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1 Introduction and preliminaries

Let R = (—00,00), and let Q € C}(R) : R — R* := [0,00) be an even function, and w(x) =
exp(—Q(x)) be the weight such that fooo x"w?(x)dx < oo for all 7= 0,1,2,.... Then we can
construct the orthonormal polynomials p,(x) = p,(w?; x) of degree n with respect to w?(x).
That is,

/ Pn(@)pm()W? () dx = 8,y  (Kronecker’s delta)

(o]

and
Prn(®) =y + -, ¥y >0,
We denote the zeros of p,(x) by
—00 < Xy <Xy <+ <Ky <Xpy < O0.

We denote the Lagrange interpolation polynomial L,(f;x) based at the zeros {xy,};_; as
follows:

Pn()
(o = Xpen) P, (Fren)

Lu(f;%) =Y f@oamlin(®),  lion(®) =

k=1

A function f : R* — R* is said to be quasi-increasing if there exists C > 0 such that f(x) <
Cf(y)for0<x<y.
We are interested in the following subclass of weights from [1].
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Definition 1.1 Let Q:R — R* be an even function satisfying the following properties:
(a) Q'(x)is continuous in R, with Q(0) = 0.
(b) Q"(x) exists and is positive in R\{0}.
(c) limy_, o Q(x) = 00.
(d) The function

_ Q)

6= 00

, x#0
is quasi-increasing in (0, 00) with
Tx)>A>1, xeR"\{0}.

(e) There exists C; > 0 such that

Q" (x) - |Q (%)
Qw ~ " QW)

, a.e x € R\{0}.

Then we write w(x) = exp(—Q(x)) € F(C?). If there also exist a compact subinterval J (3 0)
of R and C; > 0 such that

AW _ . QW)

) .e. R/,
QW = Q) ¢ MerERY

then we write w(x) = exp(—Q(x)) € F(C?+).

Example 1.2 (1) If T'(x) is bounded, then the weight w = exp(—Q) is called the Freud-type
weight. The following example is the Freud-type weight:

Q) = %% a>1.
If T'(x) is unbounded, then the weight w = exp(—Q) is called the Erd8s-type weight. The
following examples give the Erdds-type weights w = exp(-Q).
(2) [2, Theorem 3.1] Fora >1,1=1,2,3,...
Q) = Qua(®) = expy (1) - expy(0),
where
exp;(x) = exp(exp(exp- < exXpx)-- ) (I-times).
More generally, we define fore + u>1,¢ >0, u>0and /> 1,

Quu (%) 1= [x1" (expy (I*1*) — @ exp;(0)),

where o = 0 if o = 0, otherwise o = 1. (We note that Q; ¢ ,(x) gives a Freud-type weight.)
(3) We define Q,(x) := (1 + |x)“ =1, & > 1.
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In this paper, we investigate the convergence of the Lagrange interpolation polynomials
with respect to the weight w € F(C?+). When we consider the Erdés-type weights, the
following definition follows from Damelin and Lubinsky [3].

Definition 1.3 Let w(x) = exp(—Q(x)), where Q : R — R is even and continuous. Q” exists
in (0,00), Q¥ > 0, in (0,00), j = 0,1,2, and the function

xQ" (x)

T (x):=1+ 2w

is increasing in (0, co0) with

lim T (x) = o0; T'(0+) := 1ir(1)1 T (x) > 1. (1.1)
x—>0+

X— 00

Moreover, we assume that for some constants C;, Cy, C3 > 0,

G=Tw/ (xg(g)) <Gy x2GC,

and for every ¢ > 0,
T'(x) = O(Q)"), x— oo. 1.2)
Then we write w € £.

Damelin and Lubinsky [3] got the following results with the Erdés-type weights w =
exp(-Q) € &.

Theorem A ([3, Theorem 1.3]) Let w = exp(—Q) € E. Let L,(f, x) denote the Lagrange in-
terpolation polynomial to f at the zeros of p,(W*,x). Let 1 <p <00, A € R, k > 0. Then

for
,}Lnolo | (f = La(H))w@ + Q™4 HLI,(]R) =0

to hold for every continuous function f : R — R satisfying
Jim | @w() (10g )" | =0,

it is necessary and sufficient that

2(1 1
A>maxy0,=(--—-)¢.
3\4 p
Our main purpose in this paper is to give mean and uniform convergence theorems
with respect to {L,(f)}, n=1,2,...,in L,-norm, 1 < p < oo. The proof for 1 < p < oo will
be shown by use of the method of Damelin and Lubinsky. In Section 2, we write the main
theorems. In Section 3, we prepare some fundamental lemmas; and in Section 4, we will

prove the theorem for 1 < p < co. Finally, we will prove the theorem for the uniform con-
vergence in Section 5.
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For any nonzero real-valued functions f(x) and g(x), we write f(x) ~ g(x) if there exist
constants Cj, C; > 0 independent of x such that Cig(x) < f(x) < Cog(x) for all x. Similarly,
for any two sequences of positive numbers {c,}°; and {d,}%], we define ¢, ~ d,,. We denote
the class of polynomials of degree at most n by P,.

Throughout C, Cj, C,, ... denote positive constants independent of #, «, ¢, and polyno-
mials of degree at most #. The same symbol does not necessarily denote the same constant
in different occurrences.

2 Theorems
In the following, we introduce useful notations. Mhaskar-Rakhmanov-Saff numbers

(MRS) a, are defined as the positive roots of the following equations:

2 1 /
x:_/ auQlaw) , o
0

7 Jo (1-u2)3
The function ¢,(x) is defined as follows:

_
a ary

_u 4} |x| E ﬂu’
(pu(x) = “ v 1_%+8”
oula,), ay < |x|,

where
_2
8y = (xT(ax)) 5, x>0.

