a p(t)dt

(
h(x) – β(x)

)]

–
p(x)F(α(x),β(x))∫ x

a p(t)dt
+ p(x)

∫ x
a F(g(t),h(t))g(t)dt

(
∫ x
a p(t)dt)

.

By easy calculation, we see that

α′(x) –
p(x)∫ x

a p(t)dt
(
g(x) – α(x)

)
= β ′(x) –

p(x)∫ x
a p(t)dt

(
h(x) – β(x)

)
= .

Therefore,

H ′(x)≤ –
p(x)∫ x

a p(t)dt

[
F
(
α(x),β(x)

)
–

∫ x
a F(g(t),h(t))p(t)dt∫ x

a p(t)dt

]
= –

p(x)∫ x
a P(t)dt

H(x).

Thus,

(∫ x

a
p(t)dt

)
H ′(x) + p(x)H(x)≤  ⇒

[(∫ x

a
p(t)dt

)
H(x)

]′
≤ .

So,

(∫ b

a
p(t)dt

)
H(b)≤  ⇒ H(b)≤ .

The proof is complete. For the proof of (), set p(x) = .
Note the inequalities () and () are sharp because F(x, y) = . �

Corollary  Let g and h be real-valued continuous functions. Then we have
(i) for 

p +

q = , p,q > ,

∫ b

a

∣∣g(t)∣∣∣∣h(t)∣∣dt ≤
(∫ b

a

∣∣g(t)∣∣p dt) 
p
(∫ b

a

∣∣h(t)∣∣q dt) 
q

Holder’s inequality,
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(ii) for p≥ ,

(∫ b

a

∣∣g(t) + h(t)
∣∣ 
p dt

)p

≥
(∫ b

a

∣∣g(t)∣∣ 
p dt +

∫ b

a

∣∣h(t)∣∣ 
p dt

)p

reverse Minkowski’s inequality,

(iii) for p≥ ,

(∫ b

a

∣∣g(t) + h(t)
∣∣p dt) 

p
≤

(∫ b

a

∣∣g(t)∣∣p dt) 
p

+
(∫ b

a

∣∣h(t)∣∣p dt) 
p

Minkowski’s inequality,

(iv)

ln
(
e


b–a

∫ b
a g(t)dt + e


b–a

∫ b
a h(t)dt) ≤ 

b – a

∫ b

a
ln

(
eg(t) + eh(t)

)
dt.

Proof
(i) The function

F(x, y) = |x| p |y| q
(

p
+

q
= 

)
,

is concave, so by the inequality (), we have

(
∫ b
a |g(t)|dt) p
(b – a)


p

× (
∫ b
a |h(t)|dt) q
(b – a)


q

≥
∫ b
a |g(t)| p |h(t)| q dt

b – a
.

Hence,

∫ b

a

∣∣g(t)∣∣ 
p
∣∣h(t)∣∣ 

q dt ≤
(∫ b

a

∣∣g(t)∣∣dt) 
p
(∫ b

a

∣∣h(t)∣∣dt) 
q
.

Now, set |g(t)| → |g(t)|p and |h(t)| → |h(t)|q. We obtain

∫ b

a

∣∣g(t)∣∣∣∣h(t)∣∣dt ≤
(∫ b

a

∣∣g(t)∣∣p dt) 
p
+

(∫ b

a

∣∣h(t)∣∣q dt) 
q
.

(ii) The function F(x, y) = (|x|p + |y|p) p is convex for p ≥  and is concave for p < . So,
by the inequality (), we have

[ (∫ b
a |g(t)|dt)p
(b – a)p

+
(
∫ b
a |h(t)|dt)p
(b – a)p

] 
p

≤
∫ b
a (|g(t)|p + |h(t)|p) p dt

b – a

so

∫ b

a

(∣∣g(t)∣∣p + ∣∣h(t)∣∣p) 
p dt ≥

[(∫ b

a

∣∣g(t)∣∣dt)p

+
(∫ b

a

∣∣h(t)∣∣dt)p] 
p
.
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Now, set |g(t)| → |g(t)| p and |h(t)| → |h(t)| p . We get

∫ b

a

(∣∣g(t)∣∣ + ∣∣h(t)∣∣) 
p dt ≥

[(∫ b

a

∣∣g(t)∣∣ 
p dt

)p

+
(∫ b

a

∣∣h(t)∣∣ 
p dt

)p] 
p
.

