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Abstract

In this article, we study the Hankel determinant problem of a subclass of analytic
functions introduced recently by Arif et al.
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1 Introduction
Let A be the class of analytic function satisfying the condition £ (0) = 0, f(0) - 1 = 0 in
the open unit disc £ ={z:|z|< 1}. By §, S*, C, and K we means the well-known
subclasses of A which consist of univalent, starlike, convex, and close-to-convex func-
tions, respectively.

Let V;;\(a), k>2,0<0 <1, Areal, | A |< 7, denote the class of functions fi(z)
analytic and locally univalent in &, £,(0) = 0, f{(0) =1 and satisfying

O]”HRe 2D o) f1-o

This class was introduced and studied in details by Moulis [1]. For A = 0, we obtain

do < kw cosh, z=re”. (1.1)

the class Vi(o) of analytic functions with bounded boundary rotations of order o stu-
died by Padmanabhan et al. [2] and when ¢ = 0 and 4 = 0, we get the class V), dis-

cussed by Paatero [3], see also [4-8]. Also it can easily be shown that f,(z) € Vi (o) if
and only if there exists f>(z) € Vi such that

£(2) = ()0 (12)

We now consider a class of analytic functions defined by Arif et al. [9] as follows:

Definition 1.1. Let f(z) € A in E. Then f(z) € Bi(%, o, B8,y), if for k22,0< B <

b

1,0<y<1,Aisreal with | A |< 7 there exists a function fi(z) € V}(0),0<0< 1,
such that

AN B
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By giving specific values to the parameters k, 0, A4, , and 7 in [’S’k()\, a,B,y) we
obtain many important subclasses studied by various authors in earlier articles, see
[10-16].

Using (1.1) and (1.2), we have

2f'(2) =2 (f(2)' 7 (i ()9’ (2), (1.3)

where f1(z) € V() and p(z) belongs to the class P of functions whose real part is
positive.
Throughout in this article, we shall assume, unless otherwise stated, that k > 2,0 < 8

<1,0<y<1,Ais real with | A |<

2,0<0< 1.

In [17], the gth Hankel determinant Hq(n), ¢ > 1, n > 1, for a function f(z) € A is
stated by Noonan and Thomas as:

Definition 1.2. Let f(z) € A. Then the gth Hankel determinant of f (z) is defined
forg=1,n21by

an 2779 B an+q—1

an+1 An+2 - an+q—2
Hy(n) =1 . N (1.4)

An+g—1 Aneg—2 °*° Ani2q—2

The Hankel determinant plays an important role, for instance, in the study of the
singularities by Hadamard, see [[18], p. 329], Edrei [19] and in the study of power ser-
ies with integral coefficients by Polya [[20], p. 323], Cantor [21], and many others.

In this article, we shall determine the rate of growth of the Hankel determinant
Hqy(n) for f(z) € Bk(k,g,ﬂ, y) with 0 < 8 <2, as n — co. This determinant has been
considered by several authors. That is, Noor [22] determined the rate of growth of
Hqy(n) as n — oo for a function flz) belongs to the class V,. Pommerenke in [23] stu-
died the Hankel determinant for starlike functions. The Hankel determinant problem
for other interesting classes of analytic functions were discussed by Noor [11,12,24].

Lemma 1.1. Let f(z) € A . Let the gth Hankel determinant of f (z) forg > 1, n > 1
be defined by (1.4). Then, writting Aj(n) = Aj(n, z1, flz)), we have

Asg—s(n) Apgz(n+1) -+ Aji(n+q—1)

A2q—3 (Tl + 1) Azq_4(1’l + 2) s Aq_z(n +q— 2)
H,(n) = . . . .

Aqfl(n"'q— ].) Aqu(n"'q— 2) e Aq(n+2q— 2)
where with Ag(n) = a,, we define for j > 1,

Aj(n,z1,f(2)) = Aj-1(n, 21, f(2)) — Ajo1(n + 1,21, f(2)). (1.5)

Lemma 1.2. With z; = ;¥ and v > 0 any integer,

oy =S ()7 = (m=1)n)
Aj(n+v,z1,2f'(2)) = g <m) (ns1)" Aj_p(n+m+v,f(2)).

Lemmas 1.1 and 1.2 are due to Noonan and Thomas [17].
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Lemma 1.3. Let /,(z) be starlike univalent function in &. Then
(i) there exists a z; with |z;| = r such that for all z, |z| = r

212
z2—2z hi(z) | < ,
| 1] 1()|_1—r2

see [25]
(ii)

, Slhi(z) 1=

T A
(1+7) (1+1)%

see[26].

2 Hankel determinant problem
Theorem 2.1. Let f(z) € By(%, 0,8, y)With 0 <B < 2 and let the gth Hankel determi-
nant H4(n) of flz) be defined as in (1.4). Then

k
y(2+1)(1—d)coszk+ﬂ—2
n '

q=1
Hy(n) = O (1) (M(1))' { (k ) }
y +1 | (1-0)cos?r+B—1 t —q* _
nl \2 q=2, k> 8a—1) -2,
(1 — o) ycos?a
4j+2-B

(1—0)ycosth — 2 and O(1) is a constant depending on k, 4, B, 0, ¥, and j

where k >

only.
Proof. It is well known [1] that for starlike functions 4,(z) and /,(z)

(k 1) (1—0)ye ™ cos
42
fiz) = (mE/2) 1 2.1)
(hz(z)/z)(4_2)
Using (2.1) in (1.3), we have
k1 (1—0)ye ™ cos
42
zf/(z)zzy(f(z))l—y (hl(Z)/z) - pﬂ(z). (2.2)
(hz(z)/z)(‘*_2

where p(z) € P.
Let F (z) = 2f(z). Then for j > 1, z; any non-zero complex and z = re’’, consider Aj(n,
z1, F(z)) as defined by (1.5). Then