We define

1

I P —
(1+Qx))3T(x)

and

D, (x) := max{(Sn,l - m}
a

n
Here we note that for 0 < d < |x|,

Qx)3

i) ~ xQ'(x)

and we see
Dx) <CP,x), n>1
(see Lemma 3.3 below). Moreover, we define

1 1y+ 1, O<p<4,
CD(Z_E) (%) := 11 b
d4r(x), 4<p<=<oo.
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Let 1 < p < 0o. We give a convergence theorem as an analogy of Theorem A for L,(f) in
L,-norm. We need to prepare a lemma.

Lemma 2.1 ([4, Theorem 1.6]) Let w = exp(—-Q) € F(C?+).
(a) Let T'(x) be unbounded. Then for any n > 0, there exists a constant C(n) > 0 such that

fort>1,
a: < C(nt".
(b) Assume
Q" (») Q'(x)
W <A(b) K lx] > b>0, (2.1)

where b > 0 is large enough. Suppose that there exist constants n > 0 and Cy > 0 such that
a; < Ce". If & .= M(D) > 1, then there exists a constant C(), n) such that for a; > 1,

2(n+r-1)

T(a;) < C(, )t 1. (2.2)
If0 < A <1, then for any u > 0, there exists C(A, L) such that
T(a;) <CO,ut*, t=>1 (2.3)
For a fixed constant 8 > 0, we define
$x) = (1+42) 7" (2.4)

Using this function, we have the following theorem. We suppose that the weight w is the
Erdés-type weight.
Our theorem is as follows. Let f € Cy(R) mean that f € C(R) and limy—, o0 f (%) = 0.

Theorem 2.2 Let w = exp(—Q) € F(C?+), and let T(x) be unbounded. Let 1 < p < 00 and
B >0, and let us define ¢ as (2.4), and , = A(b) > 1 as (2.1). We suppose that for f € C(R),

7 x)wx)f (%) € Co(R),

and

9 A-1
92 ' (2.5)
431-1

Then we have

lim || (f = Lu(f)) w2+ &)’

n—00

”L,,(]R) =0.

We remark that if w € F(C2+) is the Erd8s-type weight, then we have A = A(b) > 1in (2.1).
In fact, if A < 1, then by Lemma 3.9 below, we see that for x > b > 0,

T(x) — 0 asx— oo.

/ A 7
_ Q) o Q/(b)(Q(x)> _ Q(bi xH
Q) ~ Q) Q(b) Q(b)* Qx)
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This contradicts our assumption for 7'(x). In Example 1.2, we consider the weight w; ,,, =
exp(—Quu,m)- In (2.1), we set Q := Qo and A := A(D). If wy, ,,, is an Erdés-type weight, that

is, T'(x) := T14,m(x) is unbounded, then it is easy to show
lim A(b) = 1.

b—o0
Therefore, when we give any A > 0, there exists a constant b large enough such that

9 2(b) -1
743 -1

Hence, we have the following corollary.

Corollary 2.3 Let 1< p < oo and A > 0. Then for the weight wyy ;, = exp(—Qpa.m) (@ > 0),

we have

) 1_1y+
1im | (F = La() wram®* 52 =0

We also consider the case of p = co.
Theorem 2.4 Let w = exp(—Q) € F(C?+), and let T(x) be unbounded. For every f € Cy(R)

and n > 1, we have

| (F = La(N)wo> |, ) < CExr(wif)logn,

where

E,,(w;f) :p,,fgm]}fe%iq(ﬂx) —Pm(x))w(x) m=0,1,2,....

’

Moreover, if fO, r > 1, is an integer, then for n > r + 1 we have

1620,y = O[5 ) B o) oz

3 Fundamental lemmas
To prove the theorems we need some lemmas.

Lemma 3.1 Let w = exp(—Q) € F(C2+). Then we have the following.
(a) [1, Lemma 3.11(a), (b)] Given fixed O < «, o # 1, we have uniformly for t > 0,

‘ Ayt 1
1- 2~
ay T(a;)

and we have for t > 0,
1

-4
as T(ﬂt)
(b) [1, Lemma 3.7 (3.38)] For some 0 < ¢ < 2, and for large enough t,

t

1 ¢
, —<-<2
s 27 s

~

T(dt) < t2—£‘
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Lemma 3.2 Let w = exp(—Q) € F(C%+). Then we have the following.
(a) [1, Lemma 3.5(a), (b)] Let L > 0 be a fixed constant. Uniformly for t > 0,

Qlar) ~ Qa) and Qlaw)~ Q(ay).
Moreover,
a;~a; and T(ag) ~ T(ay).
(b) [1, Lemma 3.4 (3.18), (3.17)] Uniformly for x > 0 with a, := x, t > 0, we have

L T) and Q(x)'v—t .

Q'(x) a, )

(c) [1, Lemma 3.8(a)] For x € [0,ay),

t 1
Q) <C— .
a; 1-— x
at

Lemma 3.3 Let w = exp(—Q) € F(C?+). For x € R, we have
DP(x) < CPux), n=>1.

Proof Letx =a,, u> 1. By Lemma 3.2(b), we have
u~ Q@) T(a).

So, we have

au?’(au) _ le’(x)‘ (3.1)
Q3(a,) Q3 (x)

8,1~ Q3 (@) T(ay) =

Now, if u < g, then we have

1
1B G2 (by Lemma B.I(a))

an ~ an  T(an)
1
> ——— =3, (byLemma3.1(b)).
(nT(an))3
So, we have
a, a,
®,(x) =1- P >1- o Ty (by Lemma 3.1(a))
1
> =8, ~ ®(x) (by Lemma 3.2(b) and (3.1)).
(uT (a,))3

Let § < u < n. Then we have

®,(x) > 8, ~ 8, ~ P(x) (by Lemma 3.2(a), (b) and (3.1)). O
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Lemma 3.4 Let w € F(C*+). Then we have the following.
(a) [1, Theorem 1.19(f)] For the minimum positive zero x[,/2),x»

ap
Xni2n ™~ —>
n

and for the maximum zero x,,

1— xl,n

~ &y
an

(b) [1, Theorem 1.19(e)] Forn >1land1<j<n-1,
Xjn = XjsLn ~ Pn(Xjn).