So,

(∫ b

a

(∣∣g(t)∣∣ + ∣∣h(t)∣∣) 
p dt

)p

≥
(∫ b

a

∣∣g(t)∣∣ 
p dt

)p

+
(∫ b

a

∣∣h(t)∣∣ 
p dt

)p

.

The proof of (iii) is similar to that of (ii) and can be omitted. For the proof of (iv), note
f (x, y) = ln(ex + ey) is convex on R

. Now, apply the inequality (). �

Remark  By similar assumptions, we can proveTheorem  for an n-variable convex func-
tion F on R

n and obtain the inequality

F
(∫ b

a g(t)dt
b – a

, . . . ,
∫ b
a gn(t)dt
b – a

)
≤ 

b – a

∫ b

a
F
(
g(t), . . . , gn(t)

)
dt.

In particular, we can obtain a similar inequality for Holder and Minkowski inequalities.
For example, by the concavity of

F(t, t, . . . , tn) =
n∏
i=

|ti|

pi

( n∑
i=


pi

= 

)
,

we can get the inequality

∫ b

a

( n∏
i=

|gi|
)
dt ≤

n∏
i=

(∫ b

a
|gi|pi

) 
pi
.

3 Hermite-Hadamard inequality
Let f : [a,b] → R be a convex function, then the following inequality is known as the
Hermite-Hadamard inequality [] and []:

f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx≤ f (a) + f (b)


. ()

In [], Dragomir established the following similar inequality () for convex functions on
the co-ordinates on a rectangle from the plane R.

Theorem  Suppose f : 	 = [a,b] × [c,d] → R is a convex function on the co-ordinates
on 	. Then one has the inequalities

f
(
a + b


,
c + d


)
≤ 

(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y)dydx

≤ f (a, c) + f (a,d) + f (b, c) + f (b,d)


.
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Also Dragomir investigated the Hermite-Hadamard inequality on the disk [] and [].
In [], Matejíčka proved the left-hand side of the Hermite-Hadamard inequality of sev-

eral variables for a convex function on certain convex compact sets. In the following theo-
rem, we prove the left-hand side of the Hermite-Hadamard inequality in another way and
as a result of Theorem .

Theorem  Let 	 be a bounded area by a convex function h and a concave function g on
[a,b] such that for any x ∈ [a,b], g(x) ≥ h(x). Also, let F be a two-variable convex function
on 	. Then one has the inequality

F
(∫ b

a x(g(x) – h(x))dx∫ b
a (g(x) – h(x))dx

,


∫ b
a (g

(x) – h(x))dx∫ b
a (g(x) – h(x))dx

)
≤

∫ b
a

∫ g(x)
h(x) F(x, y)dydx∫ b

a (g(x) – h(x))dx
.

Proof Since F is convex on 	, hence f is co-ordinated convex on 	. So, Fx : [h(x), g(x)]→
R, Fx(y) = F(x, y) is convex on [h(x), g(x)] for all x ∈ [a,b]. By the left-hand side of the
Hermite-Hadamard inequality (), we have

(
g(x) – h(x)

)
F
(
x,
g(x) + h(x)



)
≤

∫ g(x)

h(x)
F(x, y)dy.

Integrating this inequality on [a,b], we obtain

∫ b

a

(
g(x) – h(x)

)
F
(
x,
g(x) + h(x)



)
dx ≤

∫ b

a

∫ g(x)

h(x)
F(x, y)dydx.

So,

∫ b
a (g(x) – h(x))F(x, g(x)+h(x) )dx∫ b

a (g(x) – h(x))dx
≤ ∫ b

a (g(x) – h(x))dx

∫ b

a

∫ g(x)

h(x)
F(x, y)dydx.

Now, let p(x) = g(x) – h(x). By the inequality (), we get

F
(∫ b

a x(g(x) – h(x))dx∫ b
a (g(x) – h(x))dx

,


∫ b
a (g

(x) – h(x))dx∫ b
a (g(x) – h(x))dx

)
≤

∫ b
a (g(x) – h(x))F(x, g(x)+h(x) )dx∫ b

a (g(x) – h(x))dx

≤
∫ b
a (g(x) – h(x))F(x, g(x)+h(x) )dx∫ b

a (g(x) – h(x))dx
.

The proof is complete. �
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