1

2
) = Y i(n+)0
| Aj(n,z1,F(2)) I= - /(z 21/ F(2)e" 1 dg|
0
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and by using (2.2), we have

(1—0)ye *cosr

(32)
472
LAj(mz FR) < n+}/|z—zl|1 L2l” | f(=) (m(2)/2) L | p(=)IPde
(hz(z)/z)(“'2>
. (k+1> (1—0)ye *cosi (23)
1- 472
< (N;(T)BW, ’ /Iz—zw" ((z)/2) L | p(=) 1P do.
T ,1)
(hz(z)/z)<4 ?
Since
k+l) (1—0)ye ™ cos <k+1) y(1—0)cos?x
(m(=x)/2)\* 2 | (h1(2)/z) \* 2 1oyt S
(k_l) - (k_l)
(ha(2)/2)\* 2 | (ha(2)/z) \* 2
(e (31700
= c1, say
| (hz(Z)/Z) |(4*2)1’(1—a)cos b
therefore (2.3) becomes
2 _ 2
1-y ( 2)y(l 0)cos’ A
| Aj(n, z1, F(2)) I< CI(I;T(:,)!L /Iz 1P (@) | - | p(z) IPd6.
1—0)cos?A
ey (20
Now using Lemma 1.3, we have
ko1
_ - (1—0)cos?r
‘ Aoy (aen?\ L2
8z, F@) 1= T (T
k1 .
1 (1-0)co!
TV(l—a)cosU»< ) f' (m (Z))|(4 2)1’ - |P(Z)|ﬂd9-
The well-known Holder’s inequality will give us
B
k_1 —0)cos?h+j . 27
| Aj(n, z1, F(2)) | < CI(M(r))l_y2(4 2>V“ | M( : >] 1 /|p(Z)|2d9 2
R - n—j+(k+l>y(1—o)coszk 1-r 2w
r 472 0
k N2
(2 +1>y(1—o)cos A—2j (2.4)
1 2 2 /3
oo [ 1011 o

0

Also, it is known [15] that, for p(z) € P, z € E,

3r2

/IP(Z) P < (2.5)
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Using (2.5) in (2.4), we obtain

k1 .
c1(M(r))]V2<4_2)V“‘“)“°SZ“’( 1 )1
n—j+(i+;>y(l—ﬁ)coszk 1-r
r

| Aj(n, 21, F(2)) | <

2-p
B

2 2 k+ — 2y _ 9 2
(1113:2)2 (;{/Khl(zm(“ 1)y(12ﬂ)cos ’ 2149) .
0

Therefore, we can write

(k l) ( |
— y(1—0)cos? r+B+j ) ﬁ
61(1”1(1'))1 "2

1y
(k 1) (1 - r)
n—j+ y(1—0)cos?A
r

| A](Tl, 21, F(Z)) | <

.
4 2
2-p
k1 i . 2
1— A—j
. 4+2 y(1—0)cos’r—j 1 /. 4o
27 (k+2)y(1 —o)cos?r — 4j
O .
|1 —re?| 2-p

Now using a subordination result for starlike functions, we have
2-p
aM@)' (1 i+ 1 v 2)(127 U;COSZA Ul

aytn z F@y 1= SO ()

L .
=62(M(T))1_y< 1 )}/(2(4-1)(1—0)(051)@,8—1—]

™ 1—r1

’

where ¢, is a constant depending on k, A, 3, 6, % j only and Yk + 2) (1 - 0) cos® A -

4j > 2 - f.

Applying Lemma 1.2 and putting z; = (,",) €”, (n — 00), r=1— !, we have for

n+1

k 2 i
|Aj (n’ eian’ f(Z)) = O(l) (M(T))pynl’(zﬂ)(l—o)cos r+B—j 2’,

k .

. +1)(1—0)cos? A+f—j—2
| A (n, ¢, f(z)) 1= 0(1) (M(r))lfyny<2 Juoxoriesy :

where O(1) is a constant depending on k, A, B, 0, % and j only.

We now estimate the rate of growth of H,(n).

For g = 1, Hq(n) = ay = Ao(n) and

k 0y
() = a0 = 0(1) @y ol (1)

For g > 2, we use similar argument due to Noonan and Thomas [17] together with

Lemma 1.1 to have

§+1>(1—0)c052k+ﬁ—1:|q—q2 I > S(q — 1)

"7 (1 —0)ycos?a

Hq(n) = O(1) (M(T))l_yn[y(
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and O(1) depends only on &, A, 3, 0, ¥, and .
For choosing different values of A, 8, 0, and ¥ in Theorem 2.1, we obtain the follow-

ing results discussed by Noor [10,11] and Noor et al. [14].

Corollary 2.1. For A =0, B =1, 0 = 0, f(z) € Br(y), where the class By(y) was

introduced by Noor et al. [14] and

Hy(n) = O(1)(M(1)' ™

k) _
n 1)q q, q=>2, k> 8(a-1) -2
14
where O(1) is a constant depending only on k and .
Corollary 2.2. For 1 =0, y = 1, f(z) € 7;(,3, o) and
k
n(l—a)(2+1>+ﬂ—2l q- 1
Hy(n) = O(1) ! )
n[(l—a)(2+1>+ﬁ—l]q—q 4=2 k> 8(q—1) )
(1-0)

where O(1) is a constant depends on &, 0, and 3 only.
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