(o) [1, p-329, (12.20)] Uniformly forn >1,1 <k <n-1,
(pn(xk,n) ~ (pn(xka-l,n)o

(d) Let max{|xgl, [Xks1,6]} < @an, 0 < o < 1. Then we have
W(xk,n) ~ W(xk+1,n) ~ W(x) (xk+1,n <x=< xk,n)'

So, for given C > 0 and |x| < ag,, 0 < B <, if |x — x| < C,(x), then we have

w(x) ~ w(xg).

P?’OOf (d) Let max{|xk,n|r |xk+1,n|} = |xk,n| (for the case Of maX{|xk,n|; |xk+1,n|} = |xk+l,n|x we

also have the result similarly). By (b) there exists a constant C > 0 such that

[k — Xkr1,n] < C‘/)n(xk,n)~

Then we see

|x/<,n| |xkn‘ 1
onl )Nﬂ" = a,1- +|xkn|{ — )
n\Xk,n — =
n ‘xk,nl n ‘xk,nl
1- . 1- ”
|xkn‘ |xkn‘ ‘xkn| |xkn‘ 1
_al” U-50) @l O )
n |xkn‘ n 1- ‘xk,nl
an

l |xkn|

Therefore, from (3.2) and Lemma 3.2(c), we have

| Q) — Qlksrn)| = |Q'E)Xkn = Xks1,0)| < C|lQE)|@n(x)  iarn <& < xuc)

ay |xkn| |xkn|
< C|Q/(xk,n)|7\/i an \/m n \/1_7

(3.2)
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Consequently,
W(Xtn) ~ WKkern) ~ WE)  Kin <X < Xin)-

Let |x —xxu| < Co,(x) and |x| < ag,. Then we see that there exists g > 0 such that |xy | <
Aan, 1 > ng. In fact, we can show it as follows. We use Lemma 3.1(a) and (b). For |x| < ag,,
we see

a ||
[%k,n) < 2] + Culx) < lw| + C— |1 — —,
n a,

and if we take 7 large enough, then we have

d a 7 11 11
Z(tre o) s1-Co 10—
n a n t n ap,
" 2 /1- £ 2 f1-
JT 1
oY@ ¢ 50,
2n 2nel2

that is, g(t) =t + C*2 /1 - i is increasing. So, we see

a, agn a, 1
Xpnl <apgy+C— _|1— <agy+C———.
| <r1| Bn n a, Bn P m

Therefore, we have

Aon — | Apn + n JT(a,) T(a,) 1 JT(an)

@ (1-C‘T(“")>> n (I—C 1 )>0.

" T(a,) n = T(a,) nel2

Now, we can show (d). Without loss of generality, we may assume x € [¥j,1,4,%j,] C
%kl 1% = xicu| < Cpu(x)}. We define

Kkyn = min{xk,n”x _xk,n| < C(pn(x)}: Kkon += max{xk,n”x _xk,n| =< C(pn(x)}

Here we note that ki, k, are decided depending only on the constant C. Then by former

result, we have
W(xlq,n) ~ W(xkz,n) ~ W(x) (x/q,n <x= 'ku,}’l)' g

Lemma 3.5 Let w = exp(—Q) € F(C%+). Then we have the following.
(a) [1, Theorem 1.17] Uniformly for n > 1,

1
sup‘p,,(x)’w(x)’x2 - af,| P~
xR

(b) [1, Theorem 1.19(a)] Uniformly forn>1and1 <j<n,

I

-1 . -
|(B2w) @] ~ 0" (i) (1 - M) :

an
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(c) [1, Theorem 1.19(d)] For x € [xXks1,m Xk n), if kK <m—1,

1/2 -1 %kl e
a,“pu(x)" | 1- P .

’Pn(x)W(x” ~ mln{ |x — Xk,n |r |x - xk+l,n| }
Lemma 3.6 (cf. [5, Theorem 2.7]) Let w € F(C%*+) and 0 < p < co. Then uniformly n > 2,

1, O<p<dorp=o0;

[T

S

T 5" ) w <Ca
I Pn ”Lp(R) = log(1+n), 4<p,

where x* =0 ifx <0,x* =x ifx > 0.
Proof From Lemma 3.3, we know ®(x) < ®,(x), thenin [5, Theorem 2.7] we only exchange
®,, with @. O

Let f € L,,,(R). The Fourier-type series of f is defined by
fx) = de(Wz;f)Pk(Wz,x), ax(w*.f) = / FOpe(wW?, t)w? () dt.
k=0 o

We denote the partial sum of f(x) by
n-1

Su(f>x) = s,,(wz,f,x) = Zak(wz,f)pk(wz,x).

k=0
The partial sum s,(f) admits the representation

n-1

sulfo%) = Y ap;(x) = / FOK(x, )W (2) dt,
j=0 -

where
n-1
Ku(x,8) 1=y pi(®)py(e).
j=0

The Christoffel-Darboux formula
n— n n— t) - n— n 3
K, (o p) = V1P @)p 1(9)6 1; 1(%)pn(t) (33)

Vn

is well known (see [6, Theorem 1.1.4]).

Lemma 3.7 ([6, Lemma 9.2.6]) Let 1< p < oo and g € L,(R). Then for the Hilbert trans-

form
H(g,x):= lim & dt, xeR, (3.4)

e—0+ lx—t|>e X —
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we have

|H@],, z, < Cligl,,
where C > 0 is a constant depending upon p only.

Lemma 3.8 (see [7, Theorem 1.4, Theorem 1.6]) Let w = exp(—Q) € F(C?),1 <p < 00
and y > 0. Then for any ¢ > 0, there exists a polynomial P such that

| (@) = P@) (1 +) W), ) <.

Lemma 3.9 Let w € F(C?+) be an Erdés-type weight, that is, T (x) is unbounded. Then for
any M > 1, there exist xy; > 0 and Cy > 0 such that

Q) > Cax™, x>

Proof For every M > 1, there exists xy > 0 such that T(x) > M for x > x;;, so that

Q' (x)/Q(x) = T'(x)/x > M/x for x > x57. Hence, we see

Q(x) x\V
log Q) = log(@) P rET

that is,

- Q(xm)

)M

Q)

\%
&8
=

Let us put Cyy := Q(xar)/(xar)M. O

4 Proof of Theorem 2.2 by Damelin and Lubinsky methods
In this section, we assume w € F(C?+). To prove the theorem we need some lemmas, and

we will use the Damelin and Lubinsky methods of [3].

Lemma 4.1 (¢f, [3, Lemma 3.1]) Let w € F(C?+). Let 0 <ax < i and

Y@= Y @)W G-

n [%,n=aan

Then we have for |x| < ayyp and |x| > agy,

Y wlx) <C.
n
Moreover, for dgnn < |x| < dopn,

S @w) < C(logn + a [paw)| T4 (@),
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Proof The proof of 3, Lemma 3.1] holds without the condition (1.2) and the second condi-
tion in (1.1) and under the assumption of the quasi-increasingness of T'(x). The conditions
in Definition 1.1 contain all the conditions in Definition 1.3 except for (1.2) and the second
condition in (1.1). We see that in [3, Lemma 3.1] we can replace 7" (x) with T'(x). O

Lemma 4.2 ([3, Lemma 3.2]) Let 0 <n < 1. Let ¥ : R+~ (0,00) be a continuous function
with the following property: For n > 1, there exist polynomials R,, of degree < n such that

v (2)
Ry (2)

G =

<G, |t| Zau,.
Then for n > ny and P € Py,

> il Pl v i) = € [ |POWO] w0 dr

[k, | <ann ~d4an
Remark 4.3 To prove Lemma 4.7 below, we apply this lemma with ¥ (¢) = ¢(¢) = 1 +

t2)7P2, B > 0. In fact, when ¢ (x) = ¢(¢), t = a4,x, we can approximate ¢~ by polynomials
R, € P, on [-1,1], that is, for any & > O there exists R, € P, such that

" (x) - R, ()| <&, xe[-11].

Therefore,

‘R;(x) - xel[-1,1],

‘ L
e ¢ ()

and so there exist Cy, Cy > 0 such that

& R (x)
G150 S oW

<1+ e <G, x€l[-1,1].

Now, if we set R, (£) = R, (x), then we have the result.

Lemma 4.4 (c¢f [3, Lemma 4.1]) Let {f,}°; be a sequence of measurable functions from
R+ R such that for n > 1,

Su®) =0, x| <ay; fu®)|wix) < p(x), xeR.

Then for1 < p < oo and A >0, we have

+

1_1
lim ||L,,(ﬂ,)wd>A+(Tp?)
H—>0Q

L® = 0. (4.1)
Proof Let |x| < an or || > ay,. We use the first inequality of Lemma 4.1 with « = %, then
from the assumption with respect to f,;, we see that

La(fs )W) <dlag) D |lnl®)|w (eenwlx) < Croplag).

[%kl=an
k,n 5
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So,

+

||Ln(ﬂl)wq)A+(%_Il’) ) §¢(ag)||¢A+(%_}7)+

“L x|<a n or |x|>a Ly(R
p(lx=< n [%|=a2, p(R)

< Gglay) =o(1) (4.2)

n
9

by Lemma 3.9 (note the definition of ®(x)) and the definition of ¢ in (2.4). Next, we let
an < || < ay,. From the second inequality in Lemma 4.1, we see that

Lu(finwi)| < plag)(logn + a [p. )| wW T~ (a,).

Also, for this range of x, we see that

1
1 1 T3 (a,
@ _,

P(x) = 2 ~ 2 ~ =
1+Q@)3T(x) (1+Qan)3T(a,) n3T(ay,)

by Lemma 3.2(b). So, for # large enough,

Ly(a n <|x|<a
p( 1_Vlg7| < 2n)

1 +
+ plag)ar T4 (@) |patewix) @G5

Ly(a n <|x|<az)’
pl@ 1 n

Then since A > 0, using Lemma 3.1(a), Lemma 2.1(a), and Lemma 3.6, we have

A+(g-3)t A l
logn|®~"37r ||Lp(al§‘x‘§a2n) < C8y(as—ap)?logn<C
8

and

1 1 1_1y+

3ol Av(d-1)

ay T 4(ai’1)||pan> e ”Lp(aﬂ <|x|<azn)
18

111, 1<p<4orp=oc;
<71 (an)8ial P P <C.
log(1+n), 4<p,

Therefore, we have by (2.4)

[Za(fwe® 5> | < Caglay) = o(1).

”Lp(ﬂﬂ <lx|<azn
18

Consequently, with (4.2) we have (4.1). O

Lemma 4.5 (¢f. [3, Lemma 4.2]) Let1 < p < oo. Let {g,}:x, be a sequence of measurable
functions from R — R such that for n > 1,

&®)=0, |xl>as  |@@|wx) <ok, xeR (4.3)
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Let us suppose

As>>——, (4.4)

where A > 1 is defined in Lemma 2.1. Then for 1 < p < 0o, we have

1_1

lim || L,,(g,)wd™" 17> -0. (4.5)
n—00

"
Lp(\x\zﬂg)

Proof Using Lemma 3.5(b) and Lemma 3.4(b), we have for x > ar,

’Ln(gn;x)’ < Z |lk,n(x) ’W_l(xk,n)¢(xk,n)

[%knl<an
k,n 5

(-l s,)7

3 a
< Gay |l7n(x)| Z (Kkn = Xk41,n) . ¢ (xk,n)
% |x - xk,n|
k,nlf“ﬂ
9
1 an (1- oy 8,,)%
< Gyag |p.(x)| / T p(t)dt. (4.6)
—an lx — £
9
Equation (4.6) is shown as follows: First, we see
|x - t| ~ |x _xk,n|r te [xk+1,n;xk,n]' (4-7)

Let |x| > ax and ¢ € [Xg41, Xk ,]. Then

t— Xk,n < Xkn — Xk+1,n

c<1.

x—t
_4:

X = Xk X=Xpn |~ Kkt = Xienl

Now, we use the fact that x + Cp(x), x > 0 is increasing for 0 < x < a5, and then
Kin + Con(in) <an + Coulay) <ap <x.

Here, the second inequality follows from the definition of ¢,(x) and Lemma 3.1(a), (b).
Hence, we have (4.7). Now, we use the monotonicity of (1 — % + Sn)hf)(x). From (4.7)
there exists C > 0 such that for £ € [xg11,, %],

(xk,n - xk+1,n)

(1t 48,8 o (1= + 8}
”—¢(kan) =< f ﬂ4¢(t) at

Ix_xkyl’l| K+l |x _xk,n|

1 /xk,n 1- L—ﬂ +8n)%
X

=z o

k+1,n

Hence, (4.6) holds. Next, for ¢ € [O,ag] and x > az,we know by Lemma 3.1(a),

a,—t ay—an ay—an an T(an)
1< <1+ <1+ £ <1+C 2 <Gy
x—t an — anr—ay ar T(ag)
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and
|£] 1
1-—>C >4
an = T(a,) ="
So, we have

ILo(gni®)| < Coal |pa@)| /0 -ty tg() .

Let t = a,, g > s > 1. Then, since we know for x > ar,

t
a-t=x(1-2)zar(1- 2 ) >,
X 8 ﬂ%s T(ﬂs)

we obtain
|L(gns )| < Coa? |pn()] f g T3 (Op(0) dt < Coal T (@) pa()].
0

Hence, if 1 < A, then using Lemma 3.6, (3.1) and (2.2), we have

1.1

||Ln(gn)WCI)A+(1_E)+ ||Lp(\x\th%)

53 A G-
< Coayi T4 (an) @™ (ay)| @477 wpy,

I,

2
1 1 38 11, O<p<dorp=oc;
< Cay, Tz(ﬂn)<—> P P
nT (an) log(l+n), 4<p

2 3a+2n-1

L /71\3 &1
< CuC, nay (;)

(A= A1y
1321 | 1, 1<p<4orp=o0c;

logl +n), 4<p.

Here, we may consider that above estimations hold under the condition (4.4), because that

n > 0 can be taken small enough. Then we have (4.5), that is, for A > %%,
im Lot o
oo I SN Lp(lxizag) = O

Lemma 4.6 (cf [3, Lemma 4.3]) Let1<p < oo. Let o : R — R be a bounded measurable
function. Let A = A(b) > 1 be defined in Lemma 2.1, and then we suppose

0, l<p=<2;
A> 352, 2<p<4 (4.8)
max{ﬂl";l—lﬂp;‘L 0}, 4<p.

Then for 1 < p < oo and the partial sum s, of the Fourier series, we have
-1 A+(F-1y*
Jslodw W™ P 0y = Cllo ey (4.9)

forn>1. Here C is independent of o and n.

Page 15 of 26


http://www.journalofinequalitiesandapplications.com/content/2012/1/237

Jung and Sakai Journal of Inequalities and Applications 2012, 2012:237

Page 16 of 26
http://www.journalofinequalitiesandapplications.com/content/2012/1/237

Proof We may suppose that ||o ||, &) = 1. By (3.3), (3.4) and Lemma 3.5(a),

sfoow o lwte) <af (1-21) Y [Hlosppi)|.

—

(4.10)
n j=n-1
Let us choose [ := I(n) such that 2! < <= < 241, Then we know
2M3 < <o, (4.11)
Define
Ikz[azk,ﬂzkﬂ], 1§k§l+2
Forj=n-1,nand x € Iy, we split
21 242 (o gpw)( )
ot = (f_+ [ vrv. [20 [ )R
Aok+2
= L(x) + (%) + I3(x) + Iy(x). (4.12)

Here P.V. stands for the principal value. First, we give the estimations of I; and I, for
x € Ty. Let x € Zy. Then we have by Lemma 3.5(a) and Lemma 3.6 with p =1

’[1(96)’ 5'/0 |(.U/W¢)( t)|

t+x

1 p
,,2/ () dt+C2a;1f ‘p,(t |w
0 t+ay 'él

1 1
1 4 o1-1 _
< Cz(oz,,2 +anlan 2) < Csza,’.

—

(4.13)
Here we have used
@ dt < (4.14)
0 1+¢

By Lemma 3.5(a), and noting 1 — x/a, <1 - t/a, for x € Iy,

1
a1 | (piwe)(t)] J1 ok (I- 2)7e
T om0l g < Cya S

0 x—t 0 x—t

1
-1 x O\ F [Pk dt
ccal(i2) [
a, 0 x—t
_1 x Aol
= Cya,® (1— —> 10g<1— 2% 1>
ay x

Using
1_ﬂ2k—121_d2k—lzc 1 ZC 1 )
x Aok T(ayx) T(x)
we can see

L] < Ceﬂ;% <1 - :_n>—z log<T(Cx)>.

(4.15)
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Next, we give an estimation of I, for x € 7. Let x € Z;. From Lemma 3.5(a) again,

2a5k42 . 00 .
]14(x)|§/ ’ Kp#d)x)(t)ldncfz Wﬁlt (by t <2(t - x))

2k+2 t Aok+2 t
2a, 542 -1 d
-1 2k+ t| 4% dt
<G ( [h-4 A
Aok+2 an —-Xx

1 max{2a k+2,lan} o] . t
gt [ )
2

Aok+2 2%n ¢

_L (242
<G (1,,2 1
Aok+2

(by (4.14) and Lemma 3.6 with p = 1)

t

1
T odr -1 1-1
—— +Ca,’ + a;la,, 2
ay

1
< Csa,’[J +1], (4.16)

where

7 /‘2“2k+2
Aok+2

Since, if

-1
1 dt

t—x

t
1- —
an

then we see

|t_x| =day

(-2)-(-2)

Now, we have

1
x\ ? 1
/§C9(<1——) / 1
an n-Liz50-2), L—%

te [“2k+2 )2“21(4-2 ]

+a1<1 x)_I/ ‘1 !
U a) Jegisbaegl e

te [“2k+2 ’2“2k+2 ]

1
x\ % Aopics
< Clo((l——) 10g(1+72k2 )
ay a2k+2 —ﬂ2k+1
X -1 1
+ (1——) / [1-s|"% ds)
Gn -sl<3(-5)

. 41 3 -1
= o (1- ) st s crian) +5(5 (- 1)) (- 20) )

=Cn (1 - i>_ log(CT (x)).

ap

i

.

I


http://www.journalofinequalitiesandapplications.com/content/2012/1/237

Jung and Sakai Journal of Inequalities and Applications 2012, 2012:237
http://www.journalofinequalitiesandapplications.com/content/2012/1/237

So, from (4.16) we have

1
1 K
|14(x)| < Cpa,* (1 - ﬁ) log(CT(x)). (4.17)
an
Therefore, from (4.13), (4.15) and (4.17), we have
1
_1 x\ %
|l + I + L] < Ciza,® (1 - —> log(CT (x)).
ap
Hence, with (4.10), (4.12) we have
1 A+(L-1y*
|su[opw w47 ”Lp(zk)
1
1_ 1+ Aoks1\ 2 1
< C14q)A+(4 p) (azk)(<1 - Zk 1) IOg(CT(ﬂ2k+l))(ﬂ2k+l - ﬂzk)p
1
1 a\* & Anks2 w)(t
+a? (1—@) 3 P.V./ w2 odpm@) ) (4.18)
n j=n-1 4yk-1 x—1 Ly(Zy)

We must estimate the L,-norm with respect to I, that is, |P.V. f:zk"f w"’f’% Aatllz, -
S

We use M. Riesz’s theorem on the boundedness of the Hilbert transform from L,(R) to

L,(R) (Lemma 3.7) to deduce that by Lemma 3.5(a) and the boundedness of |0 ¢|,

“2k+2 P %
< cls( / (e dpm)(@)] dt)
Lp(Ik)

Aok-1

-1 Aoks2 \
2+
§C16ﬂn2<1— P >
n

”P V. / o loop) dt

xX—t

2k-1

=

1
(ﬂ2k+2 - azk—l)ﬁ . (4.19)

So, by (4.18) and (4.19) we conclude

+

”Sn[o‘lbw_l]wcbm&_'%) Lp(Tx)

D=

(4.20)

log(CT(a2k+1 )) (agrn — azk)ll’ .

n

1_1y+ Agki1 \
=< ClchAJr(‘L » (“2k)(1_ . 1)
a

Noting (4.11), we see n > 2/*3 for k <1, so

Aok

Ayk+1 Aok+1 1
1- 2 >1- 25 >Co—— and  ayn —ayx < Cyo .
a, Aokss T (aqx) T(ax)

On the other hand, using Lemma 3.2(b), we see ®(a;) ~ ;. Hence, we have
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Hence, from (4.20) we have

+

”sn[aqbw_l]wcbm(%_ll’)

Lp (Zy)

< C19<I>A+(é‘;%)+ (ﬂ2k)T% (aqx) 10g(CT(a2k+1)) ( T?;k )>p
ok

2A—2A+1-1
()3T 3405 (ay),

1
< Cyp 10g(CT(ﬂ2k+1))ﬂp 2 1.1 24101
(IG5 30D gy,

ok

From Lemma 2.1 (2.2), we know

2(n+r-1)
A+l 0}

1 max{—2A+1_
"B (ay) < GCOLN)(2Y) F3armp 0,

|
Wiy
>
+
=
S

and

2(n+r-1)

T—%A“’%(l_}v)(czzk) <GC[H, n)(zk) "

max{—%AJr % (1—%),0}

Therefore, we continue with Lemma 2.1(a) as

. C20 C(}\) 7]) log (CT(ﬂzk+1 ))

2 A_n_20+2-1) _2A41 1
e Lep<

2 1_1yy_n_2(@+r-1) 2,1 1
(zlk)g(AHz—l—g )—’7— e max{—§A+§(l—1—7),0}

, 4<p.

First, let 1 < p < 4. Then (4.8), that is,

0, l<p<2;
A > 3 a1 p2
2301 po 2<p=4
implies
3r-1p-2
A>——p— and A>0
23x-1 p
iff

2 2=/ 2 1 1
—A - ——A+—-—=—1]>0 and A>0
3 A+l 3 2 p

iff

3 A+1

2 2(A-1) 2 1 1
A max > 0.
3 2

—A+---,0
p

This means that there exists a positive constant 7; > 0 small enough such that

2 2 r-1 2 1 1
n L)max ——A+—--—,0¢>0.
3 2 p

l<p<i4y
4<p.

(4.21)
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Now, let p > 4. Then (4.8), that is,

A-1p-1 1 Ar+1p-4
> _Z
3x-1 p 431-1 p

implies

A-1 1 A+1 /1 1 1 1
A > 1-—-) - ——— and A+---—>0
3x-1 p 3x-1\4 p 4 p

iff
2( <1 1)) 2(A—1)(2 1( 1))
—(A+|---])- -——A+-|(1-—-])>0
3 4 p A+l 3 3 p

and
(1 Gy))
—(A+|-=--]])>0
3 4 p

iff

2 1 1 200 = 1) 2 1 1
o A e B maxy——-A+—-(1--],0¢>0.
3 4 p A+l 3 3 p
Similarly to the previous case, this means that there exists a positive constant 7, > 0 small

enough such that

2 1 1 2 A-1 2 1 1
Bm)==(A+[--- —@—Mmax -——A+-|1--),0¢>0.
3 4 p p A+l 3 3 p

Now, we estimate I, x. From (4.21), we have

+

||sn[o¢w’l]w<DA+(%‘zla)

Lp (Zk)

G)'®, l<p<4

< CooC (1, ) log(CT (ay))
(R, d<p.

For n > 0 small enough, we can see A(n) > A(m1) > 0 and B(n) > B(n2) > 0. Let 7 :=
min{A(n1), B(n2)}/2. Then for small enough n > 0, we have

L1y 1 2t
fsfogn Two G < Cuc) 1og(CT(a2k+l))<§)

1 T
= CZIC()\'; 77) ? )

because we see that for all k > 0,

1\°
log(CT(ﬂ2k+1 )) <?) < C22.
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Therefore, under the conditions (4.8) we have

||sn[a¢w_l]w<DA*(%’}7)

!
oA+ a—p)"
p
a2<\x\<an) Z ||Sn U¢W Lyp(Zy)
k=1

/ T
< C21C()»,77)Z<%) <CyClum).  (422)

The estimation of

A+(F-3)*

1
r

||s,, [o q)w_l]wcb

Lp(|x|<az)

is similar. In fact, for x € [-ay, a,], we split

—2ay 2ay
Hloppjwl(x) = (/ + P.V./ / ) °¢P; dt.
-0 —2ay 2ay

Here we see that

‘/ 2 ( 0¢pW)(t) ‘

/°° (oppjw)(-t) dt’ -
2ay X+t

/‘°° (cppjw)(-t) J
2ay

t—a

] /°° (0gpw)(-s—2a5)
0 S+ a
and
/‘” (0 ppw)(t) dt’ _ /"o (o0 ppw)(t) dt‘ - /"O (o0 ppw)(2) dt‘
2, XL 2, L—% 2ay L

/ © (o ppw)(s + 2a3) Js
0

S+ do

So, we can estimate f_f:z and f;; as we did I; before (see (4.12)). We can estimate the

second integral as follows: By M. Riesz’s theorem,

2a; .
”P.V. / otpw)® 17

—2as xX—t

2ay p
<c [ ool d=ca <c.
(It=2a3) 2ay

Now, under the assumption (4.8), we can select 1o > 0 small enough such that

0, l<p=<2
3 Atno-l p=2 .
A> isug(r);olT’ 2<p=4
M-l p-1 1 a1 p-4
max{z;ug?m 1p ~ ZWJF,,(HT,O}, 4 <p.
Consequently, from (4.22) with 1o we have the result (4.9). N

Let 0 <« <1, then for g, in Lemma 4.5 we estimate L,(g,) over [~du, dan]-
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Lemma 4.7 (cf. [3, Lemma 4.4]) Let1<p<ooand0<e <1. Let {g,} be as in Lemma 4.4,
but we exchange (4.3) with

lg()w()| < ep(x), xeRn>1
Then for1< p < oo,

<Ce.

‘ 11y
lnnns_l)qo)o||L,4(g,,)wd>A+(4 2 ”Lp(\x\sag) =

Proof Let

K= Kagagsi o= g (L) | Late) P 200 DY
and

oy, :=signs, [h,].
We shall show that

1_1y+

| (g )wa )

+

= || Sp [(r,,qﬁw_l]wdDA*(%‘Zlv)

Ly(xl<an (4.23)

n Ly(lxl<an)’

8
Then from Lemma 4.5 we will conclude (4.22). Using orthogonality of f — s, [f] to P,-1,

and the Gauss quadrature formula, we see that

p

Ly(lx|<a
(x| %)

”Ln(gn)Wd)AJr(‘]_*_1%))r

=fu@mmmwmm
R

= /I‘Q Ln (gn)(x)sn [hn] (x)w2 (x) dx = Z }\j,ngn (xj,n)sn [hn] (xj,n)

j=1

Z Njn&n %) [ 1] (%) (see (4.4), that is, the definition ofgn)

|%j,nl<an
jnl=an

=€ Z )Lj,nw_l(xj,n)¢(xj,n)|Sn[hn](xj,n)|~

[%j,nl<an
. 1

Here, if we use Lemma 4.2 with i = ¢, we continue as

scﬁémwm@wmmmm

= Cs/sn[hn](x)anqﬁ(x)w‘l(x)wz(x) dx = Ce/ 1 (%)su[0npw ™| (x)W? (x) dx
R R

= Ce 8 hn(x)s,,[onqﬁw_l](x)wz(x) dx.

a

oolx
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Using Holder’s inequality with g = p/(p — 1), we continue this as

an . 1/q an R 1
§Cs< / g|h,q(x)w(x)c1>—<A+<%-é> )(x)|qu> ( / §|sn[o,,¢w’1]wq>A+(i—}a) y”dx)p
—an -
8

an
8
= CelLul@wo™ S 1L Isalospwtwet G|
- " Ly(ixi=ay) 15717 Ly(lxlzay)’
1 1
Cancellation of ||L,,(g,,)w Ha-p) ”L,, (i=ap) ) gives (4.23). O

Proofof Theorem 2.2 In proving the theorem, we split our functions into pieces that vanish
inside or outside [—ag ,an ]. Throughout, we let xs denote the characteristic function of a
set S. Also, we set for some fixed 8 > 0,

B2

Ppx)=(1+7)"7,

and suppose (2.5). We note that (2.5) means (4.8). Let 0 < & < 1. We can choose a polyno-
mial P such that

” (f -Pywg™ HLOC(]R) =

(see Lemma 3.8). Then we have

1

[(f ~ Luth)) w57 [P

<] - P)chm(é_’l’y ||Lp(R) +

A+(

=<lgo

p(R)

A+(E-1)
<Ce+ ||Ln(P —fiwd"a7p (4.24)

Here we used that
|p@+d-p)" I, < o0

because A >0 and ®~! grows faster than any power of x (see Lemma 3.9). Next, let
Xn:=x[-az,az],

and write
P—f=P~f)xn+P=f)L=Xn) =g +Ju:

By Lemma 4.4 we have

=0.

. A+(E-Ly+
Jim [Zafuw®B T

By Lemma 4.5 we have

lim ||L,4(g,,)wCI>A+(%’%)+
n—0Q

(x1zan) ~ =7
8
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and by Lemma 4.7,

<
Ly(xi<an) = C&
8

1_1\+

lim sup ||L,,(g,,)w<bA+(T1?)
n—00

Here we take ¢ > 0 as ¢ — 0, then with (4.24) we have the result. O

5 Proof of Theorem 2.4
Lemma 5.1 (cf. [3, Lemma 3.1]) Let w e F(C*+). Let 0 < < i and

Y@= D hon@)|w @)

|xk,n [>aan

Then we have for x € R,

> ©)w(x) @ (x) < Clogn.

Proof From Lemma 4.1 and Lemma 3.6 with p = 0o, we have the result easily. d

Lemma 5.2 Let w € F(C*+). Let 0 <o < L and
Y@= D @)W @)
n [%,n <aan

Then we have

/

2:(9C)W(x)d>(x)3/4 < Clogn.

Proof By Lemma 3.5(c), Lemma 3.4(d) and Lemma 3.5(b),

3 @)W Gan)

> )

%k n| <dan
_ |pn(x)| + Z |Pn(x)|

%6 = %50 |1 Pl (%) [ WK ) Wi %6 = X | [P, (k) W (K 1)

kjix
1%k,
(pn(xk,n)(l - =)
< Cwx) ™ + a}q/z |pn(x)| Z MR B
% — X
|xk,n‘5ﬂomv

kjx

[kl 1/4
a’? 1- X 1
~ o @) Y (1_' “')

" L a x—x

‘xk,nlfﬂom; \/q n | k,l’l|
kjx
3/2 3/4
1,4 3 %k 1
~ Cw(x) 1, 2n |pn(x)| (1_ n ) ’

n ap |% = X

‘xk,n|Sﬂom;

kjx
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where we used the fact

ka,n| |xk,n|
- ~1- ’ |xk,n| < aun-.

an ap

1

So,

/

. 3/4
> < Cwe) ™+ Z | Y l‘m'n') Ix;x,nl

n a — X,
n ‘xk,n|fﬂam " k,Yll

k#jx

d3/2 |xk | 3/4 1
= Cw) ™ + = |p(x)| > (1 - = )
xS

ay <k @n (xi,n)

%k | <aan,

kjx

/4
- ETAN 1

< Cw) ™ +a,?|pu)| E (1_ a" 3 e

%k, <aan, n jx§i§k — Xinl/An

kjx

Therefore we have by Lemma 3.6 with p = oo,

Z(x)w(x)cb(x)g/4 <C+ Cai,/2 !p,,(x)‘w(ac)CI)(x)l/4

n

3/4 1/2
X 1
% Z (1 _ |xk,n|> (1_ | 1x,n|)
an an Z,‘ <i<k V 1- |xi,n|/ﬂn

%k, <aan, A SIS
k#jx

1
<C ~ | .
<C X ekl OB

1%k, n [<aan, 0
ki

Lemma 5.3 ([8, Theorem1]) Letw € F(C?+). Then there exists a constant Cy > 0 such that
for every absolutely continuous function f with wf' € Cy(R) (this means w(x)f'(x) — 0 as
|x| — 00) and every n € N, we have

E,(wif) < CZEpny(wif ).
Proof of Theorem 2.4 There exists P,,_; € P, such that
|(f %) = Puca (%)) wlx) | < 2B, (w5 f).

Therefore, by Lemma 5.1 and Lemma 5.2,

|(f (%) = L () (&) ) w(x) D> (x) |
< [(F®) = Puca () w@) @4 (x) | + | Lu(f = Put) ) w(x) D% () |
= [(f (%) = Puct (%)) w(x) % () |

+ (W)@ () Y (F (6kn) = Pruca (510) ) Wk i )W ()
k=1
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< 2E, 3 (wif) {1+ wx) P4 @) D hon@)w™ (x.)
k=1

< CE,_1(w;f)logn.

Let wf® e Cy(R). If we repeatedly use Lemma 5.3, then we have

|(f(x) = Lu(H () w(x) @**(x)| < Cr(a—n"> Eyra(wif ) logn. 0
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